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Combined identification of the input-output and noise
dynamics of a closed-loop controlled linear system

B. DEFALQUEt, M. GEVERSt and M. INSTALLE}

The open-loop input—output dynamics and the noise dynamics of a feedback controlled
linear system perturbed by coloured noise admitting a Markov representation are
identified in state variable form using a two-stage algorithm. This system is equi-
valent to an augmented system driven by white noise.

First the input—output dynamics are identified through a stochastic approximation
algorithm using superimposed white noise. Subtracting the model output from the
system output yields correlated residuals which are then used to identify the noise
dynamics using stochastic realization theory. An innovations representation is
obtained that is equivalent to the above defined augmented system. The two stages
are combined by a judicious coordinate transformation. The method can be applied
on an operating feedback controlled process, regardless of the structure of the un-
known suboptimal regulator.

1. Introduction and outline of results

It is desired to identify and optimally regulate a linear discrete-time
single-input single-output system of unknown parameters, with the following
assumptions :

(1) the system is stationary and a finite state representation is assumed
to exist ;

(2) it is perturbed by a coloured Gauss-Markov process noise of unknown
dynamics ;

(3) during the identification phase the system is kept under closed-loop
suboptimal control (e.g. the system could be a manually controlled
industrial process).

We shall discuss the motivation for these assumptions and show that they
have some nice implications in terms of practical applications. We shall
also point out how these assumptions lead to some theoretical problems for
which no solution was available in the existing identification literature. In
order to clarify this discussion, let us state the equations first.

Following the various assumptions the system can be represented by the
following model :

(i + 1) = Fa(i) + gu(i) + Dp(s) (1a)
p(i+1) =¢p() + yw(i) (1b)
y(i) = ha(i) + (i) (1¢)

where « is an n-vector, p and w are m-vectors, u, y and v are scalars. w and
» are zero-mean white Gaussian processes with covariances 1 and r respectively ;
for simplicity w and » will be assumed uncorrelated although the correlated
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case can be treated just as well. By the closed-loop assumption, the known
(i.e. measurable} input w is an unknown function, possibly time-varying and
non-linear, of past and present outputs, ie. u(¢)=f{y(z), y(i—1), ...]. The
parameters of the matrices ¥, g, D, ¢, v and h, as well as the covariance 7,
are unknown, but it is assumed that the system is minimal and stable, i.e.
all eigenvalues of # and  lie inside the unit circle.

The assumption of a coloured process noise is not only quite realistic from
a practical point of view (e.g. the external temperature acting on a glass-
furnace process is clearly not white), but, from the regulator point of view,
it has some nice conceptual interest as well. Indeed, it is intuitively clear
that if the noise p(-) acting on the system is correlated and if the dynamics
of this correlation (i.e. the ¢ matrix) can be identified, then the noise process
p(+) and is effect on the state can be predicted, which in turn should improve
the performance of the regulator. In a sense the regulator should act as a
predictor with respect to the noise process. This is exactly what happens,
as is made apparent by the fact that in our framework the optimal regulator
will have the form

u(i) = — CTX(i]i) (2)
where X(i|i) is the filtered estimated of the augmented state
. .
X = o &)
p

and the gain €' is a function of the estimated parameters of the system and
noise process.

As is well know the computation of the filtered estimates £(¢|¢) and p(i|7),
and of the optimal regulator gain C, requires the identification of both the
open-loop system and noise dynamics. The assumption of coloured process
noise complicates this identification problem in that the transfer function of
the input—output dynamics is of a lower dimension than the transfer function
of the dynamics of the noise process (i.e. that part of y(-) that is due to w(-)
and v(-)). '

The third assumption, namely that the system is kept under closed-loop
suboptimal control is even more appealing from a practical point of view :
in many industrial applications one is not allowed to ‘ open the loop ’ during
the identification phase. However, this assumption results in a quite difficult
identification problem for which, to our knowledge, no satisfactory solution
has yet been offered. The main difficulties resulting from this closed-loop
assumption can be summarized as follows :

(1) the input—cutput dynamics (i.e. F, g, k) cannot be correctly identified
from input—output data since the feedback loop, whose dynamics are
unknown, alters the dynamics of the input—output relation ;

(2) on the other hand, the noise dynamics cannot be identified by output-
correlation techniques (Mehra 1971, 1972) because the feedback control
is correlated with the process noise.

