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In this note, we provide a full proof of the following result, which is presented as Proposition 4 in [1].

Theorem 1. Let
P (z) = anbnzn + an−1bn−1z

n−1 + · · · + a0b0.

If the following conditions hold

• an > an−1 > · · · > a0 > 0,

• bn−k = bk, ∀k,

• The sequence (b0, b1, . . . , bn) is positive and convex, i.e. bk ≥ 0 for all k and bk − bk−1 ≤ bk+1 − bk

for k = 1, . . . , n − 1,

then all roots of P are strictly in the unit-disk: P (z) = 0 ⇒ |z| < 1.

Our proof is decomposed in three parts, presented in the three following sections.

1 Concentric circles

Suppose that starting from an initial point s0 in the plane, one moves by a distance c, calls the arrival
point s1, then rotates by an angle θ, moves by a distance c in the new direction, calls s2 the arrival point,
and keeps repeating these operations. It is well known that all points sk lie in that case on a same circle
and are thus all at equal distance from the center g of that circle. We prove in this section that, if the
distance travelled at each iteration varies, then provided that the sequence of distances is convex and
increasing, the sequence of distances between sk and g is nondecreasing. More formally, we prove the
following Proposition.

Proposition 1. Let (c0, c1, . . . , cm) be a positive nondecreasing convex sequence, and fix θ ∈ (0, 2π). Let
s−1 = −c0/2, and sk = sk−1 + ckeikθ for all other k. Let then g = i c0

2 tan(θ/2) . There holds

|s−1 − g| = |s0 − g| ≤ |s1 − g| ≤ · · · ≤ |sm − g| , (1)

and the equality holds if all ck are equal.

To obtain this result, we need three lemmas. The first of them, which is about the decomposition of
nonnegative nondecreasing convex sequence, can easily be proved by induction.

Lemma 1. Let (c0, c1, . . . , cm) be a nonnegative nondecreasing convex sequence, then there exist nonneg-
ative coefficients u1, . . . , um such that

(c0, c1, . . . , cm) = c0 (1, 1, 1, 1, . . . , 1)
+ u1 (0, 1, 2, 3, . . . , m)
+ u2 (0, 0, 1, 2, . . . , m − 1)
...
+ um (0, 0, 0, . . . , 0, 1).

(2)

Moreover, c0 +
∑

q uq(m − q + 1) = cm, and c0 +
∑

q uq(m − q + 2) = cm + (cm − cm−1).
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The following two Lemmas are technical results about computations used in the proof of Proposition
1.

Lemma 2. For every θ and integer k, there holds

ℜ

(

e−kiθ

(

e
θ−π

2
i

2 sin(θ/2)
+ eiθ + e2iθ + . . . e(k−1)iθ

))

= −1/2. (3)

Proof. We first evaluate the first term

ℜ

(

e−kiθ e
θ−π

2
i

2 sin(θ/2)

)

= ℜ

(

−i
eθ( 1

2
−k)i

2 sin(θ/2)

)

= ℑ

(

eθ( 1

2
−k)i

2 sin(θ/2)

)

. (4)

Consider now the second term, and remember that z + z2 + ... + zk−1 = zk−z
z−1 . The real part of

e−kiθ
(

eiθ + e2iθ + . . . e(k−1)iθ
)

can thus be reexpressed as

ℜ

(

1 − e(1−k)iθ

eiθ − 1

)

= ℜ

(

e−
1

2
iθ − e( 1

2
−k)iθ

eiθ/2 − e−iθ/2

)

= ℑ

(

e−
1

2
iθ − e( 1

2
−k)iθ

2 sin(θ/2)

)

Together with equation (4), this implies that the first member of (3) is equal to

ℑ

(

e( 1

2
−k)iθ

2 sin(θ/2)
+

e−
1

2
iθ − e( 1

2
−k)iθ

2 sin(θ/2)

)

= ℑ

(

e−
1

2
iθ

2 sin(θ/2)

)

= −
1

2
.

