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Abstract

Motivated by recent developments in laser-induced spallation testing of thin film structures, we develop a spectral

scheme for the simulation of dynamic failure of thin films. In this first study, we focus on the anti-plane shear (mode 3)

loading case. The scheme relies on an exact spectral representation of the elastodynamic solutions in the substrate and

in the film, and their combination through interface conditions that involve general cohesive failure and/or frictional

contact models. A detailed modal analysis of the response of a single spectral mode is performed to assess the stability

and precision of the resulting numerical scheme. A set of dynamic fracture problems involving non-propagating and

propagating cracks are simulated to show the ability of the numerical scheme to capture the effect of wave reflection

on the near-tip stress and displacement fields, and on the dynamic motion of a crack along the film/substrate interface.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin film applications are increasingly prevalent in engineering applications. They are crucial compo-

nents in a wide range of multilayer micro-electronic and optical devices and are also desirable candidates

for micro-actuators in micro-electro-mechanical devices. In the design of such devices, adhesion is a critical

parameter governing the mechanical behavior and reliability of a thin film on a substrate. Understanding
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the possible propagation of the delamination cracks along the interface between the thin film and the

substrate and extracting the interface failure properties are therefore very important.

Significant effort has been devoted to the development of test procedures for the measurement of thin-

film adhesion, of which the most common are the scratch, peel, pull, blister, and indentation tests. All these

tests subject the interface to high stress levels that result in significant plastic deformation [1–3]. The stress
fields are difficult to analyze and the resulting measurements tend to be qualitative and not well correlated

to the fracture energy. Zhuk et al. [4] used an alternative version of the peel test known as the superlayer

delamination test to study the interface fracture energy between micro-molded epoxy films and self-assem-

bled monolayers on Au/Ti/Si substrates. The superlayer test requires fairly complex sample preparation and

is limited to films in which the adhesion to the substrate is weaker than to the superlayer. Inelastic dissipa-

tion induced in the films during the test makes correlation between the surface chemistry, the work of adhe-

sion and the fracture energy difficult.

In contrast to the adhesion tests described above, laser spallation techniques [5–7] dynamically load the
interface in a precise, non-contacting manner using laser-generated stress waves. Because of the rapid load-

ing, inelastic deformations are much smaller than in quasi-static tests. This technique has been used to mea-

sure the tensile strength of a wide range of thin film/substrate interfaces [8]. More recently, Wang et al.

carried out a systematic parametric study of tensile spallation and extended the method to mixed-mode

loading of thin film interfaces [9–13].

The basics of stress wave generation in the tensile loading spallation experiment are summarized in Fig.

1. The sample consists of a transparent confining layer, a thin energy-absorbing layer, the substrate and the
Fig. 1. (a) Schematic of the tensile laser spallation technique. (b) Schematic of the shear wave loading experiment. (c) Delamination

damage of a 1 lm thick Al film on a Si substrate under tensile spallation loading [9,10,13].
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testing film. An infrared, Nd:YAG pulse (k = 1064 nm) with a variable energy content between 1 and

110 mJ, and a width of about 5 ns is incident on a metallic absorbing layer sandwiched between the con-

fining layer and the substrate. The energy-absorbing layer is chosen to be much thicker (typically

�0.4 lm) than the critical penetration depth of laser light at this wavelength. A compressive longitudinal

stress wave with a shape similar to that of the laser pulse is emitted from the absorbing layer. The wave
that propagates towards the film–substrate interface is then reflected from the free film surface into a tensile

wave, which then loads the testing interface in tension. The laser energy is increased until a longitudinal

wave is generated with amplitude sufficient to fail the film/substrate interface. Typical damage for tensile

loading of an Al film/fused Si substrate is shown in Fig. 1c. Mixed-mode loading of the thin film interface

can be achieved in a similar fashion by modifying the planar tensile substrate to a triangular prism (Fig.

1b). A high-amplitude, short-duration shear wave is generated by mode conversion at the oblique surface

and then allowed to impinge the test film.

The analysis supporting these laser-induced spallation experiments has so far been based on the propa-
gation of 1-D waves [13]. Interferometric measurements of out-of-plane displacement are made at the

surface of the testing film. From displacement measurements at the free surface, uH, the stress history at

the interface is inferred using standard wave mechanics and the maximum stress acting on the interface

is calculated. However, this assumption breaks down as soon as the initial failure takes place, since the

problem then becomes 2-D or 3-D. More advanced tools are thus needed and the development of such

a tool is the primary objective of this work.

In the simulation of fracture propagation in infinite media, the spectral formulation has proven to be one

of the most efficient tools currently available. It was used to analyze the behavior of a fracture propagating
in an infinite 2-D medium under an anti-plane shear loading [14], or at the interface between two different

semi-infinite materials [15]. It also provides a very efficient way to analyze the dynamic propagation of

planar cracks in a 3-D infinite material [16] or at the interface between two semi-infinite materials [17].

The objective of this project is to propose a spectral formulation to simulate the thin film dynamic delam-

ination problem. In this initial ‘‘feasibility study’’, we only consider the mode III problem, i.e., the case of

an anti-plane shear loading. This problem is chosen because, although it captures many of the wave prop-

agation characteristics of the in-plane cases, its mathematical treatment is somewhat simpler.

The next section provides a description of the dynamic fracture problem to be solved, followed, in Sec-
tion 3, by the derivation of the spectral formulation of the elastodynamic solution for the substrate and

film, and of the interface conditions used to link these two solutions. Details on the implementation of

the spectral scheme are provided in Section 4, together with a stability and precision study, referred to

as the modal analysis, in which we analyze the response of a single spectral mode. Sections 5 and 6 present

the solution of thin film fracture problems involving non-propagating and propagating interfacial cracks.

Through these examples, we demonstrate the precision with which the spectral scheme is able to capture

how the finite thickness of the film affects the transient near-tip fields and the motion of the delamination

crack.
2. Problem description

As alluded to in the previous, the basic objective of this paper is to develop a spectral scheme to analyze

the behavior of a dynamic fracture event that takes place at the interface between a semi-infinite linearly

elastic substrate and a linearly elastic thin film of thickness H when this interface is loaded by an anti-plane

plane shear plane wave coming from the substrate sB(t). To be more general, we also consider that the sur-
face of the film is subjected to a time- and space-dependent anti-plane shear load sH(x, t) (Fig. 2). The ap-
proach adopted hereafter relies on the independent spectral formulation used in [15] to solve dynamic

interface fracture problems: we first derive a spectral form of the boundary integral relation between the
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Fig. 2. Geometry of the mode III thin film delamination problem.
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traction stress and the associated displacement along the interface for both subdomains, and then link these

relations with a cohesive failure model.