One of the first authors to recognize the difficulties associated with the
identification of feedback systems was Akaike (1967). He proposed a method
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based on a °causal chain model . The idea is as follows: a new vector
process (i) is defined, made up of the subprocesses (i) and y(i) :

u(7)
(i) =
y()

For the components of (i) instantaneous causality is assumed to exist from
z*() to 27(i) only if k>j. A transfer-function model H(z) is then identified
for (i) considered as a stochastic process driven by orthogonal internal noise
sources, such that

84(2) = H)S,H' (=)

where S,(z) is the spectral density function of z, and S, is the variance of an
orthogonal white noise e(i). To obtain a unique model despite the presence
of feedback Akaike imposed certain structural constraints on H(z) (i.e. the
causal chain structure) and on 8, (i.e. the orthogonality).

Expanding upon Akaike’s idea, several authors (Akaike 1967, Caines and
Wall 1972, Wellstead 1974, Phadke 1973, Chan 1974) have recently derived
various identification methods under a variety of assumptions leading to
different ‘ canonical * representations. Caines and Wall (1972) assume that
no instantaneous causality exists, but relax the condition of orthogonality
on the internal white noise process e(i). Wellstead (1974) shows that the
estimates of the forward path transfer function are unique and consistent
when orthogonal internal noise sources are present in both the feedforward
and feedback loop, and when there is at least one lag in the loop.

Phadke (1973) has studied various canonical forms, and recommends a
non-causal - triangular two-sided moving average (TTSMA) model for x(-),
from which the open-loop model can be derived. Chan (1974) shows that
feedback systems with ‘ instantaneous causality ’ lead to non-unique models ;
he obtains a ‘ unique * model by imposing H({0)=I, while relaxing the condi-
tion that e(z) is orthogonal. ' ,

As the preceding discussion shows, different sets of constraints on H(z)
and S, have been proposed that lead to various ‘unique’ or ‘ canonical ’
models. Unfortunately, as Chan’s study clearly shows, different models for
() will lead to different open-loop transfer functions, unless the structure
of the model is known (e.g. it is known that the feedback transfer function is
of order 2 with a unit delay). This is a severe drawback for all indirect
identification methods.

Gustavsson ef al. (1974) and Soderstrom ef al. (1974), on the other hand,
have derived various assumptions under which direct prediction error methods
(such as the maximum likelihood method) can be used, treating the input
w and the output y just as if the system were operating in open loop. They
have shown that the system is thereby identifiable without knowledge of the
true system structure provided the chosen model structure is able to reproduce
the exact system transfer function and noise dynamics, and one of the follow-
ing conditions hold :

(@) a measurable perturbation s is added to the input process u, that is
both independent of w and v and persistently exciting of high order ;

3p2
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{b) a persistently exciting noise source is present in the feedback loop
that is independent of w and v ;

(¢} the regulator is non-linear and non-degenerate ;
(d) the regulator is persistently time-varyingt.

In all these cases direct open-loop prediction error methods can be used.
However, prediction error methods, such as maximum likelihood, usually
require a priori parametrization of the model and a good initial guess for the
parameter estimate. Therefore, even for open-loop systems, covariance
factorization methods or impulse response models are often used as a first
step.

One way of making the choice of the structure less critical is to add a
measurable white perturbation input, whereby the open-loop input-output
dynamics can be identified through a stochastic approximation method using
an impulse response model, which is not as structure dependent. Saridis
and Lobbia (1972) have proposed such a method; however, they did not
identify the noise dynamics that are necessary for the state-estimation problem
and, a fortiori, did not attempt to tackle the problem of a coloured process
noise.

