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1. Introduction

Finite Word Length (FW1.) effects have been con-
sidered as one of the most important issues in digital
filter and controller implementations, ‘The perlor-
mance of a system may be greatly degraded due 1o
these effects. The oplimal FWL state-space design
has been known as one of Lhe most eflective and ele-
gant methods in reducing these el fects. [0 s well
known that any linear system can be represented
by its state-space mo del and thal this state-space
model is not unique. The optimal FWIL state- space
design is to identify those vealizations that minimize
the degradation of the filter performance due to the
FWL effects. Many classical resulls in this topic have
been collected in [MR8T] and a lot of recent develop-
ments can be found in [GLY2).

The classical resulls in minimunt sensilivity real-
izations deal with the problem of winimizing soine
sensitivity measure of the transfer function w.r.l, o
the coefficients of all equivalent realizations. In prac-
tice it is often the case that il is more important to
minimize the errors in the location of certain poles
and zeros of a filter w.r.l. the coeflicient quanliza-
tion than the ervors in the transfer function. How Lo
minimize the pole and zero sensitivities is the main

problem to be addressed in this paper.

The outline of the paper is as [ollows. i Section 2
we define a global pole-zero seusitivity measure and
then formulate our main problens 1o be dealt with
in this paper. In Section 3 we derive the expressions
for pole and zero sensitivity functions. The classi-
cal pole and zero sensitivity measures are discussed.
Our main results in this section is to characterize
all the optimal similarity trausformations that trans-
form any initial realization into those realizations

which have either minimal pole or zero sensitivity.

Section 41 is devoted to finding the optimal realiza-
tions minimizing the pole-zero sensitivity measure.
A design example is given in Secti on § to show the
optimal design procedures. To end this paper, some

concluding remarks are given in Section 6.

2. Problem formulation

Consider a discrete-time linear time-invariant filter
characlerized by its transfer function H(z) and let
(A4, B, d) be a state space realization of this filter,

thal s
2L+ 1) = A2(t)+ Bu(t)
y(t) = Cu(t) + dult), (1)
with
H(zy=d+C(zI - A)"'B. (2)

I we denote by A(M ) the eigenvalue set of a matrix
A, then the poles {Ar} of H{(z) are the eigenvalues
of A, {M) = A(A), while the zeros {vi} of H(2) are

the cigenvalues of
ZE2A-d"'BC (3)

provided d # 0. That is {vg} = A(Z) (see [DWT8]).
Throughout this paper, our zero sensitivity analysis
will he limited to the case of systems without delay,
oo d £ 0.

When the parameters in the matrices A, B, C,d of
the state space realization are implemented with er-
ror {as is the case in a FWL implementation of the
filter) Lhis produces an ervor in the poles and zeros
of the system. The amount of derivation of a pole is
approximately proportional to the sensitivity of this
pole with respect to each parameter in (4, B,C,d).
The same arguuent applies to a zero. Let {‘3;,%;1"i
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} be the sensilivity funclions




of individual poles and zeros, respectively, with re-
spect to the matrices A, B, d, we shall then adopt.
the following global pole-zcro scusilivily measure,
denoted by AM).:

duy duy
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where {wy, , k = 1,...,

()v;,

||1 Il (1)

n] and {wn, ko= Loooon}
are nonnegative weighlings that reflect the relative

+ 5=

importance that the desigucr may care to aliach Lo
the sensitivity of individual poles and/or zeros in a
sensitivity minimization problem.

It is well known that the realizalions (A, 3, ¢\ d)
satisfying (2) are not unigue, they form a realization
set, denoted by Sy In fact, (771 AT 1= BCT . d)
is also a realization ol /() [or any real nousingular
T. We will show later that the measure A, : depends
on the choice of realizaiions. One of our main con-
tributions in this paper will be to solve the optimal

realization problem [or the mininization of the pole-

zero sensitivity measure Af,,. The computation of

M, in (4) requives all the sensitivity functions of

the poles {A;} and of the zeros {vp} concerned in
(4). We therefore start our analysis with a deriva-

tion of these sensitivily functions in the next section.

3 Pole and zero sensitivities

3.1 pole sensitivity and minimization

The computation of pole sensilivity funclions
{8} is well known and can he found in e.g. {SSH0],
[SW84] and [GLY2]. These resuils are based on the
following theorem.

Theorem 1 : Lel M € R"X" have only simple

eigenvalues {Ap} = AA), 2y beoa rvight cigenvaluc

of M with zy corresponding lo A Denote N &
(ml Xy .ooxy, ) oand Y= (y[ Yo oo y,,) 2
X—H, Then
e\ i
=2y . Yk 5
(Fa7) = i (5)

where yy, s called the reeiprocal left cigenveelor cor-
responding to x) and ‘M denoles the transpose and
conjugate operafion.

