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Abstract

We analyze linkage strategies for one and several pages (forming a clique) willing to
maximize their PageRank. The latter is given by the Perron vector of an irreducible
stochastic matrix, namely the Google matrix. We study the case where the user can
only control the outlinks of its own page or the outlinks of its own site consisting
in several pages. In that way, this paper deals with the sensibility of the PageRank
and formalize previous simulations that shows significant changes in the PageRank
of a page that modifies its own outlinks. An optimal linkage strategy is given for a
user having one page or a site where every page points to every page forming then
a clique.
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Introduction

Google has established its well-known PageRank, introduced by Page and
Brin in [9], that classifies the pages of the World Wide Web by scoring each
of them. A page with a high PageRank will be among the first items in the
list. No surprise then that everyone wishes to maximize its own PageRank
[1,5,2]. However, the only control the user has on its own page or site are the
outlinks pointing to some external pages. Modifying these outlinks leads to
perturbations in the PageRank and therefore to a special case of the sensitivity
of the PageRank [4,7,3,6]. Ilse-Wills [6] inform us that new inlinks to some
page u always increase the PageRank of u, but the adding of new outlinks
from u is not necessarily decreasing for the PageRank. Sydow [11] shows in
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some simulations that good chosen outlinks may increase its own PageRank.
That motivates the search of an optimal linkage strategies for one or several
pages.

The paper is divided into three parts. First the preliminaries introduce the
notations, the PageRank equations and the reduced PageRank equations for
a subset of nodes. Using these equations, the second part exposes some result
of optimality for one page and for a clique of pages. Finally, some remarks and
open problems are given for further analysis in the topic.

1 Preliminaries

1.1 PageRank equations

Let G = (N , E) be a directed webgraph, with a set of nodes N = {1, 2, . . . , n}.
Without loss of generality (see for instance Bianchini et al. [4] for precondi-
tioning concerns), we can suppose that each node of N has at least one outlink
and no self-loop. Therefore, the adjacency matrix A of G has no zero row but a
zero diagonal. Let P = D−1A be the stochastic n×n matrix which is obtained
by scaling the adjacency matrix A with the inverse of the diagonal matrix D
of outdegrees of all nodes. Let also c ∈ ]0, 1] be a damping factor, and z be a
stochastic personalization vector, i.e. zT1 = 1. The Google matrix G is then
defined as

G = cP + (1− c)1zT,

where 1 denotes the vector of all ones, its dimension usually follows from the
context. We suppose that G is irreducible, which is the case as soon as A is
irreducible, or c < 1 and z > 0. The PageRank vector π is then defined by
the following equations

πTG= πT, (1)

πT1= 1, (2)

and is usually interpreted as the stationary distribution of a random surfer
using hyperlinks between pages with a probability c and jumping to some
new page according to the personalization vector with a probability (1 − c).
Hence, πi is the weighted sum of the scores of its own parents times c, plus its
personalized score zi times (1− c).
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1.2 Reduced PageRank equations for a subset of nodes

Throughout the paper, we will be interested in the characterization of the
PageRank for a subset I of nI nodes ofN . In order to write the basic equations
for this subset of nodes, we need to introduce the concepts of mean return time
and reduced transitions probabilities for I.

Let X0, X1, . . . be a random walk on the graph defined by the Google matrix
G.

Definition 1 The nI × nI reduced transition matrix SI of is defined by

Sij = P(Xt = j, X1, . . . , Xt−1 ∈ Ī for some t ≥ 1 |X0 = i) for all i, j ∈ I.

Definition 2 The nI-vector tI of mean return times in I is defined by

ti = E(t |X0 = i,X1, . . . ,Xt−1 ∈ Ī,Xt ∈ I) for all i ∈ I.

The reduced transition matrix SI is usually called the Perron or stochastic
complement. It represents the transition matrix for the reduced Markov chain
on I which is built by hiding the transitions outside the states of I. Its ex-
pression and properties are well known (see [8]).

Proposition 3 (Meyer [8]) Let SI be the reduced transition matrix of a ir-
reducible stochastic matrix G for I. Then SI is an irreducible stochastic matrix
and can be expressed as

SI = GI + Gout(I)(I −GĪ)
−1Gin(I),

with (I − GĪ) invertible and having a non-negative inverse usually called the
fundamental matrix.