In this paper we proposed a two-stage method that separately identifies
the input-output dynamics and the noise dynamics of the system. The
matrices F, g, b of the input-output relation are identified first through a
stochastic approximation algorithm using an external white noise input
(Saridis and Lobbia 1972). Using the estimated F, § and %, the effect of the
known input is subtracted from the system output and, using stochastic
realization theory, a model is obtained for the resulting process. It is shown
that this model converges to the model of the noise dynamics. A coordinate
transformation is necessary to combine the two stages of the identification
procedure. ‘

Section 2 describes the main ideas of the identification method without
any proofs. The technical details and the algorithmic forms of the three
stages of the identification method are fully described in §§ 3, 4 and 5,
respectively. Section 3 describes the stochastic approximation algorithm
used to identify the input-output dynamics, § 4 deals with the identification
of the noise dynamics, and §5 describes the coordinate transformation
necessary to combine these first two parts. The method has been tested on
a simulated system ; the vesults of this simulation are briefly described in

§ 6.

2. The method

By state-augmentation the system equations (1) can easily be put into
the form

X(+1)=$pX(3) + Guli) + Tw(i) (4 a)
y(i) = H X (3) +v(3) | (4 b)

T The reader is referred to Gustavsson et al. (1974) for precise definitions of non-
degenerate and persistently time-varying.
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where

Lo oL}

H=[h:0] (5b)

X is an l-vector, with [=n+m, and ¢, G, ", H have the appropriate dimensions.
It is assumed that H, ¢ is an observable pair.

The output y(-) in (4 b) is the sum of two effects, a contribution y,(-) due
to the deterministic input u(-) and a noise process y,(-) due to the noise
sources w(-) and »(-):

(i) =y1(8) + y5(0) (6)
The state X(-) can be split similarly : |
X (i) =X,(0)+ Xy(0) (7)

This allows one to write two separate state-representations for y,(+) and
y.(+). The equations of the input—output model are

Xy(i+ 1) = $X,4(0) + Gu(i) (8a)
yi(8)=HX,(i) (8 b)
or, equivalently,
x4(2 + 1) = P, (2) +gu(s) (9 a)
ya(3) = ha, (i) (99)

with , an n-vector, since the last m terms of X, are zero, i.e.

&y
O (10)
0

The equations of the noise process y,(-) are
Xt + 1) =X ,(4) + ['w(i) (11 a)
Yol1) = HX (1) +v(3) (11 )

By the innovations theory (Kailath 1968, 1970), the state model (11) with
two white noise sources can be replaced by an equivalent innovations repre-
sentation with a single noise source :

0 + 1) = (i) + Ke(d) (12 a)
Yolt) = HO(3) + (i) (12 b)

where
€(3) =ya(t) — Gali}i— 1) (13 a)

the innovations.
We call o2 the variance of the innovations :

0,2 = B{ei)} (13 b)
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The method we propose separately identifies the model (9) for the input—
output dynamics and the model (12) for the noise dynamics. These two
parts are then combined to form the following global innovations model :

X(+1) = dX(0) + Gu(s) + Ke(d) (14 a)

y(t) =HX()+e(z) (14 b)
that is equivalent to (4).
Let us recall in passing the often-made remark that one of the main
advantages of the innovations representation is that its predicted state
estimate is the state itself, i.e.

X(|i—1)=X() (15)
The filtered estimate is equally simple v
X(i|i) =X (i) + Ke(i)=[I - KH1X () + Ky(i) (16)

Hence, if the system is identified in the form (14), the state estimate that is
required for the optimal regulator is immediately available, without an addi-
tional Kalman filter. :

The two-stage method for the identification of the global system in the
form (14) goes as follows :

(1) A first algorithm identifies the first 2n terms of the impulse response
R(1), ..., B{2n) of the input—output system (9) through a stochastic approxi-
mation scheme proposed by Saridis and Lobbia (1972). In order to avoid
identifying the regulator as part of the input-output relation, this algorithm
requires the addition of a white noise perturbation s(-) to the control input
u(+). The matrices b, F, g in observability canonical form (i.e. the form in
which the observability matrix is the identity) are algebraically related to
R(1), ..., k(2n). A recursive form of these relations is used to compute h, F,
¢ on line. Asymptotic convergence of h, F, § to the parameters kb, F, g of the
open-loop system has been proved.