Proof: The result can be proved in several ways., A
self-contained derivation can be Tonnd in [G1L92].

Comment: In the above theorem, il is assuned that

M has enly simple eigenvalues. If Ay is a repeated
eigenvalue of Af, there exists at least an element of
M, say M4, ] )., such that FAUT) 8 infinite [GL92].
In the sequel, it is assumed that the filter has only
simple poles.

Deline W, = |i");§} |3 as the partial eigenvalue sen-
sitivity measure lor Ap(M), where ||.]|p denotes the
Frobenius norm:

nn
, 100 2y1/2
Al = (D 18 G AP
ihi=1
for any malrix M € ¢”**. Noting that ||M||} =
MMy = tr(MT M) where {r(.) denotes the

Lrace operalion, we have
Vo= o { (e ) et Y. (6)

Now, we deline the overall eigenvalue sensitivily

mcasure of « matriz M € RV*" as follows:

n

Ay
W(AM)ED 0 (7
k=1
The eigenvalue sensitivity measure as just defined

has the following properties:

Theovemr 2 Let M € R"*" have distinct eigen-
values; then the overall eigenvalue sensifivity mea-
swre s nol smaller than n, that is W(M) > n, and
cquality holds if and only if M is normel (that is
MU = MM,

Proof: A proof of this theorem can be found in
[SW84] and [GLY2]. |

All these results above apply to the pole sensitiv-

iy probiem with M = A,

3.2 zoro sensitivity and minimization

We recall that for a realization (A, B,C,d) with
d # 0 the zevos of the system are the eigenvalues of
Z & A~ d ' BC. Hence they depend not only on
the matrix A, but also on B, C and d.

Theorom 3 Let (A, B,C,d) be o realizalion of
H(z). Denote Z = A—d 1BC and {vr} = XZ),
then

(7'[!,(. . (?’U;_., E)vk -2 Tav;,. T

aA 9 ad — B oz ¢

vy vy, ~teT duy, _1 o1 Qg
UL d == d ' B
an ()/( ) acC 8z ®)

Proof: See the complete version of this paper. M




We assume again that 7 has only simple eigen-
values, and we introduce the full rank malrix X, &
[£:(1),...,&.(n)] of vight cigenvectors of Z and the
matrix Y, £ X7 =y (1), ...
left eigenvectors.

L= ()] of reciprocal

We define the sensitivily measure of an arbiteary
zero vy, of the system (A, 3, d) as

Ay Ay oy

(")'UIV 9
HF +Hlm B IR e 1+l By 7 (9)

Vo = ”
Using expressions (8) and (6) we obtain

U,y = tr{(ye (k) () (s ()l (R))T Y +
'tr(a‘;j’,y;(k)yf’(i.f))—i—lr[;'ﬁ NYSEIUTS)

+ aifi, (10)
where
o} & |d7 2 )CT = T Ces (k)]
g2 & a8y (. (11)

The overall unweighted zero sensitivily measure is

then given by
n

‘II,:_ = Z"I’:I;- (Iz)

k=1
Theorem 4 : Let (A, 3, d) be a minanal realiza-
tion of a system H{z) with d # U and distinet ze-
ros. The unweighted sensitivily measuwre (12) is lower

bounded by

n

n
T, >n+2 Z fordi )+ Z n;’)’,’ (13)
=

k=1

This lower bound is achicved if and only If Z is nor-
mal with its right cigenvector malviv N, salisfying

. o 43
XPX. = diag(| 1. A5 (1)
<l
Proof: See the complete version of this paper. &

3.3 optimal realizations

Consider a matrix A" that has a complete set of

independent eigenvectors and any nonsingular ma-
trix T, and denote M = T~ AV Clearly, A(M) =

AMO). Let 2% be a right cigenvector of M9 cor-
responding to Lh(—: eigenvalie Ap and Jet yf be ils

reciprocal left eigenvector, i.c. yplfal = L.

The cor-
responding eigenvectors of A for Lhe smme cigenvatue
A are:

ap =T a8 g =11y (15)

It then follows from (6) that the eigenvalue sensitiv-
ily measure in the new coordinate system is given

Ly

“pl.-(f'“) — h,{(r]w[ U OHT—-T)(TTJ ’L'UHT_T)H},
(16)
which shows that similar matrices typically have dif-
forent eigenvalue sensitivity measures.