The mean return times vector tI can also be written in function of the entries
of the Google matrix G.

Proposition 4 Let tI be the mean return times vector for I. Then

tI = 1 + Gout(I)(I−GĪ)
−11.

Proof. It is well known (see for instance [10]) that, for i, j ∈ Ī, the entry
((I −GĪ)

−1)ij is the mean number of visits to node j before reaching the set
I when starting from i. Moreover, for all i ∈ Ī,

E(t | X0 = i, X1, . . . , Xt−1 ∈ Ī, Xt ∈ I)

=
∑
j∈Ī

E(number of visits to node j without leaving Ī |X0 = i)

= ((I −GĪ)
−11)i.
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Therefore, for all i ∈ I,

ti = E(t |X0 = i, X1, . . . , Xt−1 ∈ Ī, Xt ∈ I)

= 1 +
∑
`∈Ī

P(X1 = ` |X0 = i) E(t |X0 = `, X1, . . . , Xt−1 ∈ Ī, Xt ∈ I),

hence it follows that tI = 1 + Gout(I)(I−GĪ)
−11.

Now we can write reduced PageRank equations for the subset of node I. The
first one is well known [8], and expresses that the PageRank subvector πI is
proportional to the stationary distribution vector for the reduced transition
matrix SI . The second one gives the proportionality ratio thanks to the mean
return times vector tI .

Proposition 5 (Meyer [8]) The PageRank subvector πI for the nodes of I
satisfies

πT
I SI = πT

I .

Proposition 6 The PageRank subvector πI for the nodes of I satisfies

πT
I tI = 1.

Proof. By Proposition 4,

πT
I tI = πT

I 1 + πT
I Gout(I)(I−GĪ)

−11 = πT
I 1 + πT

Ī 1 = 1,

since πT
Ī = πIGout(I)(I − GĪ)

−1 by equation 1, and πI1 + πT
Ī 1 = 1, by

equation 2.

2 Optimal outlink structure

We are interested in how given pages can modify their PageRank by changing
their outlink structure. We will consider two cases: first, a single page wants to
maximize its PageRank, and second, a set of nI pages, organized in a clique,
wants to maximize the sum of the PageRanks of its pages. In these two cases,
the only variables are the links from the node or the clique to the rest of the
graph.

We make the assumption that there exists at least one outlink from the con-
sidered set of pages I to the rest of the graph. Clearly, the optimal structure
is reached when no outlink points to the rest of the graph turning the set of
pages I into an absorbing state. However we can imagine that Google penalize
such selfish behavior while is looking for link spam alliances [5].

4

Preliminary version – 25 October 2006



The adjacency matrix A of the webgraph can therefore be written as

A =

 AI Aout(I)

Ain(I) AĪ

 ,

where AI = 11T − I, Ain(I) and AĪ are given, and Aout(I) ∈ {0, 1}nI×nĪ ,
Aout(I) 6= 0 has to be determined.

2.1 Optimal set of outlinks for a particular node

We first consider the case where I is a singleton, say I = {1}. We want to
maximize its PageRank score π1. The only control we have on the webgraph is
the choice of the outlinks of page 1, that is the choice of L ⊆ Ī = {2, . . . , n},
L 6= ∅, for which

Aout({1}) = eT
L ,

where (eL)i = 1 if i ∈ L, 0 otherwise.

The expression of π1 follows directly from Proposition 6.

Corollary 7 The PageRank score π1(L) of the node 1 is given by

π1(L) =
1

1 + c
eT
L
|L|(I−GĪ)

−11 + (1− c)1zT
Ī (I−GĪ)

−11
.

Proposition 8 The PageRank π1(L) is maximal if and only if L is a non-
empty subset of L∗, where

L∗ = arg min
i

eT
i (I−GĪ)

−11. (3)

Proof. Proof. Clearly, by Corollary 7, π1(L) is maximal if and only if
eT
L
|L|(I −

GĪ)
−11 is minimal.

The following proposition claims that the best one node can do is to point to
some of its own parents. If it has no parent, its PageRank does not depend on
its outlinks.