Let us define a Cartesian coordinate system such that the interface is given by y = 0 (Fig. 2). Inside

both domains, following the anti-plane shear-assumption, the only non-vanishing displacement component

uz(x,y, t) is independent of the z-coordinate and satisfies the scalar wave equation
c2s ðuz;xx þ uz;yyÞ ¼ €uz; ð1Þ
where a superposed dot means a derivation with respect to the time, and *,a means o�
oa. The shear wave speed

cs that appears in the previous equation is given by
cs ¼
ffiffiffi
l
q

r
;

where l denotes the shear modulus and q the density. We use ðlþ; qþ; cþs Þ for the thin film, ðl�; q�; c�s Þ for
the substrate, and (l,q,cs) when the equation can be applied to both domains. The same convention is used

for the displacement and stress fields.

The boundary condition along the surface of the film is
sH ðx; tÞ ¼ lþuþz;y ðx; y ¼ H ; tÞ; ð2Þ
and quiescent initial conditions are assumed in the film and in the substrate prior to the arrival of the plane

wave sB(x, t) and/or the surface load sH(x, t).
3. Spectral formulation

If X(y, t;q) is the Fourier transform of uz(x,y, t) with respect to the x-coordinate, (1) becomes
€X ¼ c2s ð�q2Xþ X;yyÞ:
Taking a Laplace transform with respect to time, we rewrite the wave equation as the following ordinary

differential equation (ODE):
bX;yy ¼ q2a2s bX;
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where bX ¼ LðXÞ and
as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q2c2s

s
:

The general solution of this linear ODE is given by
bXðy; p; qÞ ¼ bAðp; qÞejqjasy þ bBðp; qÞe�jqjasy : ð3Þ

In this spectral boundary integral formulation, we are primarily interested in the solution along the

interface plane, i.e., in the interface displacement u(x, t) and traction stress s(x, t) defined as
uðx; tÞ ¼ uzðx; y ¼ 0; tÞ;
sðx; tÞ ¼ l uz;yðx; y ¼ 0; tÞ:

�

Using (3), these relations become in the Fourier/Laplace domain
bU ¼ bA þ bBbT ¼ ljqjasbA � ljqjasbB:
�

ð4Þ
The additional relation needed to link bT and bU is provided by the condition at y ! �1 for the substrate

and at y = H for the thin film, as described in the next two sections.
3.1. Solution in the substrate

To keep the value of uz bounded when y ! �1, we take bB ¼ 0 in (3) and eliminate bA in (4) to obtain
bT � ¼ l�jqja�s bU �
;

which can be reformulated by extracting the so-called radiation term [16] as
bT � ¼ l�

c�s
p bU � þ l�jqj a�s � p

jqjc�s

� �bU �
: ð5Þ
In the time domain, the relation between the traction stress and the displacement along the interface

takes the form
T�ðt; qÞ ¼ l�

c�s
_U
�ðt; qÞ þ F �ðt; qÞ; ð6Þ
where F� denotes the result of the convolution of U� and the inverse Laplace transform of the term in

parenthesis in (5),
F �ðt; qÞ ¼ l�jqj
Z t

�1
C1ðjqjc�s t0ÞU�ðt � t0; qÞjqjc�s dt0: ð7Þ
The convolution kernel is defined by
C1ðT Þ ¼ L�1
� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

� s
�
¼ J 1ðT Þ

T
; ð8Þ
where J1 denotes the Bessel function of the first kind and is plotted in Fig. 3.

An inverse Fourier transform back in the space domain yields the desired relation between u� and s�:
s�ðx; tÞ � l�

c�s
_u�ðx; tÞ ¼ f �ðx; tÞ þ 2sBðtÞ¼: l�ðx; tÞ; ð9Þ
where f �ðx; tÞ ¼ F�1ðF �ðt; qÞÞ denotes the convolution term, and where the term 2sB(t) is introduced to

represent the shear wave coming from the substrate. The factor ‘‘2’’ can be justified by the fact that, in
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Fig. 3. Convolution kernel for the substrate C1(T).
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the absence of any interface motion ( _u� ¼ 0), the traction along the (rigid) interface is equal to twice the

amplitude of the plane stress wave sB(t).

3.2. Solution in the thin film

In the Fourier/Laplace domain, the boundary condition (2) is expressed as
bT Hðq; pÞ ¼ lþ bX ;yðy ¼ H ; p; qÞ:
Using this relation and (3) to eliminate bA and bB in (4) yields
bT þ ¼ �lþjqjaþs tanhðaaþs Þ bU þ þ 1

coshðaaþs Þ
bT H

; ð10Þ
where as was introduced in the previous section and the non-dimensional wave number a is defined by
a ¼ jqjH :
The extraction of the radiation term and the inversion in the time domain of the two-convolution for-

mulation (10) are described in Appendix A. As shown there, the presence of sums of exponential functions

in the denominators of the two convolution terms on the right-hand side of (10) leads to non-decaying con-

volution kernels with an infinite number of jumps associated with the wave reflections off the film surface.

To eliminate the numerical complexity associated with these non-vanishing kernels, we multiply (10) by

ð1þ e�2aþs aÞ to get
1þ e�2aþs a
� �bT þ ¼ lþjqjaþs e�2aþs a � 1

� � bU þ þ 2e�aþs abT H
:

Back in the time and space domain, this relation yields the following three-convolution spectral

formulation:
lþ

cþs
_uþðx; tÞ þ sþðx; tÞ ¼ lþ

cþs
_uþ x; t � 2

H
cþs

� �
þ f þðx; tÞ � sþ x; t � 2

H
cþs

� �
� gþðx; tÞ

þ 2sH x; t � H
cþs

� �
þ hþðx; tÞ¼: lþðx; tÞ; ð11Þ
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where the three convolution terms are given in the Fourier domain by
Fig. 4.

three v
F þðt; qÞ ¼ �lþjqjaUþ t � 2 H
cþs
; q

� �
þ lþjqj

R t
0

�C1ðjqjcþs t0Þ þ CH3ðjqjcþs t0Þ
� �

Uþðt � t0; qÞjqjcþs dt0;
Gþðt; qÞ ¼ �

R t
0
D3ðjqjcþs t0ÞTþðt � t0; qÞjqjcþs dt0;

Hþðt; qÞ ¼ �
R t
0
E3ðjqjcþs t0ÞTH ðt � t0; qÞjqjcþs dt0:

8><>:
ð12Þ
The newly introduced kernels are obtained in a way similar to that used in Appendix A and are given by
CH3ðT Þ ¼
J1

ffiffiffiffiffiffiffiffiffiffiffi
T 2�4a2

p	 
ffiffiffiffiffiffiffiffiffiffiffi
T 2�4a2

p þ 4a2
J2

ffiffiffiffiffiffiffiffiffiffiffi
T 2�4a2

p	 

T 2�4a2

� �
HðT � 2aÞ;