With A replaced by the state transition matrix
A, one can study the pole sensitivity problem. We
denote by U, the partial sensitivity measure of the
k-th pole of the realization (A, B, C,d) of a system.
T'he overall wnweighled pole sensitivily measure Uy
of the realizalion (A, B, d) is defined as

Wy &3 W = W(A). (17)
le==1

Now, let (A, By, Co,d) be some initial realization
oI a transler lunction H(z) and let (4, B,C,d) be
obtained Trom (Ay, By, Cy,d) through a similarity
wansformation 7. Let {j(k)} and {yp(k)} for
ko= 1,....n be the lelt and right eigenvectors of Aq.
The pole sensilivity measure in the new realization
is a lunction of 7" obtained directly from (16):

U (1) = t{PH ()P HE ()}, (18)

where I!,,(l. = Yy (/.)r“"(k} and P& T7T7T,
Similarly, substituting .(k) = T-*22(k) and
y: (k) = TTy%&) v (10), yields the following ex-

pression for Lhe zero sensitivity measure:

U (1) = te{PH (k)P HIT(R)) + tr{ai PHy(k)}
+ “{11131)“}1” }+Okﬂl, (19)

where /v/,,u;.) 2 00 (k), Hyo(k) & 20(k)2%H (k)
and 1, (k) & '!li;](/.: Y (k). The numbers {a}} and
{87} have been defined in (11). It follows from €' =
Col', 13 = T~ 1By and (15) that these numbers are
coordinate independent.

Theorem 2 and 4 show that the realizations whose
Aand Z = A — d~!BC are normal have their poles
and zeros least sensitive to errors in the realization
parameters, The question arises as to whether a sys-
tem H (=) can always be represented in a coordinate
gpace in which the matrix A or Z is in normal form.
Stated nore simply, can any matrix M € R™**
be transformed to normal form by a real similarity

transformation?

Theorem 5 ¢ Lel (A, By, Co, d) be @ minimal re-
alization of 11(z). Denole Zy = Ao — d~1ByCy.




Let X3 & (29,....al,) and \? 2, )
be @ matriz of right cigenvalues of Ao aand Zo, re-
spectively. If H(z) has no repealed poles, theve ci-
ist a set of similarity transformalions Ty, such thal
A= f[‘},””leTlJ is normal, and this set is completely
characterized by

Tp = (NP D, N2, (20)

where Dy, is any dicgonal positive-dcfinilc malviv and
Q@ is an arbilrary ovthogonal maliir.

If H(z) has no repealed zcros, there exist a scl
of stmilarity transformations . such that 7 =
T;IZDTZ is normal aud salisfies (14), and

this sel is completely characierized by
T, = (XNID.NUYVEQ, (21)

where D, = d-iag(lt ||:-'—E) with {cop ) and {3}
as defined before, an.(l Q is an arbitrary orthogonal

matriz.

Proof: See the compleie version ol this paper. &

For a realization (A, /3.Cd) of H(z), generally
the normality of A4 can not guarantee that of 7 =
A —d'BC, vice-versa.
imal pole and zero sensitivilies can not simultane-

This means that Lthe min-

ously be achieved. A systennis uniquely determined
by its poles and zeros to within a constant mtltiplior.
The behavior of the systens depends on that of the
poles as well as of the zeros. Thal is why we adopt a
combined weighted polc-zere scusitivdy measure that
takes into account of pole seusitivity as well as zero
sensitivity. In the next section. we will stndy this

measure.

4. Pole-zero sensitivity minimization

It follows from (18) and (19) thatr the weighted
measure My, introduced in (1) can now be written
as:

n

My, = > r(PH P 4 0e(P M)
4 (P e 2 RP) (22)

where P =TT and

He = w0k ),v”"(i ), k=1
w2y (k= n)al (k= ). k=l

n

Z Wy, (A, t/"(/. )T ”“(/. )

k=1

i

M,

i

i

Y diag(w,, o, ... w00 2yy o

n
M, = Z wy, Bl (k) (k)

e

‘0 . 2 2
= XVdiag(w, B3, . .. w,, B2)XH

123

¢ = ) wn i (28)
k=1

So. the minimization problem can be formulated

il M,: <= min R(P). (24)
{(AB,Cd1ES P>0

This problem is solved by the following theorem.