Lemma 3. For every θ 6= 0 and integer k, there holds

ℜ
(

e−kiθ
(

eiθ + 2e2iθ + 3e3iθ + · · · + (k − 1)e(k−1)iθ
))

≥ −k/2. (5)

Proof. The following equality can be proved using standard algebraic tools1

z + 2z2 + 3z3 + · · · + (k − 1)zk−1 = k
zk

z − 1
− z

zk − 1

(z − 1)2
.

The first term of equation (5) can thus be rewritten as

ℜ

(

e−kiθ

(

k
eikθ

eiθ − 1
− eiθ eikθ − 1

(eiθ − 1)
2

))

= ℜ

(

k

eiθ − 1
− eiθ 1 − e−ikθ

(eiθ − 1)
2

)

. (6)

Observe now that
k

eiθ − 1
=

ke−iθ/2

eiθ/2 − e−iθ/2
= −i

ke−iθ/2

2 sin(θ/2)
,

so that

ℜ

(

k

eiθ − 1

)

= ℑ

(

ke−iθ/2

2 sin(θ/2)

)

= −k/2. (7)

The second term of (6) can be rewritten as

−eiθ 1 − e−ikθ

(eiθ − 1)
2 = −

1 − e−ikθ

(

eiθ/2 − e−iθ/2
)2 =

1 − e−ikθ

4 sin2(θ/2)
,

which has a nonnegative real part. This, together with equation (7) implies the desired result.

1This can be proved by recurrence, or using the observation that 1 + 2z + 3z
2 + · · · + (k − 1)zk−2 =

`

1 + z + z
2 + z

3 + · · · + z
k−1

´

′

.
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We can now prove Proposition 1.

Proof. Observe first that s0 = c0/2 = −s−1 and thus that |s−1 − g| = |s0 − g|, as g has no real part. The
inequality |s1 − g| ≥ |s0 − g| can also easily be verified.

Consider now an arbitrary k > 1, and let us show that |sk − g| ≥ |sk−1 − g|. The recursive definition
of sk implies that

|sk − g|
2

= |sk−1 − g|
2

+ c2
k + 2ℜ

(

cke−kiθ(sk−1 − g)
)

.

We therefore just need to prove that ℜ
(

e−kiθ(sk−1 − g)
)

≥ − 1
2ck, for any given k. One can verify that

s0 − g = c0

2 sin(θ/2)e
i θ−π

2 . Together with the definition of the sk, this implies that

ℜ
(

e−kiθ(sk−1 − g)
)

= ℜ

(

e−kiθ

(

c0

2 sin(θ/2)
ei θ−π

2 +
k−1
∑

q=1

cqe
qiθ

))

.

It follows from Lemma 1 (applied to k − 1) that this can be rewritten as

c0ℜ

(

e−kiθ

(

ei θ−π

2

2 sin(θ/2)
+

k−1
∑

q=1

eqiθ

))

+
k−1
∑

j=1

ujℜ

(

e−kiθ

k−j
∑

q=1

qe(q+j−1)iθ

)

, (8)

with nonnegative coefficient uj satisfying c0 +
∑k−1

j=1 uj(k + 1 − j) = ck−1 + (ck−1 − ck−2). We treat
separately the two parts of this quantity. For the first part, it follows from Lemma 2 that

c0ℜ

(

e−kiθ

(

ei θ−π

2

2 sin(θ/2)
+

k−1
∑

q=1

eqiθ

))

= −c0/2. (9)

For the second part, observe that

e−kiθ

k−j
∑

q=1

qe(q+j−1)iθ = e−(k−j+1)iθ

k−j
∑

q=1

qeqiθ.

It follows therefore from Lemma 3 that

ℜ

(

e−kiθ

k−j
∑

q=1

qe(q+j)iθ

)

≥ −
k − j + 1

2
.