D3ðT Þ ¼ 2a
J1

ffiffiffiffiffiffiffiffiffiffiffi
T 2�4a2

p	 
ffiffiffiffiffiffiffiffiffiffiffi
T 2�4a2

p HðT � 2aÞ;

E3ðT Þ ¼ 2a
J1

ffiffiffiffiffiffiffiffiffi
T 2�a2

p	 
ffiffiffiffiffiffiffiffiffi
T 2�a2

p HðT � aÞ:

8>>>>>><>>>>>>:
ð13Þ
As shown in Fig. 4, these kernels contain only one jump and rapidly decay to zero when the value of T

increases. As expected, the kernels of the convolution terms involving interface quantities (CH3 and D3)
takes non-zero values only after T = 2a, which corresponds to the time needed for a wave to cross the thin

film twice. On the other hand, the kernel E3, which is convoluted with the applied surface traction TH,

experiences its jump at T = a since the shear wave needs only to cross the film once to reach the interface.

The same comment can be made about the terms uþðx; t � 2H=cþs Þ, sþðx; t � 2H=cþs Þ and sH ðx; t � H=cþs Þ
appearing in (11).
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J.M. Hendrickx et al. / Engineering Fracture Mechanics 72 (2005) 1866–1891 1873
3.3. Cohesive failure model

After deriving independent relations in the thin film and the substrate between the traction stress s±(x, t)
and the displacement u±(x, t) along the interface and their history, we now link these two elastodynamic

solutions by a cohesive interface failure model, in accordance with the independent spectral formulation

introduced in [15].

The cohesive model starts with the enforcement of traction continuity along the interface: s+ = s� = s.
To model the failure process itself, we introduce the failure strength distribution sstr along the interface,

i.e., the maximum allowable value of the interface traction stress s. As shown in [16], the spectral scheme

allows for the incorporation of a wide range of cohesive failure and friction models as sstr can depend on

current and previous values of the slip and slip rate and the coordinate x for spatially non-uniform failure

models. In this paper, we adopt a simple linearly decreasing rate-independent model described by
sstr ¼ sstr0 1� jdj
dc

� �
Hðdc � jdjÞ; ð14Þ
where d(x, t) = u+(x, t) � u�(x, t) denotes the displacement jump or slip across the fracture plane, and where

the value of the critical slip dc and the initial strength sstr0 characterize the failure properties of the interface.
To prevent the fracture surfaces from re-adhering, the strength is only allowed to decrease. For this model,

the fracture toughness Gc defined as the area under the traction-separation law is given by 1
2
sstr0dc.

The traction stress along the interface can thus be determined by resolving the linear system provided

by (9) and (11)
sðx; tÞ � l�

c�s
_u�ðx; tÞ ¼ l�ðx; tÞ;

sðx; tÞ þ lþ

cþs
_uþðx; tÞ ¼ lþðx; tÞ;

8<: ð15Þ
assuming first that _u�ðx; tÞ ¼ _uþðx; tÞ. If the computed traction stress is larger than the strength given by

(14), one replaces s(x, t) by sstr(x, t) and reintroduces this value in (15) to compute the interface velocities
_u�ðx; tÞ and _uþðx; tÞ.
4. Implementation and stability issues

4.1. Implementation

To implement the spectral formulation derived in the previous section, we need to discretize and limit the

space and the frequencies. We consider thus the behavior of the interface on a length X represented by
N + 1 equidistant points, which implies a gap Dx ¼ X

N between two consecutive points. To link the space

domain and the frequency domain, we use a Discrete Fourier Transform and Inverse Transform, which

automatically sets the discretization of the frequency domain,
q0 ¼
2p
X

; qj ¼ jq0; j ¼ 1; . . . ;N=2; qmax ¼
2p
Dx

;

where qmax is the maximal frequency and q0 is the smallest frequency and the discretization gap. Since all

the used frequencies are integers multiple of q0, the use of a discrete Fourier transform also implies that the

problem that is really solved is periodic and results in an infinite juxtaposition of domains of length X [18].
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Time is also discretized using a uniform time step size Dt. The interface velocities obtained from (15) are

integrated with the aid of an explicit first-order scheme. The time step size Dt is thus dictated by the CFL

condition b < 1, where
for

en
bDx ¼ maxðcþs ; c�s ÞDt:
A summary of the spectral scheme implementation is provided in the algorithm listed below, where *(j,i)
denotes *(xj, ti), and *(i;k) denotes *(ti,qk)
each i do (loop over time steps)

Perform FFT on (u+,u�)(*,i), s(*,i), s
H
ð�;iÞ

for each k do (loop over spectral modes)

Compute the convolution terms in the Fourier domain

Lþ
ði;kÞ, L

�
ði;kÞ using (7) and (12)

end do

Perform the IFFT: (l+, l�)(*;i) = FFT�1(L+,L�)(i,*)
for each j do (loop over spatial sampling points)

Solve (15) assuming _uþðj;iÞ ¼ _u�ðj;iÞ
Use (14) to compute sstr uþðj;iÞ � u�ðj;iÞ

� �
if js(j,i)j > sstr then

s(j,i) :¼ sstr
Compute ð _uþ; _u�Þðj;iÞ using (15)

end if

Update ðuþ; u�Þðj;iþ1Þ ¼ ðuþ; u�Þðj;iÞ þ ð _uþ; _u�Þðj;iÞ � Dt
end do

d do
4.2. Modal analysis

To assess the accuracy and stability of the spectral scheme described above, we now turn our attention to

the solution of a special loading case for which a closed-form solution exists for the interface quantities.

This special problem involves a surface loading with a single mode
sHðx; tÞ ¼ sH
0 e

iqxHðtÞ;
and a perfect interface (sstr = 1,u+ = u� = u) between materials having possibly different stiffness

(l+ 5 l�) but the same shear wave speed (cþs ¼ c�s ¼ cs). Writing the interface displacement and the trac-

tion stress as (u(x, t),s(x, t)) = (U(t),T(t))eiqx and eliminating T in (5) and (10) yield, in the Laplace domain,
sH0 ¼ pq bU l�as coshðasaÞ þ lþas sinhðasaÞð Þ:
Back in the time domain and using the discretized time t = iDt, the analytical expression for the non-

dimensional interface velocity r(i) can be shown to be
rðiÞ ¼
_UðiDtÞ
_U H

csDt

� � ¼
X1
n¼0

Dn
lJ 0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

g

� �2

� ð2nþ 1Þ2
s0@ 1AH

i

g
� ð2nþ 1Þ

� �0@ 1A; ð16Þ
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where J0 is the Bessel function of the first kind and n denotes the number of reflections of the film

surface.

