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Overview of Talk

• Feedback control laws for stabilization of 
collective motion

• Quantitative metrics for evaluation/planning 
of measurement distributions

• Sensor network design for adaptive 
oceanographic sampling



Self-Propelled Particle Model
[Justh and Krishnaprasad, 2002]

1 Introduction

This research on feedback control of collective motion is motivated by the modeling of aggrega-
tions in biological systems, see e.g. [7, 10], and the design of autonomous oceanographic sampling
networks [6]. We study a planar model of self-propelled particles subject to steering control after
[12]. A natural formulation of this model permits application of results from coupled oscillator
theory [20, 4]. Our primary result is a pair of feedback controls that stabilize parallel and circular
motion of the group [18]. This result may be used to design mobile sensor arrays for oceanographic
data assimilation following a technique such as objective analysis [8, 2] or optimal experiment de-
sign [19]. This talk will focus on the design and evaluation of mobile sensor arrays using objective
analysis.

2 Particle Model

We consider a system of self-propelled particles with unit velocity subject to steering control
laws. In complex notation, the model is

ṙk = eiθk

θ̇k = uk

where rk ∈ R2 and θk ∈ S1 are the position and heading of the kth particle, k = 1, . . . , N . It
is convenient to separate the feedback control input, uk ∈ R, into relative spacing and alignment
components, i.e. uk = uspac

k + ualign
k .

To design the feedback controls, we consider the singularly perturbed system

ṙk = eiθk

εθ̇k = εuspac
k + ualign

k

where |ε| = 1
|K| " 1 is a small (signed) parameter. This introduces a time scale separation between

the alignment controls (fast) and the spacing controls (slow). The sign of the parameter determines
if the alignment coupling is attractive or repulsive. Exponential stability of the system follows from
exponential stability of the particle headings for the fast dynamics and exponential stability of the
particle spacing for the slow dynamics [13].

2.1 Alignment Controls

The complex order parameter shown in Figure 1, given by

pmθ =
1
N

N∑
j=1

eimθj = reiψ,

describes the coherence of the mth harmonic of the vehicle headings, where 0 ≤ |pmθ| ≤ 1, m =
1, 2 . . .. The first harmonic, pθ, is equivalent to the group linear momentum and pθ = 1 and pθ = 0
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ṙk = eiθk

εθ̇k = εuspac
k + ualign

k

where |ε| = 1
|K| " 1 is a small (signed) parameter. This introduces a time scale separation between

the alignment controls (fast) and the spacing controls (slow). The sign of the parameter determines
if the alignment coupling is attractive or repulsive. Exponential stability of the system follows from
exponential stability of the particle headings for the fast dynamics and exponential stability of the
particle spacing for the slow dynamics [13].

2.1 Alignment Controls

The complex order parameter shown in Figure 1, given by

pmθ =
1
N

N∑
j=1

eimθj = reiψ,

describes the coherence of the mth harmonic of the vehicle headings, where 0 ≤ |pmθ| ≤ 1, m =
1, 2 . . .. The first harmonic, pθ, is equivalent to the group linear momentum and pθ = 1 and pθ = 0

2

k = 1, . . . , N

All-to-all coupling of constant speed particles subject 
to steering controls:



Singularly Perturbed System 
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[Sepulchre, Paley and Leonard, 2003]

slow fast

Time scale separation decouples alignment and 
spacing controls:



Complex Order Parameter
[Kuramoto, 1975]

1 Introduction

This research on feedback control of collective motion is motivated by the modeling of aggrega-
tions in biological systems, see e.g. [7, 10], and the design of autonomous oceanographic sampling
networks [6]. We study a planar model of self-propelled particles subject to steering control after
[12]. A natural formulation of this model permits application of results from coupled oscillator
theory [20, 4]. Our primary result is a pair of feedback controls that stabilize parallel and circular
motion of the group [18]. This result may be used to design mobile sensor arrays for oceanographic
data assimilation following a technique such as objective analysis [8, 2] or optimal experiment de-
sign [19]. This talk will focus on the design and evaluation of mobile sensor arrays using objective
analysis.

2 Particle Model

We consider a system of self-propelled particles with unit velocity subject to steering control
laws. In complex notation, the model is

ṙk = eiθk

θ̇k = uk

where rk ∈ R2 and θk ∈ S1 are the position and heading of the kth particle, k = 1, . . . , N . It
is convenient to separate the feedback control input, uk ∈ R, into relative spacing and alignment
components, i.e. uk = uspac

k + ualign
k .

To design the feedback controls, we consider the singularly perturbed system

ṙk = eiθk

εθ̇k = εuspac
k + ualign

k

where |ε| = 1
|K| " 1 is a small (signed) parameter. This introduces a time scale separation between

the alignment controls (fast) and the spacing controls (slow). The sign of the parameter determines
if the alignment coupling is attractive or repulsive. Exponential stability of the system follows from
exponential stability of the particle headings for the fast dynamics and exponential stability of the
particle spacing for the slow dynamics [13].