Reintroducing this and (9) in (8), we obtain

ℜ
(

e−kiθ(sk−1 − g)
)

≥ −
1

2



c0 +
k−1
∑

j=1

uj(k + 1 − j)



 = −
1

2
(ck−1 + (ck−1 − ck−2)) , (10)

where we have used the equality c0 +
∑k−1

j=1 uj(k + 1 − j) = ck−1 + (ck−1 − ck−2). Since the sequence

ck is convex, and thus ck ≥ ck−1 + (ck−1 − ck−2), this implies that |sk − g|
2

= |sk−1 − g|
2

+ c2
k +

2ℜ
(

cke−kiθ(sk−1 − g)
)

≥ |sk−1 − g|
2

and thus that the sequence |s1 − g| , |s2 − g| , . . . , |sm − g| is nonde-
creasing since our derivation is valid for every k.

Remark 1. The convexity condition of Proposition 1 is actually also a necessary condition, in the sense
that if the sequence of ck is not convex, there exists a θ for which the inequalities 1 do not hold. Observe
indeed that for θ = π, the inequality of Lemma 3 is tight and so is thus the inequality (10). Therefore, if
ck < ck−1 + (ck−1 − ck−2), then |sk − g| < |sk−1 − g|.

The following Corollary will be useful to treat polynomials of odd degrees.
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Corollary 1. Let (c0, c1, . . . , cm) be a positive nondecreasing convex sequence, and fix θ ∈ (0, 2π). Let
s′−1 = 0, and s′k = s′k−1 + ckeikθ.eiθ/2. Let then g′ = ic0

2 sin(θ/2) . There holds

∣

∣s′−1 − g′
∣

∣ = |s′0 − g′| ≤ |s′1 − g′| ≤ · · · ≤ |s′m − g′| ,

and the equality holds if all ck are equal.

Proof. This Corollary is proved by applying a translation of c0/2 followed by a rotation of θ/2 to the
statement of Proposition 1. It is easy to verify that this distance preserving operation sends every sk of
the Proposition 1 to the s′k of this corollary. Moreover, it also sends g of Proposition 1 to g′, as

eiθ/2

(

ic0

2 tan(θ/2)
+

c0

2

)

= c0e
iθ/2

(

i cos(θ/2)

2 sin(θ/2)
+

sin(θ/2)

2 sin(θ/2)

)

=
c0i

2 sin(θ/2)
= g′.

2 Strict convex hulls and truncated polynomials

In this section, we use the notion of strict convex hull. For a finite set of points s1, . . . , sn, we call the
set {

∑

i λisi : λi > 0,
∑

i λi = 1} the strict convex hull of s1, . . . , sn.

Lemma 4. Let s1, . . . , sn ∈ ℜd be a set of points that are not all equal and z a point in the same space.
If there exists g ∈ ℜd such that ||z − g||2 ≥ ||sk − g||2 for every k = 1, . . . , n, then z does not belong to
the strict convex hull of s1, . . . , sn.

Proof. Assume without loss of generality that g = 0, and suppose that z =
∑

λisi with λi > 0. Then
there holds

||z||
2
2 =

∑

i

λ2
i ||si||

2
2 +

∑

i6=j

λiλj(si · sj) ≤
∑

i

λ2
i ||si||

2
2 +

∑

i6=j

λiλj ||si||2 ||sj ||2 ≤ max
i

||si||
2
2

where the first inequality is strict unless all si are proportional one to each other with positive coefficients,
and the second one is strict unless all si have the same norm. So if z is in the strict convex hull of s1, . . . , sn,
either ||z||2 < maxi ||si||2 or all si have the same norm while being all proportional to each others with
positive coefficients, and are thus all equal.

We now prove the following proposition, which translates Proposition 1 in terms of strict convex hull
of the values of truncated polynomials.

Proposition 2. Let bn, bn−1, . . . , b0 be a positive convex symmetric sequence as in Theorem 1. Then for
any θ, the strict convex hull of the following points does not contain 0.

sn(θ) = bneniθ

sn−1(θ) = bneniθ + bn−1e
(n−1)iθ

sn−2(θ) = bneniθ + bn−1e
(n−1)iθ + bn−2e

(n−2)iθ

...