In (16), we have (re-)introduced the three non-dimensional parameters entering this problem. The first

one is the relative stiffness mismatch Dl
Fig. 5.

Dl = 2

when D
Dl ¼
lþ � l�

lþ þ l�

� �
2 ½�1; 1�:
A positive value of Dl denotes a thin film stiffer than the substrate, while a negative one corresponds to a

more compliant thin film. As apparent in (16), this parameter quantifies the decrease rate of the importance

of the terms of the sum, and therefore of the amplitude of the jumps at each reflection, as shown in Fig. 5.

The second parameter is the aforementioned non-dimensional wave number a
a ¼ jqjH ;
which influences the behavior of the solution between the jumps. For small values of the non-dimensional

wave number, the solution is essentially flat, while, for large values, it shows persistent oscillations, as

shown in Fig. 5. The last parameter is the time-discretization factor g
g ¼ H
csDt

;

that represents the number of time steps needed for a wave to cross the thin film. Its value does not influ-

ence the shape of the solution, but only the precision of the discretization. Furthermore, for a same number

of shear wave reflections, its value determines the total number of time steps.

Fig. 6 shows an example of comparison between the analytical solution described by (16) and the numer-

ical results obtained with the spectral scheme summarized in the previous section. As illustrated in this

figure, excellent agreement is achieved for small values of the time step Dt (i.e., for large values of the

non-dimensional parameter g), but numerical errors may rise for larger values of g.
To quantify the error, we use the internal mean square error computed on each period of time n corre-

sponding to the time between the nth and the (n + 1)th reflections of the wave off the interface,
E2
X ðnÞ ¼

cþs
2X ð1� fÞH

Z
X

Z ð1�fþ2nÞ H
cþs

ð�1þfþ2nÞ H
cþs

j _uðx; tÞ � ~_uðx; tÞj2 dtdx;
where _uðx; tÞ is the exact interface velocity and ~_uðx; tÞ is the velocity computed by the numerical simulation.

The purpose of the parameter f 2 [0, 1] is to avoid the influence of some large errors taking place just after
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or before the reflections, due for example to a small delay between the jump in the analytical solution and
the jump in the result of the numerical simulation. A value f = 0.2 is typically adopted. The main advantage

of this error measure appears in the case of a constant loading (in time) of the thin film with a perfect (i.e.,

non-failing) interface or in the limiting case of a free-standing thin film. In that case, if we neglect the error

caused by the FFT, it can indeed be shown that the error E2
X ðnÞ is the weighted sum of the square error on

all the space-modes involved in the simulation, with the weight of mode q given by _U H
cþs
; q

� ���� ���2.
Fig. 7 presents the dependence on g of the non-dimensional least square error � defined by
Fig. 7.

of the
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2ð1� fÞ H
cþs
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Internal mean square error of the third period �3(3) versus g for five values of a and for Dl = �2/3, showing the 1/g dependence

error and the instability associated with large spectral modes.
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the time period between the arrival of the first loading wave and that of its first reflection off the film surface. The results show that the

error increases with the number of wave reflections n, and that Dl = 0 is not optimal from the error analysis point of view.
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As apparent in this figure, the evolution of the error is linear with g�1 for a large set of values of the

parameters (a,g) and the error is larger for the higher spectral modes (i.e., for larger values of a), with

the behavior observed for large values of a indicating possible instability. As illustrated in Fig. 8, larger

values of Dl also imply a larger error, but this effect is hard to characterize and the dependence is not always

monotonous. However, it is interesting to notice that the case Dl = 0, corresponding to two materials with

the same properties for the film and the substrate, is not optimal from the point of view of the error anal-

ysis. We can also see that the error usually increases with the period n, especially when its value is already

large.
For large values of a, the solution becomes unstable after a few periods and eventually diverges totally. It

is obvious that increasing g (i.e., reducing the time step size) delays the appearance of these instabilities, but

it is not clear if one can always find a value of g such that the problem is always stable, or if one can always

find a number of periods after which the simulation diverges. However, the simulation of actual systems

always involves values of a such that it is impossible to avoid instabilities with an affordable time step size.

This suggests the need for a stabilization procedure, as described in the next section.
4.3. Stabilization and filtering

As shown in Figs. 6 and 8, during the first period (i.e., for H
cþs

6 t 6 3 H
cþs
), the simulation matches the ana-

lytical solution very well even when this solution experiences severe oscillations. Furthermore, for small

values of a, the errors are kept relatively small. This result seems to show that the source of numerical insta-

bility is to be found in the convolution terms F + or G + defined in (12). Note that the term H+ could also be

problematic, but, since sH is constant in this analysis, its value is basically proportional to the mean value of

E3 on ½0; t
jqjcþs

�. This term has thus no influence on the instabilities here. However, for a varying sH, the

behavior of H + would be similar to that of G+.

Among the convolution terms, the term involving C1 does not lead to instability as long as the chosen
time step does not violate the Courant condition, as discussed in [14,15]. The terms that can lead to insta-

bility are therefore the four Fourier terms appearing in the expression of F+ and G+ in (12) and (13):
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#1 ¼ �lþjqjaUþ t � 2
H
cþs

� �
;

#2 ¼ lþq
Z t

2 H
cþs

J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqcþs tÞ

2 � 4a2
q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqcþs tÞ

2 � 4a2
q Uðt � t0Þqcþs dt0;

#3 ¼ lþq
Z t

2 H
cþs

4a2
J 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqcþs tÞ

2 � 4a2
q� �
ðqcþs tÞ

2 � 4a2
Uðt � t0Þqcþs dt0;

#4 ¼ 2a
Z t

2 H
cþs

J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqcþs tÞ

2 � 4a2
q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqcþs tÞ

2 � 4a2
q T ðt � t0Þqcþs dt0:
For a constant value of g and for large frequencies, it can be shown that the asymptotic behavior of these

terms is
#1 ¼ � lþ

H
a2U t � 2

H
cþs

� �
;

#2 ’ lþ

H
U t � 2

H
cþs

� �
;

#3 ’ lþ

H
a2U t � 2

H
cþs

� �
;

#4 ’ T t � 2
H
cþs

� �
:

ð17Þ
The instabilities associated with the large spectral modes are thus primarily caused by terms #1 and #3.

Furthermore, when a ! 1, terms #1 and #3 tend to cancel each other but their absolute values tend to

infinity, which leads to large truncation errors. Note that this convergence has to be considered very care-

fully since it implicitly assumes that U does not vary as quickly as the convolution kernels.