(2) A second algorithm identifies the matrices H, ¢ and K of the noise
model (12), but in observability canonical form: H* ¢* K*. First an
estimate y,, of the effect of the control input s+u on the output is sub-
tracted from the output y. This estimate y,, is obtained by passing the
input u+s through a model with parameters A, F, § as obtained from the
first algorithm (see Fig. 1). The residuals are called = : '

2(8) £y (i) —y () (17)

These residuals contain a sum of three effects due respectively to the
process noise w(-), the measurement noise v»(-), and a modelling error as
long as the first identification is not completed. The autocorrelations

c(k) £ E{2(3) (i —k)} are estimated and, using stochastic realization theory,

Gevers and Kailath (1973), an innovations representation is obtained for z(¢), in
observability canonical form :

(i + 1) = d*0(i) + K*e(s) (18 a)
2(3) = H*0(3) + €(3) (18 b)

The unknown parameters in ¢* and K* can be estimated recursively.
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When the first identification converges, the modelling error component
in z(7) vanishes, and it is easy to see :nhat 2(i) converges to y,(¢). It can be

shown, therefore, that the matrices ¢* and K* converge asymptotically 'to
the matrices ¢* and K* (in observability canonical form) of the noise dynamics
representation (12).

(3) In order to complete the identification it is necessary to t'ransfor.m the
matrices H*, ¢* and K* into the matrices H, ¢ and .K which appear in the
forms (14) and (5), ie. in a coordinate space that is compatible w1tl} the
canonical form in which h, F and g were identified. This can be atheved
through a judiciously chosen coordinate transformation that exploits the
relationship that exists between the matrices F and ¢*.

3. First stage: Identification of the input-output dynamics .
The procedure for the identification of the open-loop mpuif—output model
(9) has been described in § 2.1. The identification proceeds in two steps.

3.1. Estimation of the truncated impulse response . _
For reasons that have been stated above, a white gaussian noise perturba-
tion s is added to the input u of the system. The following 2n-vectors are

defined - | ‘
efine VT:A._,[h(l) h(Zn)] (ig)

ST ALs(i—1) ... s(i—2n)] (20)
UT@E) 2 [ui—1) ... u(i—2n)] (21)
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where k(1), ..., h{(2n) are the first 2n terms of the input impulse response of
the nth-order system (1).

The vector V is estimated recursively by the following stochastic approxi-
mation algorithm :

Viir= Vit mly(@) — 7,0V @) + S(6) () (22)

with V, arbitrary but finite.

Proposition
If a 2n-vector V, is updated through (22) every 2m units of time with
mzn and if

X X
> 0, k;) e = 0, k);n piy. < 00 (23)

then
lim E{|V,~ V||2}=0 (24)
ko

j.e. the vector ¥, converges asymptotically, in the mean square sense, to
the vector V of the first 2»n components of the impulse response of the system
(one possible choice for y; is p;, =a?/(b*+k), and @ and b arbitrary).

Comments

It is worth noting that the convergence of this algorithm does not require
any particular structure for the unknown regulator. The control input u
can be any linear or non-linear, constant or time-varying function of past
outputs.

3.2. State representation

From the estimates of A(1), ..., k(2n) a state representation for the open-
loop input-output dynamics can be obtained in observability canonical
form :

| L
ai+1)=] 0 () + gu(d) (25 a) .
y(i)=[1 0 ... 0Ja(i) = ha(i) (25 b)
where
ff=Un fuea - hl (26)

By the Cayley-Hamilton theorem and by virtue of the canonical form
chosen for h and ¥, it is easy to establish the following algebraic relation-
ships :

g =h(1) ... h(n)] 27)

f=—#hn+1) ... h(2n)|" (28)
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where
R(1) ... h(n)
H = (29)
hin) ... R(2n—1)