Let I
Jer function with a sel of distinet poles and zeros,

Theorvem G - () be a discrele time irans-
and lcl (Ag, Bo,Co,do) be @ minimal reclization of
1(z). Furthermore, lel /\’OA[ zo(1) z(n)] and
NO& U(l) x%(n)] be right eigenvector ma-
{rices of Ay and /”—A(,—([O BoCy ,respectively, let
VOR[N yo(m) and VO£ (1) ... gi(n)]
be the malrices of reciprocal lefl euenveciors (md let
(e, > 0} for k= L,...n. Then, with P = TTT,
the minimum of (22) evists and is achieved by a non-
stngular . The manimum of R(P) is unique and is
oblained as the solution of the following equation:

n n
PAL,+> M PTUHITP = M+ B PH (25)
LR k=1
Proof: See [(11,92]. .
Comment: The optimal solution to the minimiza-

Lion ol M, is given as the unique solution P of (25).
['his tmeans that the optimal realization problem has

a sel of optinal solutions charvacterized by
{:’-1, l'.f,( d = [01,4 1() apts 0!"‘ B(],C{)Topt,do} (26)

where 1, = 7'V, 1" is any square root of P (P =

T and Vs any orthogonal matrix.

[t seems diflicult to have an explicit expression of
the solutions to (25). One can always obtain the
solutions by an iterative procedure using a gradient

algorithne

o IR(P
Plk 4 1) = Pk = p (‘)ED dppwy @)

where jis the slep-size and

R A

(‘}j(/)) = S AP oI P H PH P
k=l
+My, = PTIM P (28)




Since there is no local minbnam (or maximuam ci-
ther), this algorithm will converge to the unique sotu-
tion to the equation (25) as long as g is small enough.

5. Numerical example

We now illustrale our theoretical resulls with a nu-
merical example. We consider a (ifter thal is initiatly
described in direct form [2.:

3.6147 ~4.9242 29971 —0.0881

1.0000 0 0 0
Ac = o
0 1.0000 0 0
0 0 1.0000 ()
C. = (0.5640 0.05&8 0.5H28 tunm) x 107
.
B, = (1 00 0) Cd = 01578,

The corresponding poles and zeros are given, re-
spectively , by the following vectors Vo and Vi
Vo = (0.9550 + j0.0953 0.9550 — j0.0953 0.8521 4
§0.1432 0.8524 — jO.1432)7 and Vv, = (L.0SIS +
70.2556 1.0818 — j0.2556 0.7238 + jO.I819 0.7238 —
j0.1819)7.

Using Theoem 5, we obtained a T, and a 1, (hat
give two optimal realizations 12, and 2. in terms
of pole and zero sensitivities, respectively, We con-
puted the pole and zero seusitivity measures W, and
¥, for R, R, and R, respectively. The resulls are
given in the following list:

\Ii,, \r,

R, | 4469 x 10° | 95477 x 10"
Ry 4 37681 x 10°
R, | 702677 3.3889

We note that the zero sensitivity measure of 12,
3.7684 x 10° is far from: the minimal value, 8.3839,
while the pole sensitivily measure ol [¢., 70.2677,
is far higher than the minimal value, 4. Thus. these
two optimal realizations are significantly diflerent. It
therefore makes sense to use our combined measure
My, m order to achieve a Lradeofl hetween the two
apparently conflicting design criterion W, and W, .

JFrom a stability point of view, one woukl like
to implement a realization for whiclh the two poles
closest to the unit circle, nummbered 1 and 2, have
a smaller sensitivity. Thetr sensitivities in the three
realizations examined so far arc: V(1) = W,(2) =
1.6142 x 10° for R., W, (1) = W, (2) = | for {2, and
U,(1) = ¥,(2) = 23.3233 for 2.

We therefore choose the (ollowing weighting fae-

Lors: (uqI Uy, Wy, Wi, ) = (20 20 1 1) and

(w,}, Wy, MWy, w,,,.,) = (1 111

gorithim (27), one can find the corresponding op-

). Using al-

timal realization R, for which the pole and zero
sensitivity measures are 7.4555 and 27.0285, and
Y 1)=",(2)=1.8564. Clearly, this realization is a
tradeof ol /2, and R,. These theorectical results

have heen confirmed by some simulations.

6. Conclusions

We have devoied this paper to the study of pole
and zero sensitivities. Que of our contributions is to
characterize the oplimal similarity transformations
that transform any initial realization into the one
that has a minimal pole or zero sensitivity. By defin-
ing a combined weighted pole-zero sensitivity mea-
sure, Lhe olimal realization has been formulated. A
necessary and suflicient condition that any optimal
realization winimizing this measure has to satisfy has
been given. An algorithm (for selving this optimiza-
tion problem has been proposed. A design example
has been given to illustrate the optimal design pro-

cedure.
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