Since the global problems are unstable due to the high frequencies, we choose to damp these using a low-
pass filter. In order to define this filter, we consider the worst possible distribution of frequencies, i.e., the

slowest decreasing rate of the importance of the modes in the Fourier series, and find a filter that would

keep the stability for this distribution. Since Dirac d-functions are unlikely to appear in the displacement

distribution, the worst distribution corresponds to a spatial discontinuity and can be represented by
uðx; tÞ ¼
X
j

eiqjx
kðtÞ
qj

¼
X
j

e�iajx=H
�kðtÞ
aj

:

The importance of terms #1 and #3 in (17) is in this case proportional to a/H = q. In order to prevent the

increase of these terms for high frequencies, we apply a first-order low-pass filter to the function l+ defined

in (11). So if lþðx; tÞ ¼ F�1ðLþðt; qÞÞ, we replace L+(t;q) by
eLþðt; qÞ ¼ Lþðt; qÞ 1

1þ q
qc

: ð18Þ
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Fig. 9. Evolution of the displacement of the upper part of the interface u+ for the problem of a crack initially located over

.45X 6 x 6 .55X and expanding to .20X 6 x 6 .80X, at which point it is arrested by an infinite interface strength. The solution plotted

for 0 6 x 6 X/2 has been obtained without filter, while that plotted for X/2 < x 6 X used a filter with qc = 1250/X, showing how the

first-order low-pass filter removes the spurious oscillations without affecting the rest of the solution.
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The critical frequency qc has to be chosen based on a trade-off between the stability and the accuracy of

the numerical scheme. Since there is no theoretical way to evaluate the accuracy, we compare the solutions
obtained with different critical values with those obtained without filter before the beginning of the insta-

bilities. The results of several tests show us that applying a low-pass filter on the function l+(x, t) efficiently

removes the spurious oscillations without affecting the solution, as shown in Fig. 9. However, if chosen too

small, the critical frequency can lead to non-negligible errors, especially in situations involving many high

frequencies. Based on the results of several tests involving non-propagating and propagating interface

cracks (such as those listed in the next sections), the value qc = 1250/X appears to provide a good combi-

nation of stability and precision for the numerical results. This value is therefore adopted in the remainder

of this paper. For this value of qc, the numerical simulation is usually stable for b < 0.35, although we often
adopted smaller values (b = 0.05) to achieve more precise results.
5. Non-propagating interface crack

We start the result discussion by analyzing the behavior of a non-propagating interface crack of length

Lc = 180 lm located between a substrate made of fused silica and an aluminum thin film of thickness

H = 100 lm loaded along its surface by a uniformly distributed anti-plane shear load sHH(t), where H(t)
denotes the Heaviside step function. These two materials, whose properties are listed in Table 1, are those

used in the laser-induced spallation experiments described in [13]. The crack is prevented from propagating

by imposing an infinite strength sstr0 outside of its initial location. The discretized portion of the interface

has a length X = (32/7)Lc � 823 lm, using Dx = X/1024 � 0.8 lm and g ¼ H=cþs Dt ¼ 2048. This implies

that we satisfy the Courant condition with b � 0.07.

Fig. 10 shows the evolution of the slip across the interface in the crack zone. As expected, the slip is null

before t ¼ H=cþs � 32:28 ns, which is the time needed for a wave to propagate from the film surface to the

interface. It can also be observed that each reflection of the initial plane wave at t ¼ ð2nþ 1ÞH=cþs corre-
sponds to an increase of the rate of separation followed by a deceleration until the next wave reflection. To

characterize the evolution of the near-tip fields, we extract the time-dependent stress intensity factor KIII(t)

that quantifies the near-tip stress singularity:



Table 1

Material properties taken from [13]

Material l (GPa) q (kg/m3) cs (m/s)

Fused silica 30.8 2200 3741.7

Aluminum 26.0 2710 3097.4
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Fig. 10. Evolution between t = 0 and t � 6:5H=cþs of the interface slip d for the non-propagating crack problem, showing the effect of

the wave reflections at t ¼ ð2nþ 1ÞH=cþs and the presence of a maximum at t � 4H=cþs .
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lim
x!xc

sðx; tÞ ¼ KIIIðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjx� xcj

p ; ð19Þ
where jx � xcj denotes the distance from x to the crack tip. The stress intensity factor is more conveniently

extracted from the evolution of the slip behind the crack tip [14]
KIIIðtÞ ¼ lim
x!xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2jx� xcj

r
1

lþ þ 1

l�

� ��1
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1. (a) Evolution of the stress intensity factor KIII(t) for the non-moving crack problem, showing different angular points

ponding to wave reflections on the crack tips. (b) Wave propagation paths, whose transit times are cþs tO=H ¼ 1, cþs tA=H ¼ 2,

¼ 1:8, cþs tC=H ¼ 1:5, and cþs tD=H ¼ 2:69. The correspondence between the angular points in (a) and the different paths in (b) is

ted Table 2.



Table 2

Correspondence between the angular points appearing in the evolution of KIII(t) (Fig. 11a) and the wave propagation paths shown in

Fig. 11b

Point 0 1 2 3 4

Time (cþs t=H ) 1 2.5 2.8 3 3.69

Path O OC OB OA OD
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It is important to note that the computation of the limit in (20) shows good convergence properties,

which means that the spectral scheme is able to capture accurately the behavior of the interface in the neigh-

borhood of the crack tips. As observed in Fig. 11a, the evolution of the stress intensity factor is character-

ized by a series of angular points corresponding to various elastodynamic reflections of waves off the crack

tips. The wave propagation paths are represented in Fig. 11b. The correspondence between the wave tra-

jectories and the angular points is presented in Table 2, showing the ability of the spectral scheme to capture

the complex wave pattern that affects the near-tip stress and displacement fields. Note the strong dynamic

overshoot observed at t � 4H=cþs .
6. Propagating delamination crack

In this section, we analyze two dynamic thin film failure problems involving the spontaneous initiation,

propagation and possibly arrest of a pre-existing interfacial crack. We begin in Section 6.1 with a system

composed of an aluminum thin film and a substrate made of fused silica as in the laser-induced spallation

experiments of [13]. As in the experiments, the dynamic load is associated with a shear plane wave coming
from the substrate. We then consider in Section 6.2 the dynamic fracture of an aluminum/steel system

subjected to a sudden surface loading. Due the larger property mismatch characterizing this system, inter-

esting failure phenomena are observed.