# will be non-singular if the order of the system is at least n. The estimates
of g and f can be computed recursively from the estimates of V. &y, is given
by the first » terms of ¥, :

Gio=hi(1) ... Fy()] (30)
To obtain a recursive expression for f we define A, as follows :
Hjir =R+ AR, (31)

where #, is defined by replacing the elements of # in (29) by their kth
estimates. For large k, A#, will be small compared to A, ; therefore, by
a matrix inversion lemma,

() (9?.&)'1 - (';?A?)—iAfk(‘}?k)_l (32)

Using the approximation (32), the following recursive relation can be derived
for f, :

s(t—n—1)
Foor=F— )y — P, T(U @) + 8] | st —n=2) (33)
s(i — 2n)

Equations (22) and (30)—(33) constitute the first stage of the identification.
They provide a recursive algorithm for estimating ¥ and g. Notice that no
matrix inversion is necessary because (#,,)"' is computed recursively by
(32) and AP, is computed directly from the data.

4. Second stage: Identification of the noise dynamics
The procedure for the identification of the noise dynamics (12) has been
described in § 2.2.

4.1. Autocorrelation of the residuals
The residuals z(i) 2y(i) — y (i) are formed, where y,,(i) is the output of
the model (9) with F and g replaced by F and ¢ as identified in the first part.
By the stationarity and ergodicity of the process z(-), an asymptotically
unbiased, normal and consistent estimate of ¢(k) (Parzen 1961) is

é(k):j', ;{ 2326 k) (34)

-

These estimates can be computed recursively by

brsa8) = 60) + g (4G Dt + 1 =)= (4 (35)
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4.2. Transition to a state-representation

1t is well known that a state-representation for z(+) of the form (18) can
be obtained from the autocorrelations c¢(k) using stochastic realization theory
(Gevers and Kailath 1973). We briefly recall without proof how to obtain
H*, ¢* K* and ¢, from the c(k)s for the particular case of observability
canonical form. The reader is referred to Gevers and Kailath ( 1973) for the
derivation of those results.

Assume that the representation (11) for z(i) (recall that z(t) =y,(2) upon
convergence of the first identification) has been transformed to observability
canonical form, i.e.

H*:[lO...O:} (36 a)
0
I F

O*=( 0 s ‘PT=[¢’HP1—1--~‘P1] (36 b)
-—-<pT

Then the autocorrelations ¢(k) can be expressed in terms of the model para-
meters as follows :

c(0)=H*N +r (37 a)
ck) =H*@*kN  |>0 (37 b)
where
N=n*H*T an [-vector (38)
and
= B{X X"} , (39)

The unknown quantities ¢, N, , K* and o,? are successively derived from
c(0), ..., ¢(2]) as follows.

(@) From (37 b) and the Cayley—Hamilton theorem it follows that
l
cl+k)=— Y gol+k—j), k>0 (40)
i=1

where I =n+m is the order of the augmented system.
Writing (40) for k=1, 2, ..., 1, leads to a system of Yule-Walker equations

that are linear in the coefficient ¢,, ..., »,. The solution is
p=—Fe(l+1)c(l+2) ... c(20)]" (41)
where
)y ... o)
w=| 3 (42)
c) ... e2-1)
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An estimate of ¢ is obtained by replacing the c(k)’s in (41) and (42) by their
estimates obtained from (35). Mehra (1971) has shown how ¢ can be computed
recursively :

~iLl o A-i-—
(P =

(43)

(Fi+1)-1 2(i+ 12000 —¢(+1)
i+l

(64 1)2(i — 20+ 1) — 6,20)
(€i*1)~1 is obtained from (%7)~! by a matrix inversion lemma (cf. (32)):
(F1)1 2 (6971 - (§)1ABi(E) (44)
with the obvious definition for A@'.
(b) From (37) and the Cayley—Hamilton theorem, it follows that
14
ol)=— Y eell—J+er
i=1
The covariance r of v(+) is therefore derived :
I -
zi Y ec(l—j) with P2l (45)

Py i=0

Finally, from (37) and the canonical forms it follows that

H* c(0)—7
H*®p* [ N=N=| () (46)

H i1 c(l; 1)

The estimates #/ and N¢ are immediately derived by replacing the c(k):s in
(45) and (46) by their ith estimates é;(k). The estimates of ¢, r and N are
asymptotically unbiased, normal and consistent.