Proposition 9 Suppose that Ain({1}) 6= 0. Then,

L∗ ⊆ support(Ain({1})).
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Proof. Proof. Let v = (I − GĪ)
−11. From Gin({1}) + GĪ1 = 1, we obtain

(1− c)z11 = (I−GĪ)1− cAin({1}). Therefore, since Ain({1}) 6= 0, (1− c)z1v =
1− c(I−GĪ)

−1Ain({1}) � 1, that is

(1− c)z1 min
j

vj < 1. (4)

Let i /∈ support(Ain({1})). Then eT
i GĪ1 = 1− (1− c)z1. So

vi = eT
i (I−GĪ)

−11

= eT
i (I + GĪ(I−GĪ)

−1)1 = 1 + eT
i GĪv

≥ 1 + eT
i GĪ1min

j
vj

≥ 1 + (1− (1− c)z1) min
j

vj > min
j

vj,

by equation 4. It follows that if i /∈ support(Ain({1})), then i /∈ L∗.

Proposition 9 shows that, in order to maximize the PageRank of a node by
choosing its outlinks, this node must link to nodes which link to itself, i.e. some
of its parents. But, as shown in Figure 1, all its parents are not necessarily
optimal, and moreover, it can be better for this node to link to some nodes
which are not its parents than to link to some of its particular parents.
In [1], the authors shows that the optimal linkage strategy for one node i is

Fig. 1. Node 1 has advantage to link to node 3 (grand-parent) rather than node 2
(parent) where the random surfer is more likely to waste time in the loop before
going back to node 1.

reached when it points to one particular node. We add that this particular
node belongs to parents of node i. However, all parents are not interesting
(Figure 1).

2.2 Optimal set of outlinks for a clique

We now consider the case where I is a set of nI ≥ 2 nodes, organized in a
clique. We want maximize the sum of their PageRanks, that is πT

I 1.
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We make the conjecture that Aout(I) must be of rank one in order to maximize
the sum of the PageRank of I for any AI . Further, only one node ∈ I must
have no more than one external child.

Definition 10 An external child/parent/node is a child/parent/node in Ī.

That conjecture is intuitive: you should chose a node of the clique which has
a low PageRank to have a leak in your clique, so you do not lose to much
score. And moreover, it is better for you to point to an external node which
will soon give you PageRank back.

Proposition 14 proves our conjecture for AI being a clique with at least one
node without external parent (section 2.2.1) and a minimal zapping in the
clique. Proposition 16 assumes that Aout(I) is of rank one (section 2.2.2) and
proves then that πT

I 1 is optimal with Aout(I) having only one nonzero entry.
Therefore Corollary 17 claims that when a clique has some node without
external parent and a minimal zapping in the clique, then that node must
point to one particular external parent of the clique in order to maximize
πT
I 1.

2.2.1 Some node of the clique does not have any external parent

We will first analyze the case where at least one of the nodes of the clique,
say 1, has no external parent.

We introduce the following lemma which is similar to Corollary 7 and Propo-
sition 8.

Lemma 11 The sum of PageRanks πT
I 1 is maximal if and only if

πT
I

πT
I 1

Gout(I)(I−
GĪ)

−11 is minimal.

Proof. Proof. This follows simply from Propositions 6 and 4:

1

πT
I 1

=
πT
I tI

πT
I 1

= 1 +
πT
I

πT
I 1

Gout(I)(I −GĪ)
−11.

The idea of the following lemma is just to express the relation between the
PageRank scores of the nodes of the clique which have external children (say
such nodes ∈ R), the PageRanks sum of the clique (πT

I 1), the personalization
vector of nodes in R (zR) and the flow given by the external parents to nodes
in R.

Lemma 12 Let Aout(I) =
∑

i∈R eieLi
, for some i ∈ R ⊆ I, Li ⊆ Ī. Let

r = |R| and `i = |Li| for all i ∈ R. Then

∑
i∈R

πi

(
1 +

c

nI − 1

nI − 1 + `ir

nI − 1 + `i

)
=

cr

nI − 1
πT
I 1 + (1− c)zT

R1 + cπT
Ī D−1

Ī Ain(I)eR.
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Proof. Proof. For all i ∈ R, we have from PageRank equation 1,

πi = πT(cD−1A + (1− c)1zT)ei

= c
(
πT
I D−1AIei + πT

Ī D−1Ain(I)ei

)
+ (1− c)zi

= c
( ∑

j∈I\R

πj

nI − 1
+

∑
j∈R,j 6=i

πj

nI − 1 + `j

+ πT
Ī D−1

Ī Ain(I)ei

)
+ (1− c)zi.