6.1. Dynamic delamination along Al/Si interface subjected to substrate loading

Let us consider a thin aluminum film of thickness H = 100 lm deposited on a fused silica substrate. The

properties of the constituents are listed in Table 1. The initial crack length (i.e., the zone along the interface
with zero initial strength) is Lc = 62.5 lm. The interface strength outside of the crack is 500 MPa in accor-

dance to the shear strength measurements provided in [13]. The critical value of the displacement jump is

chosen as dc � 1 lm. The system is subjected to a plane shear wave emanating from the substrate, with an

amplitude equal to sB0 ¼ 400 MPa. The domain size and discretization parameters adopted in the simula-

tions are X = 1 mm, Dx = X/1024, g = 2048, which corresponds to b = 0.06.

Before discussing the results of the dynamic fracture simulations, it is interesting to look at the evolution

of the interface stress s(t) in the absence of a pre-existing crack. An elementary 1-D elastodynamic analysis

shows that
sðtÞ ¼ 2sB0
1

1þ l�cþs
lþc�s

knðtÞ; ð21Þ
where nðtÞ ¼ cþs t
2H

j k
and k denotes the impedance mismatch parameter defined by
k ¼
lþ

l� �
cþs
c�s

lþ

l� þ
cþs
c�s

¼
lþ

cþs
� l�

c�s
lþ

cþs
þ l�

c�s

: ð22Þ
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For the Al/Si system considered here, the impedance mismatch parameter is very small (k = 0.0098),

indicating that the interface traction stress will decay rapidly to zero after just a few wave reflections of

the initial wave off the film surface. After the first wave reflection, the traction stress already represents less

than 1% of the initial load amplitude. This suggests that the crack propagation event is expected to be

short-lived, leading to a crack arrest soon after the first reflection at t ¼ 2H=cþs .
This expectation is confirmed in the results presented in Fig. 12, which shows the evolution of the loca-

tion of the right crack tip (dash-dotted curve) and cohesive zone tip (solid curve). As expected, upon arrival

of the plane wave from the substrate (time t = 0 denotes the arrival time of the wave at the interface), the

cohesive zone starts to expand (only the right crack tip region is displayed here). Once the displacement

jump reaches sufficient values (i.e., d > dc), the crack tip starts to propagate rapidly and catches up with

the cohesive zone tip, leading to an intersonic crack motion, as the crack speed exceeds the shear wave

speed of Al (denoted by the dotted line in Fig. 12) and approaches the shear wave speed of Si (dashed line).

The initial phase of the crack motion is identical to that obtained for an infinite bimaterial system. At
t ¼ 2H=cþs , however, the wave reflected off the free surface of the film hits the interface plane, which leads

to the sudden slowing down of the crack. However, due to the inertia of the debonded portion of the thin

film as the wave reflected off the film upper surface is again reflected off the traction-free crack faces, a stress

concentration continues to persist in the crack tip region until complete crack arrest observed at

t � 4:8H=cþs . Note also the effect of the second reflection of the initial wave at t ¼ 4H=cþs as the crack tem-

porarily accelerates before coming to the final halt.

The evolution of the traction stress s normalized by the initial strength ss of the interface is shown in Fig.

13. The stress is computed at three locations (labeled nodes 0, 1 and 2) along the fracture plane. At time
t = 0, the interface is subjected to the plane wave with an amplitude equal to 80% of the strength ss. The
observation point located the closest to the initial crack tip (node 2) then experiences an increase in s asso-
ciated with the arrival of the propagating crack tip prior to the arrival of the unloading wave reflected off

the free surface. The effect of the unloading wave predicted by (21) is however clearly visible at the other

two observation points (nodes 0 and 1), as the stress curves show a sharp drop to less than 1% of the initial

wave amplitude. The aforementioned inertial effects associated with the debonded portion of the thin film

lead, at node 1, to the a non-monotonic increase of the traction stress, which reaches the critical strength
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Fig. 12. Evolution of the cohesive zone tip (coz) and crack tip (crz) location for the Al/Si system loaded by a substrate wave, showing

the rapid deceleration of the crack after t ¼ 2H=cþs and its arrest at t � 4:8H=cþs . The lines labeled cþs and c�s respectively denote the

propagation of elastic waves in the Al film and Si substrate.
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limit before decreasing to zero during the cohesive failure process. The farthest observation point (node 0)

is located too far from the original crack tip: the stress wave emanating from the crack tip region only
reaches 20% of the interface strength and is therefore insufficient to lead to its failure.

The initiation, propagation and arrest of the crack, and the effect of the reflected waves are also illustrated

in Fig. 14, which presents the evolution of the normalized displacement jump or slip for 0 6 x/X 6 0.5. The

effect of the wave reflection at t ¼ 2nH=cþs is clearly visible. After the third reflection (t > 6H=cþs ), the slip

across the fully arrested crack decreases rapidly as the effect of the initial substrate wave disappears.

In the laser-induced spallation, the only real-time measurements during the dynamic event consist in the

motion of discrete points along the film surface. To that effect, the spectral formulation has been extended

in Appendix B to allow for the direct computation of the motion of the thin film surface. The evolution of
the velocity _uH is presented in Fig. 15 for four points located on the film surface. The first point, labeled

x = 0, (dotted curve) is located directly above the center of the pre-existing crack; the second (x = Lc/2—

dashed curve) is directly above the initial location of the crack tip; the last two, x = Lc (dash-dotted curve)
Fig. 14. Evolution of the slip d across the Al/Si interface, showing the arrest of the crack at t � 4:8H=cþs . The influence of the

reflections of the initial plane wave after each period of 2H=cþs is clearly visible.
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and x = 2Lc (solid curve) are located above the initially unbroken portion of the interface. All surface
points undergo a fairly complex motion after the arrival of the initial wave at time t ¼ H=cþs . As expected,

the point located at x = 2Lc is the last one to be affected by the interface crack, whose effect is only felt at

time cþs t=H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3Lc=2HÞ2

q
� 1:37 (denoted by the arrow labeled ‘‘3’’ in Fig. 15). Prior to that, the

velocity history of that surface point exhibits the sudden change at t ¼ H=cþs associated with the arrival

of the initial loading wave and takes the constant value corresponding to an intact interface. The spectral

scheme also captures the arrival at the same point of the wave emanating from the other crack tip at
cþs t=H ¼ 1:855 (denoted by the arrow labeled ‘‘4’’). The other points along the film surface experience

the effect of the wave diffracted by the crack earlier. For the point located directly above the crack

(x = Lc/2), this effect is felt at the time of arrival of the loading wave (cþs t=H ¼ 1). For the other two points

(x = 0 and x = Lc), this effect is felt slightly later, at cþs t=H ¼ 1:048, as denoted by the arrows labeled ‘‘1’’

and ‘‘2’’). This example illustrates how the spectral scheme could be used in combination with experimental

measurement to extract fracture-related information from the laser-induced spallation tests.