(¢) Only K* and o,? still remain to be es_tima,t-ed. From the theory of the
innovations representations (Gevers and Kailath 1973), we know t}}at-. 1{;—he
state covariance T of the steady-state innovations model is the limiting
solution of the following Riceati equation :

B, = OFS,0%T 4 (N — X H*T)(H*N + 7+ H¥Z H*T)™!
x (N —ZH*T)TO*T (47 a)

V=0 (47 b)
T= lim I, (48)

The gain K* and the variance o2 are derived from this steady-state solution :
K¥ = @*(N ~ SH*T)(H*N +7r— H*SH*T)™ (49)
02— H*N 47— H¥SHH. (50

Tt is worth noting that the computation of the Riccati equation is greatly
simplified by the canonical forms of H* and ®*.
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The estimates of K* and o, are obtained by replacing ®* N and r by
their estimated values in (47)-(50) ; they can be shown to converge asympto-
tically to their true values. A recursive estimation scheme for K* and o2 is
obtained by integrating the Riccati equation in real-time and substituting
for ¢*, N and r their latest updated values.

When the amount of available data is limited, it may be desirable to use
the estimates thus obtained as starting values for more efficient algorithms,
such as a maximum likelihood algorithm.

Comment on the order of the system

So far we have assumed that the order n of the input—output system and
the order / of the noise model are known. For reasons of space limitations
we shall only briefly indicate how these orders can be determined, and we
refer to the literature for more details on the various tests that have been
proposed (see, e.g. Mehra (1971), Van den Boom and Van den Enden (1973),
Chan ef al. (1973) and the references therein).

To determine the order of the input-output system the singularity of
the Hankel matrix (29) can be tested for increasing n.

A computationally efficient method for determining the rank of the
Hankel matrix is the factorization scheme proposed by Rissanen (1971) and
Rissanen and Kailath (1972); this is an alternative way of obtaining an
h, F, g realization from the impulse response elements.

The determination of the order I of the noise dynamics can similarly be
based on the rank of the Hankel matrix. Alternatively a test based on the
whiteness of the innovation sequence e(:) can be used (Mehra 1971), or a
more sophisticated test based on the analysis of the estimated variance of
the innovations (Chan et al. 1973).

5. The giobal model

The matrices h, F, g of the nth input—output model and the matrices
H*, ¢*, K* of the noise model have been identified in different coordinate
bases.

In order to combine the two phases of the identification, it is therefore
necessary to apply a coordinate transformation to the state X, such that in
the new coordinate space the first » basis vectors coincide with the basis
vectors In which the input—output model (9) has been identified, i.e. such
that with X(¢)= X,(i) + X,(¢), one can write, in the new coordinate space,

F D gd K,
X(@+1)= X@2)+ () + (1) (51 a)
0 i 0 K,
y(E)=[10 ... 0 hy 1X()+e(@) (51 b)
\.._.-—-\,—._.._/\_q,__/
n - m

with # and § given by the first part of the identification (see (30) and (33)).
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This requires finding a non-singular transformation matrix 7' of dimension
I x1 that obeys the following constraints :

O - o
S S F i D
(1) Tty 0 T=1 ~~~~~~~~~~ (52)
____________________ 0 i ¢‘
-7 ‘
where F is fixed, and D and ¢ are arbitrary, and
2) H*T2[10..0]T=[10...0h,] (53)

where h,, of dimension m, is arbitrary.
The general form of 7" is found by solving the constraints (52) and (53)
after partitioning 7" into four submatrices :

T, 7,
T= (54)
Ty T,
It is found that the general solution has the following form :
T,=1, (55 a)
f‘rr .
Ty=—| fTF (55 b)
fTﬁsm—l
T, and T'; arbitrary, but such that 7', — 737, is non-singular (55 ¢)
Example
For Ty=0 and T,=1,, T has the form
I,i o0
l/ L ..........
T3 5 Im

with 7’5 given by (53 b).