(11)

Proof. If θ is an integer multiple of 2π, all si are positive real numbers, and the result is immediate. Let
us then fix a θ ∈ (0, 2π), and suppose first that n is even. We have then

(bn, bn−1, . . . b0) = (cm, cm−1, . . . , c1, c0, c1, . . . cm),

with m = n/2, and where the sequence c0, c1, . . . , cm is positive, nondecreasing and convex. Let

g∗ = cme2miθ + cm−1e
(2m−1)iθ + · · · + c1e

(m+1)iθ +
c0

2
emiθ.

For every k, let then qk = e−miθ (sk − g∗), with the convention that sn+1 = 0. The inclusion relations
are invariant under rotations and translations. Therefore, we want to prove that qn+1 is not in the strict
convex hull of q0, q1, . . . , qn.
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Observe that qm+1 = −c0/2, and that qm−k = qm+1−k + cke−kiθ. Proposition 1 implies thus the
existence of a g on the imaginary axis such that

|qm+1 − g| ≤ |qm − g| ≤ |qm−1 − g| ≤ · · · ≤ |q0 − g| . (12)

Moreover, observe that qm+k = −q̄m+1−k, i.e., they have the same imaginary part and opposite real
parts. There holds therefore |qm+k − g| = |qm+1−k − g| since g has no real part. Together with the
inequality (12), this implies that |qn+1 − g| ≥ |qk − g| for every k. It follows then from Lemma 4 that
qn+1 is not in the strict convex hull of the qk, and thus that 0 is not in the strict convex hull of the sk

since the inclusion relations are invariant under rotations and translations.

Suppose now that n is odd. In that case, we can rewrite the sequence of coefficient as

(bn, bn−1, . . . b0) = (cm, cm−1, . . . , c1, c0, c0, c1, . . . cm)

with m = (n − 1)/2. We define

g∗ = cme(2m+1)iθ + cm−1e
(2m−1)iθ + · · · + c1e

(m+2)iθ + c0e
(m+1)iθ

(observe that c0 is not divided by 2 here), and for every k, qk = e−(m+ 1

2 )iθ (sk − g∗). Observe that
qm+1 = 0, that qm−k = qm+1−k + cke−ikθ.e−iθ/2 and that qm+1+k = −q̄m+1−k. We can then apply the
same argument as in the even case, using Corollary 1 instead of Proposition 1.

3 Proof of Theorem 1

We can now prove Theorem 1.

Proof. Fix a polynomial P , and assume without loss of generality that an = 1. Suppose, to obtain a
contradiction, that P (reiθ) = 0 for some θ, and r ≥ 1. Dividing P (reiθ) = 0 by rn, we obtain:

anbneniθ + an−1r
−1bn−1e

(n−1)iθ + · · · + a0r
−nb0 = 0. (13)

Observe that since r ≥ 1 and 1 = an > an−1 > . . . a0 > 0, there holds 1 = an > an−1r
−1 > · · · > a0r

−n.
Let λ0 = a0r

−n, and for k = 1, . . . , n, λk = akrk−n − ak−1r
k−1−n. Clearly, λk ∈ (0, 1) holds for every k,

and
∑

k λk = an = 1. We can then rewrite equation (13) as

0 = λn

(

bneniθ
)

+ λn−1

(

bneniθ + bn−1e
(n−1)iθ

)

...
+ λ0

(

bneniθ + bn−1e
(n−1)iθ + · · · + b0

)

.

(14)

The point 0 would thus be in the strict convex hull of the points listed in equation (14), in contradiction
with Proposition 2.

Note that the convex-hull based approach of this last part of the proof can be applied to any class of
polynomials of the form

∑

k akbkzk with positive real coefficients ak, bk, and where the sequence of ak is
increasing.
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