6.2. Spallation of a surface-loaded Al/steel system

To emphasize the role of wave reflection off the interface, we now turn our attention to the problem of a

bimaterial system exhibiting a larger material mismatch, i.e., one for which the impedance mismatch para-

meter k defined by (22) takes a higher value. To that effect, let us consider the delamination of a 100 lm thick

film made of steel deposited on an aluminum substrate. The loading considered here consists in a spatially

uniform step loading sHðx; tÞ ¼ sH0 HðtÞ applied along the upper surface of the film. The elastic properties of

the constituents are listed in Table 3. In the absence of experimental measurements of dynamic shear strength

and fracture toughness of an Al/steel interface, we adopt the values sstr = 500 MPa and dc = 1.26 lm. The
initial crack length is 62.5 lm. The problem size is X = 2 mm with Dx = X/1024 and the time step size cor-

responds to g = 1024. The thin film is subjected to an applied surface load s0 = 625 MPa. Since it is larger

than the interface strength, this loading will lead to the complete spallation of the film. However, as seen

below, due to the material mismatch along the interface, this spallation will not be instantaneous and a

dynamic motion of the pre-existing crack will be observed prior to the spallation event.



Table 3

Material properties for aluminum and steel

Material l (GPa) q (kg/m3) cs (m/s)

Aluminum 26.0 2710 3097.4

Steel AISI C120 78.8 7850 3168.3
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In the absence of a crack, an elementary 1-D wave analysis shows that the interface traction stress is

given by
Fig. 16

influen
sðtÞ ¼ sH0 ð1� knðtÞÞ;
where nðtÞ ¼ cþs tþH
2H

j k
and k denotes the impedance mismatch defined in (22), which is equal to 0.495 for the

material combination of interest in this section. In the absence of a crack, the traction stress along the inter-

face therefore evolves as follows:
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In other words, due the large impedance mismatch, it takes two wave reflections off the film surface be-

fore the spallation event takes place. During this time interval, the stress concentration present in the vici-

nity of the dynamically loaded pre-existing crack leads to the initiation and propagation of the crack, as

illustrated in Figs. 16 and 17. Fig. 16 presents the evolution of the location of the right cohesive zone

tip (solid curve) and crack tip (dashed curve). As expected, the cohesive zone tip starts to propagate when

the loading wave hits the interface at t ¼ H=cþs , rapidly followed by the crack tip. The effect of the first wave

reflection off the film surface is clearly visible at time t ¼ 3H=cþs at which the cohesive zone length experi-

ences a jump. The results also clearly show the onset of the spallation event at t ¼ 5H=cþs , time at which the
interface traction exceeds the strength along the entire interface. Complete failure of the interface is then

achieved when all the points along the interface have completed their cohesive failure process.
ation problem, showing the

t t ¼ 5H=cþs .
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Fig. 17. Evolution of the interface stress s for nodes 1, 2 and 3 located on the path of the propagating crack at 39, 254 and 742 lm
ahead of the initial crack tip, respectively. The continuous stress rise at nodes 1 and 2 corresponds to the arrival of the propagating

crack, while the discontinuous stress jump observed at node 3 at t ¼ 5H=cþs denotes the onset of the spallation.
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The dynamic fracture/spallation process can also be visualized in Fig. 17 in terms of the evolution of the

interface stress s at three locations along the interface. A point located in the vicinity of the initial crack tip

(node 1—dotted curve) experiences the stress concentration associated the propagating crack tip and com-

pletes its cohesive failure process prior to the arrival of the first reflected shear wave. For a point located
further (node 2—dashed curve), the failure still takes place during the crack propagation event, prior to the

arrival of the final spallation wave at t ¼ 5H=cþs . The last point (node 3—solid curve) is located too far from

the initial crack tip and only experiences the spallation process, as apparent by the discontinuous stress rise

it experiences prior to its cohesive failure.
7. Conclusion

A spectral form of a boundary integral scheme has been derived to analyze the mode III dynamic delam-

ination of thin film structures. The scheme relies on an exact spectral representation of the elastodynamic

solutions in the substrate and in the film, and their combination through interface conditions that involve

general cohesive failure and/or frictional contact models. The three-kernel implementation of the spectral

formulation has led to a very efficient numerical scheme able to capture a wide range of dynamic failure

events along the film/substrate interface, including the effect of the elastodynamic waves reflected off the

film surface. The stability and accuracy of the scheme have been tested by comparing the numerical results

to an analytical solution available in the case of a single mode surface loading of a perfect interface. Special
emphasis was placed in that study on the effects of the time step size, material mismatch and number of

reflections on the solution. The stability analysis also showed the appearance of instabilities associated with

the higher spatial frequencies. To stabilize the scheme, a filter was chosen using a ‘‘worst case’’ frequency

analysis of the different terms involved in the mathematical formulation. The use of a first-order low-pass

filter in the scheme was then shown to remove the instabilities without affecting the rest of the solution.

A set of dynamic fracture problems involving non-propagating and propagating cracks was then simu-

lated to show the ability of the numerical scheme to capture the effect of wave reflection on the near-tip

stress and displacement fields. For the non-propagating crack case, the scheme was shown to provide a very
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accurate description of the evolution of the stress intensity factor that quantifies the stress singularity

around the crack tips. In the first delamination problem involving the initiation, propagation and arrest

of a crack along an Al/Si interface, the numerical results showed the effect of the film inertia on the crack

motion, as the final arrest of the crack took place after the unloading of the interface. In the final problem

involving a steel/Al system subjected to a spallation surface load, the scheme was able to capture the dy-
namic delamination event preceding the thin film spallation.

Further studies are currently underway to better quantify the effect of the film thickness in various failure

scenarios involving dynamic substrate and surface loadings, to extend the formulation to in-plane and 3-D

loading conditions, and to allow for the simulation of films of finite length.
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Appendix A. Laplace inversion

In this appendix, we show the Laplace inversion of the two-convolution formulation for the thin film
described in the Laplace/Fourier domain by (10). The first term on the right-hand side corresponds to

the displacement convolution term, while the second one, to a convolution on the applied surface loading

history. The inversion of these two terms relies on the following two properties:

Property 1. If d
c e

�2ks
	 


< 1, then
1

ceks þ de�ks
¼ e�ks

c

X1
n¼0

d
c

� �n

e�2kns

 !
:

Property 2. If
L�1ðĝðsÞÞ ¼ gðT Þ;
then
L�1 ĝ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p� �� �
¼ gðT Þ �

Z T

0

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � u2

p� �
J 1ðuÞdu;
where J1 denotes the Bessel function of the first kind.
A.1. Inversion of the displacement convolution term