Therefore,

πT
R1 = cr

πT
I 1− πT

R1

nI − 1
+ c(r− 1)

∑
i∈R

πi

nI − 1 + `i
+ cπT

Ī D−1
Ī Ain(I)eR + (1− c)zT

R1,

and the conclusion follows by rearranging terms.

We now get directly a lower bound on the ratio between the PageRanks sum
for the nodes of the clique which have outlinks to the rest of the graph, and
the PageRanks sum for all the nodes of the clique.

Lemma 13 Let Aout(I) =
∑

i∈R eieLi
, for some i ∈ R, Li. Let r = |R| and

let δ = maxi∈R
nI−1+|Li| r
nI−1+|Li| . Then

πT
R1

πT
I 1

≥ cr

nI − 1 + cδ
+

(1− c)(nI − 1)

nI − 1 + cδ

zT
R1

πT
I 1

with equality if and only if r = 1 and Ain(I)eR = 0.

Proof. to do

The following proposition shows that, if there exists some node in the clique
which does not have any external parent, and if this node also has a minimal
probabilty of zapping in the clique, then the outlink matrix Aout(I) must be of
rank one in order to maximize the sum of the PageRank scores of the clique.

Let us note that decreasing the number of external children to make Aout(I) of
rank one does not necessarily improve the sum of the PageRanks of the clique
as shown in Figure 2.

Proposition 14 Suppose that F = {f ∈ I: Ain(I)ef = 0 and zf = mini∈I zi} 6=
∅. Then πT

I 1 can be maximal only if Aout(I) is of rank one.

Proof. We will compare the PageRank sum for two cases. For the first case,
we suppose that rank Aout(I) ≥ 2. Then, without loss of generality, Aout(I) =

8
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Fig. 2. Two nodes pointing outside may be better than one node pointing outside.
For example, with c = .85 we have

Aout(I) =

 1 0 0

0 0 0

 <PR Aout(I) =

 1 0 0

0 0 1

 <PR Aout(I) =

 0 0 1

0 0 0

 (best).

∑
i∈R eieLi

, for some i ∈ R, Li. Let r = |R| ≥ 2 and let

δ = max
i∈R

nI − 1 + |Li| r
nI − 1 + |Li|

< r.

For the second case, we consider the particular case where Ãout(I) = efe
T
` ,

for some node f ∈ I such that Ain(I)ef = 0, and ` ∈ L∗ (definition of L∗
in Proposition 8). Let π and π̃ be respectively the PageRanks for Aout(I) and

Ãout(I). Let

α =
zT
R1

δzf

.

Since δ < r and zf = mini∈I zi, we have α > 1, and hence there exists some
p ∈ N such that αpπ̃T

I 1 ≥ πT
I 1. We want to prove that, for all k ∈ N,

αk+1π̃T
I 1 ≥ πT

I 1 implies that αkπ̃T
I 1 > πT

I 1,

and finally π̃T
I 1 > πT

I 1.

Let k ∈ N, and suppose that αk+1π̃T
I 1 ≥ πT

I 1. Then, by Lemma 13,

αk πT
R1

πT
I 1

> αk cr

nI − 1 + cδ
+

(1− c)(nI − 1)
nI−1

δ
+ c

αk

δ

zT
R1

πT
I 1

>
c

nI − 1 + c
+

(1− c)(nI − 1)

nI − 1 + c
αk+1 zf

πT
I 1

≥ c

nI − 1 + c
+

(1− c)(nI − 1)

nI − 1 + c

zf

π̃T
I 1

=
π̃f

π̃T
I 1

.

So, since ` ∈ L∗,

αk πT
I

πT
I 1

Gout(I)(I −GĪ)
−11

= αk
(
c
∑
i∈R

πi

πT
I 1

eT
Li

(I−GĪ)
−11

nI − 1 + |Li|
+ (1− c)zT

Ī (I−GĪ)
−11

)
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>
(
c

π̃f

π̃T
I 1

eT
` (I−GĪ)

−11

nI
+ (1− c)zT

Ī (I−GĪ)
−11

)
=

π̃T
I

π̃T
I 1

G̃out(I)(I −GĪ)
−11.