Comments

(1) It is important to notice that 7' depends only upon the parameters
Jir s fu produced by the first phase of the identification. The transforma-
tion is such that the upper left-hand corner of the transformed ® matrix will
coincide exactly with the F matrix that was identified in the first part,
independently of the accuracy with which the parameter vector @ has been
identified. Recall that the first identification is the most accurate since the
identification of the noise dynamics depends for its accuracy on how well the
input—output model has been identified. It is interesting to notice, therefore,
that in the global model the input—output dynamics is the most accurate,
while the inaccuracies introduced in the second phase of the identification
algorithm are entirely concentrated in the matrices D, i, K and A, that affect
only the noise model.
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(2) Notice that only n columns of the 7' matrix are fixed. The remaining
p degrees of freedom can be used to choose a coordinate space that is con-
venient for the ensuing regulator problem. For example, one can choose
D=0, which leads to two decoupled lower-order Riccati equations in the
regulator synthesis.

6. Numerical example

A second-order system with a second-order noise process has been simulated
on a IBM 370/158 digital computer. The actual values of the parameters
defined in (1) are

0 1 1 01 0
—-0-8 —08 0-4 0 0-1
0 1 0
h=[10] 4= r=
—0-82 18 1

During the identification the system was controlled by a linear state-feedback
w(t)=(0-7—0-1)z(c)

w(+), v(-) and s(-) were taken as zero-mean jointly independent white Gaussian
noises with

a,2=1, 0,2=025 o2=1or4

Notice that the eigenvalues of F are 0-4 + j0-8, i.e. inside the unit circle.

The two-stage identification algorithm was applied to the simulated data.
Actual and estimated values of g, f and r for two different values of the vari-
ance of the identification noise s(-) are given in the table. In each case the
second stage of the identification was started after 1000 iterations of the first
part. CPU time is about 1 min for 2000 iterations. :

Estimates based on k iterations

Actual

values a=1 ol=4
k=2000 k=2000 k="1000
g 1 0-930 0-947 1-000
0-4 0-480 0-448 0422
f 0-8 0-702 0733 0-787
0-8 0-782 0-790 0-765
] 0-656 0-61 0-639 0-593
—0-784 —0-822 —0-879 —0-718
0-180 0-318 0-269 0177
-1 —1-055 —0-965 —0-995
% 0-25 0-270 0-286 0-267
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7. Concluding remarks

We have given a complete solution to the identification of a feedback
controlled single-input single-output linear system perturbed by coloured noise.
The proposed two-stage method separately identifies the input—output
dynamics for the open-loop system and the noise dynamics. Both are
necessary for the synthesis of an optimal regulator, which was the stated
purpose of the identification.

The main advantage of the proposed method is that the identification can
be performed on an operating system while it is being kept under closed-loop
control (by a manual operator, say). The practical applicability of most
identification methods proposed so far was severely limited by the require-
ment that the input sequence had to be independent of previous outputs, i.e.
the identification was to be performed while the system was open-loop. The
final state-representation obtained by this algorithm is particularly well
suited for the synthesis of an optimal regulator because its state is trivially
related to the Kalman filter estimate that is required for the regulator (see

(2) and (16)). On the other hand, the algorithm has the inherent disadvantage -

of any two-stage method, in that the convergence of the second part of the
identification scheme is dependent upon the convergence of the first part.

This paper has been voluntarily restricted to a presentation of the main
ideas of our proposed method. The algorithm has been shown to converge
and it has been successfully applied to simulated data. But clearly many
of the technical details are still subject to improvement : alternative canonical
forms might be chosen and it might actually be possible to identify ® in a
form that does not require a subsequent state-transformation ; the algorithm
might be extended to multivariable systems ; the convergence factor y, could
be optimized as the identification proceeds. These questions are the subject
of continuing inquiry.
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