Using Property 1, we obtain
L�1ðs tanhðasÞÞ ¼ d0ðtÞ þ 2
X1
n¼0

ð�1Þnd0ðt � 2naÞ; ðA:1Þ
where d(t) denotes the Dirac delta function.
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Combining (A.1) and Property 2 yields
Fig. 18

solutio

to zero
L�1
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
tanh a

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p� �� �
¼ d0ðtÞ �

Z t

0

vd0ðvÞ
J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � v2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � v2

p dvþ 2
X1
n¼0

ð�1Þnd0ðt � 2naÞ

�
Z t

0

2
X1
n¼0

ð�1Þnvd0ðv� 2naÞ
J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � v2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � v2

p dv:
After computation of the integrals, this relation becomes
L�1
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
tanh a

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p� �� �
¼ d0ðtÞ � C1ðtÞ þ 2

X1
n¼0

ð�1Þnd0ðt � 2naÞ

� 2na
X1
n¼0

ð�1Þndðt � 2naÞ þ CH2ðtÞ; ðA:2Þ
where C1(T) has been defined in (8), and
CH2ðtÞ ¼ 2
X1
n¼1

ð�1Þn
J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � 4n2a2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � 4n2a2

p þ 4a2
J 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � 4n2a2

p� �
T 2 � 4n2a2

0@ 1A ðA:3Þ
and is plotted in Fig. 18.

Replacing s by p
jqjcþs

in (A.2) and performing the convolution with U+ finally yield
L�1ð�lþjqjaþs tanhðaaþs Þ bU þÞ ¼ � lþ

cþs
_U
þðtÞ � 2

lþ

cþs

X1
n¼0

ð�1Þn _Uþ
t � 2n

H
cþs

� �
þ 2lþjqj

X1
n¼1

ð�1ÞnnaUþ t � 2n
H
cþs

� �
� ljqj

Z t

0

C1ðjqjcþs t0Þ þ CH2ðjqjcþs t0Þ
� �

Uþðt � t0Þjqjcþs dt0: ðA:4Þ
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. Convolutions kernel CH2(T) appearing for the displacement U+ in the two-convolution spectral formulation of the thin film

n for two values of the non-dimensional wave number a. Unlike in the three-convolution formulation, the kernel does not decay

, presents an infinite number of discontinuities at T = 2na, and its complexity increases with time.
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A.2. Inversion of the loading convolution term

Following the same procedure, we use Property 1 to get
L�1 1

cosh as

� �
¼
X1
n¼0

ð�1Þndðt � ð2nþ 1ÞaÞ: ðA:5Þ
Combining (2) and (A.5) then gives
L�1 1

coshða
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ

 !
¼ 2

X1
n¼0

ð�1Þndðt � ð2nþ 1ÞaÞ � 2
X1
n¼0

ð�1ÞnIn; ðA:6Þ
where
In ¼
Z t

0

vdðv� ð2nþ 1ÞaÞ
J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � v2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � v2

p dv:
Computing this integral, we rewrite (A.6) as
L�1 1

coshða
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ

 !
¼ 2

X1
n¼0

ð�1Þndðt � ð2nþ 1ÞaÞ � E2ðtÞ; ðA:7Þ
where the new kernel
E2ðT Þ ¼ 2
X1
n¼0

ð�1Þnð2nþ 1Þa
J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � ð2nþ 1Þ2a2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � ð2nþ 1Þ2a2

q : ðA:8Þ
Finally, replacing s by p
jqjcþs

in (A.7) and performing the convolution with TH yield
L�1
bT H

cosh aaþs

 !
¼ 2

X1
n¼0

ð�1ÞnT H t � ð2nþ 1Þ H
cþs

� �
�
Z t

0

E2ðjqjcþs t0ÞTH ðt � t0Þjqjcþs dt0: ðA:9Þ
To conclude this appendix, let us indicate that, as apparent in Fig. 18 and in the definition (A.3) and

(A.8), the convolution kernels CH2 and E2 do not decay to zero and contain an infinite number of jumps

whose size increases with time. The expressions (A.4) and (A.9) also show the presence of infinite sums of

terms in the two convolution terms. These infinite sums are associated with Property 1: their origin is asso-

ciated with the presence of a sum of exponential functions in the denominators of the two last terms of (10).
Appendix B. Thin film surface

In the laser-induced spallation experiments described in the introductory section, interferometric mea-

surements of the velocity history are made at discrete locations along the thin film surface. It is therefore

useful to extend the spectral formulation to compute the displacement and velocity histories along y = H.

Remembering from (3) that
bXðy; p; qÞ ¼ bAðp; qÞejqjasy þ bBðp; qÞe�jqjasy ;
where X ¼ LðFðuzÞÞ, and denoting the surface displacement by
uH ðx; tÞ ¼ uzðx; y ¼ H ; tÞ;
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we have
bUH
ðp; qÞ ¼ bAðp; qÞejqjaþs H þ bBðp; qÞe�jqjaþs H ;
where bUH ¼ LðFðuH ÞÞ. Using (2) and the first line of (4) to eliminate bA and bB in this last relation, we get
bUH jqjaþs ð1þ e�2aaþs Þ ¼ 2jqjaþs bU e�aaþs þ 1

lþ
bT H ð1� e�2aaþs Þ:
Back in the time and space domains, we obtain (see Appendix A)
1

cþs
_uHðx; tÞ ¼ 2

cþs
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� �
þ f H ðx; tÞ þ 1
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lþ sH x; t � 2H
cþs

� �
þ hH ðx; tÞ

� 1

cþs
_uH x; t � 2H

cþs

� �
� gH ðx; tÞ

¼ lH ðx; tÞ; ðB:1Þ
where the convolution terms are expressed in the Fourier domain as
F H ¼ Fðf H Þ ¼ �jqjaU t � H
cþs

� �
þ 2jqj

Z t

H
cþs

C0
H3ðjqjcþs t0ÞUðt � t0Þjqjcþs dt0;

HH ¼ FðhH Þ ¼ 1

lþ

Z t

2H
cþs

D3ðjqjcþs t0ÞT Hðt � t0Þjqjcþs dt0;

GH ¼ FðgH Þ ¼ �jqjaUH t � 2H
cþs

� �
þ jqj

Z t

0

C1ðjqjcþs t0Þ þ CH3ðjqjcþs t0Þ
	 


UHðt � t0Þjqjcs dt0:
The convolution kernels D3(T), CH3(T), C1(T) have been defined in (8) and (13), and
C0
H3ðT Þ ¼

J 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � a2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � a2

p þ a2
J 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � a2

p� �
T 2 � a2

0@ 1AHðT � aÞ:
A modal stability and precision analysis similar to that presented in Sections 4.2 and 4.3 shows that the

numerical implementation of relation (B.1) suffers from the same instability as the spectral formulation

used the interface quantities. These instabilities can therefore be eliminated by using the same first-order

low-pass filter as that described by (18).
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