Now, by Lemma 11,

αk

πT
I 1

= αk
(
1 +

πT
I

πT
I 1

Gout(I)(I −GĪ)
−11

)
> 1 +

π̃T
I

π̃T
I 1

G̃out(I)(I −GĪ)
−11 =

1

π̃T
I 1

,

and therefore αkπ̃T
I 1 > πT

I 1. By induction on decreasing k, we conclude that
π̃T
I 1 > πT

I 1, that is the second case where Ãout(I) = efe
T
` , for some node

f ∈ I such that Ain(I)ef = 0, and ` ∈ L∗ is better than any configuration
where Aout(I) has a rank strictly larger than one.

2.2.2 The outlink structure is of rank one

With Proposition 14, we have seen that under some assumptions on the struc-
ture of the graph and on the preference vector, the optimal outlink structure
is of rank one. Now, we will not impose conditions on the inlinks of the clique,
nor on the preference vector, but we will suppose that the adjacency matrix
block Aout(I) corresponding to the externam outlinks to the rest of the graph
is of rank one, that is

Aout(I) = eMeT
L ,

for some nonempty M⊆ I and L ⊆ Ī.

Lemma 15 Let a, b ≥ 0 and u,v ∈ Rn such that v ≥ 0 and a+uTei ≥ 0 for
all i ∈ {1, . . . , n}. Let, for all ∅ 6= R ⊆ {1, . . . , n},

f(R) =
a + uTeR

(a + uTeR)b + vTeR
.

Then, the maximum of f is obtained for some R with |R∗| = 1. Moreover, if
a > 0 and v > 0, then f(R∗) > f(R) for all R such that |R| ≥ 2.

Proof. Let i ∈ {1, . . . , n} such that f({i}) ≥ f({j}) for all j ∈ {1, . . . , n}.
Let ∅ 6= R ⊆ {1, . . . , n}. Then

f({i}) =
a + uTei

(a + uTei)b + vTei

≥
∑

j∈R(a + uTej)∑
j∈R((a + uTej)b + vTej)
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≥
a +

∑
j∈R uTej

(a +
∑

j∈R uTej)b +
∑

j∈R vTej

= f(R).

Moreover, if |R| ≥ 2, a > 0 and v > 0, the last inequality is strict.

The following proposition assumes that Aout(I) is of rank one and proves then
that πT

I 1 is optimal with Aout(I) having only one nonzero entry. In other words,
it is enough to have one node in the clique pointing to one external child.

Proposition 16 Under the constraint that Aout(I) = eMeT
L for some non-

empty M⊆ I and L ⊆ Ī, the sum of PageRanks πT
I 1 can be maximal only if

|L| = |M| = 1.

Proof. With Aout(I) = eMeT
L , we have

Gout(I) = c
eMeT

L
nI − 1 + |L|

+ (1− c)1zT
Ī ,

GIeM =
(

c

nI − 1
|M|+ (1− c)zT

I eM

)
1− c

nI − 1

nI − 1 + |L||M|
nI − 1 + |L|

eM.

From Propositions 5 and 3,

πT
I eM = πT

I GIeM + πT
I Gout(I)(I−GĪ)

−1Gin(I)eM.

Substituting Gout(I) and GIeM, we get

πT
I 1 (wTeM) =

πT
I eM

nI − 1 + |L|
(
α + eT

L1 + eT
LMeM

)
, (5)

where

α = nI − 1 + c,

wT =
c1T

nI − 1
+ (1− c)zT

I + (1− c)zT
Ī (I−GĪ)

−1Gin(I),

M =
c11T

nI − 1
− c(I −GĪ)

−1Gin(I).

Moreover, from Propositions 6 and 4,

1 = πT
I 1 + πT

I Gout(I)(I−GĪ)
−11.

Substituting Gout(I), we get

β πT
I 1 +

πT
I eM

nI − 1 + |L|
eT
Lq = 1, (6)
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where

β = 1 + (1− c)zT
Ī (I−GĪ)

−11,

q= c(I −GĪ)
−11.

Combining equations 5 and 6, we finally have

πT
I 1 =

α + eT
L1 + eT

LMeM
(α + eT

L1 + eT
LMeM)β + wTeM eT

Lq
.

Suppose first that L is fixed. We can apply Lemma 15 with

a = α + eT
L1 > 0,

b = β ≥ 0,

vT = eT
LqwT > 0,

a + uTei = α + eT
L1 + eT

LMei > eT
L (1− c(I−GĪ)

−1Gin(I)ei) ≥ 0 for all i,

since (I − GĪ)
−1Gin(I)ei ≤ (I −GĪ)

−1Gin(I)1 = 1. It follows that, whatever
L, the set M must be a singleton in order to maximize πT

I 1. Suppose that M
is fixed. By the same argument with

a = α > 0,

b = β ≥ 0,

v = qwTeM > 0,

a + uTei = α + eT
i (1 + MeM) > 1− ceT

i (I−GĪ)
−1Gin(I)eM ≥ 0 for all i,

it follows that L must be a singleton to maximize πT
I 1, whatever M. We can

therefore conclude that, if πT
I 1 is maximal under the constraint that Aout(I) =

eMeT
L , with M,L 6= ∅, then we must have |M| = |L| = 1.

The following corollary is deducted from proposition 14 and 16, it uses the
notation L∗ defined in proposition 8.

Corollary 17 Suppose that F = {f ∈ I: Ain(I)ef = 0 and zf = mini∈I zi} 6=
∅. Then πT

I 1 can be maximal if and only if Aout(I) = eie
T
j where i ∈ F and

j ∈ L∗.
The example in Figure 3 shows that the condition zf = mini∈I zi is necessary,
indeed the vector z may modify the leaking node (the node in I pointing to
an external node). And the example in Figure 4 exposes one case where all
nodes in the clique have external parents. There the optimal linkage strategy
do not lead to point to an external node giving the best mean return time to
the clique, that is an external node in L∗.
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Fig. 3. Let z1 = .7 and zi = .1 for i = 2, 3, 4. The optimal linkage for the clique
I = {1, 2} is Aout(I) = eieT

j with i = 1 (the leak is in the node with no external
parent) when (1− c) = .15, but with i = 2 when the zapping increases (1− c) = .3.

Fig. 4. When all nodes in the clique I = {1, 2} have at least one external parent,
the optimal for the sum of the PageRank of the clique may be Aout(I) = eieT

j

with j /∈ L∗. Here L∗ = {3, 4}, however the optimal linkage strategy is i = 1 and
j = 5 /∈ L∗.

3 Conclusion

Let us remind that we focus on the matrix Aout(I) being given AI , Ain(I)

and AĪ . Clearly, other questions arise if we consider other combinations. For
example, we could fix the matrices Aout(I), Ain(I), AĪ and look for the optimal
internal structure of I, that is determined AI to maximize πT

I 1. The answer is
not trivial and the optimal structure is not a clique. We have seen that finding
Aout(I) when AI is a clique is not direct. Surely that the problem becomes even
more complex for other AI . However, we make the following conjecture:

For any fixed AI , the sum of PageRanks of I is maximal only if
Aout(I) = eie

T
j for some i, j ∈ N .

Let us remark that this is no more true when we want to maximize a linear
combination of the PageRanks of I. That is maximizing the more general
expression πT

I v instead of πT
I 1, with v any vector of nI entries. For instance,

Figure 5 shows with v = (1000) that the optimal Aout(I) has not one nonzero
entry and is even not of rank one.

When I = {1}, the optimal linkage strategy does not depend on the damping
factor c, nor the personalization vector z contrarily to the case of several pages
in I. The best consists to point to one of its own parents if it exists. However,
the result is different if node 1 wants to keep outlinks to a set of pages and
add outlinks to maximize its PageRank. Then node 1 needs to add iteratively
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Fig. 5. The set I = {1, 2, 3, 4} wants to maximize πT
I v where v = (1 0 0 0) and

the damping factor is c = .85. Then Aout(I) won’t be of rank one. The optimal is
achieved for nodes 1, 2, 4 pointing to node 5 and node 3 has to point to nodes 5 and
6.

an outlink to the page having the minimum mean return time to itself. This
process stops once all remaining pages have a mean return time to node 1
higher than the average of the mean return times to node 1 of the pages
pointed by node 1. That problem of having a fixed set of outlinks for I and
maximizing the sum of PageRanks of the clique I is similar to the one node
case required that we have the assumption of Proposition 14.
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