2.1 Alignment Controls

The complex order parameter shown in Figure 1, given by

pmθ =
1
N

N∑
j=1

eimθj = rmeiψm ,

describes the coherence of the mth harmonic of the vehicle headings, where 0 ≤ |pmθ| ≤ 1, m =
1, 2 . . .. The first harmonic, pθ, is equivalent to the group linear momentum and pθ = 1 and pθ = 0

2

group linear momentumNpθ ≡

Centroid of particles phases on unit circle:



Alignment Control

figures/order_param.pdf

Figure 1: The complex order parameter, pθ = eiψ.

correspond to parallel and circular (i.e. a fixed center of mass) collective motion. We stabilize the
harmonics of the particle headings using alignment controls that are composed of gradients of the
potentials Vm = N

2 |pmθ|2. For example, for m = 1, we have

V1(θk) =
N

2
pθpθ

∇V1(θk) =
N

2

(
pθ

(
∂

∂θk
pθ

)
+

(
∂

∂θk
pθ

)
pθ

)
= N"

{
pθ

(
∂

∂θk
pθ

)}
= "

{
−ipθe

−iθk

}
=

1
N

N∑
j=1

sin(θj − θk)

Alignment controls can be designed to stabilize a set of pmθ to either 0 or 1 by changing the
sign of the coupling gain, K. Positive coupling produces the synchronized state; negative coupling
produces the incoherent state. For example, the state pθ = p2θ = . . . = pN

2 θ = 0, is the splay state
of evenly spaced particle headings which corresponds to uniform particle spacing on the circle. We
will provide spacing controls, uspac

k , that stabilize the circular motion to a desired radius, ρ.

2.2 Parallel Motion

For parallel motion, i.e. |pθ| = 1, to design the formation spacing control we follow the approach
developed in [1]. Consider the following interparticle scalar potential,

UI(rkj) = log ‖rkj‖+
ρo

‖rkj‖
which is an even function of rkj = rk− rj . Using ∂rkj

∂rk
= 1, the gradient of this potential is given by

∇UI(rkj) =
(

1
‖rkj‖ −

ρo

‖rkj‖2
)

rkj

‖rkj‖ .

3

∇kVm =
1

N

N∑

j=1

sin(m(θj − θk))

Example: first harmonic only

Ku
align
k =

K1

N

N∑

j=1

sin(θj − θk)

Define control in terms of gradient of scalar potential:



Parallel Motion

K1 = 1 ⇒ pθ = 1

Positive coupling of the first harmonic synchronizes 
the particle phases in the fast dynamics:



Formation Control

figures/par1a.png figures/par1b.png

Figure 2: Parallel motion for N = 10 and ρo = 10 without and with spacing control.

We define the formation spacing control in terms of the negative of this gradient, i.e.

uspac
k = −

N∑
j !=k

< ∇UI(rkj), ieiθk > .

A Lyapunov function, U , that can be used to prove convergence to the set of formations that
minimize U is

U =
N∑

k=1

N∑
j>k

UI(rkj).

An example of parallel motion is shown in Figure 2.

2.3 Circular Motion

Consider the following variant of a single particle/beacon control law from [11],

uspac
k = −f(ρk) <

r̃k

ρk
, ieiθk > − <

r̃k

ρk
, eiθk >,

where f(ρk) is given by

f(ρk) = 1−
(

ρo

ρk

)2

.

The particles move in a circular trajectory about the center of mass, R = 1
N

∑N
j=1 rj . We define

the vector from the center of mass to particle k by r̃k = rk −R, and its magnitude by ρk = ‖r̃k‖,
as shown in Figure 3. The radius is controlled by the first term, while the heading is driven to the
tangent of the circle by the second term.

4
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Figure 1: The complex order parameter, pθ = eiψ.

correspond to parallel and circular (i.e. a fixed center of mass) collective motion. We stabilize the
harmonics of the particle headings using alignment controls that are composed of gradients of the
potentials Vm = N

2 |pmθ|2. For example, for m = 1, we have

V1(θk) =
N

2
pθpθ

∇V1(θk) =
N

2

(
pθ

(
∂

∂θk
pθ

)
+

(
∂

∂θk
pθ

)
pθ

)
= N"

{
pθ

(
∂

∂θk
pθ

)}
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{
−ipθe
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Alignment controls can be designed to stabilize a set of pmθ to either 0 or 1 by changing the
sign of the coupling gain, K. Positive coupling produces the synchronized state; negative coupling
produces the incoherent state. For example, the state pθ = p2θ = . . . = pN

2 θ = 0, is the splay state
of evenly spaced particle headings which corresponds to uniform particle spacing on the circle. We
will provide spacing controls, uspac

k , that stabilize the circular motion to a desired radius, ρ.

2.2 Parallel Motion

For parallel motion, i.e. |pθ| = 1, to design the formation spacing control we follow the approach
developed in [1]. Consider the following interparticle scalar potential,

UI(rkj) = log ‖rkj‖+
ρo

‖rkj‖
which is an even function of rkj = rk− rj . Using ∂rkj

∂rk
= 1, the gradient of this potential is given by

∇UI(rkj) =
(

1
‖rkj‖ −

ρo

‖rkj‖2
)

rkj

‖rkj‖ .

3

[Bachmayer and Leonard, 2002]
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4 Parallel Motion Design

To analyze the slow dynamics of the singularly perturbed particle model (5)
in the case ε = 1/K > 0, we determine the first-order approximation of its
slow manifold. The slow manifold has the expression

θk = θ1 + hk(r, ε), 1 < k ≤ N

To determine the functions hk, 1 < k < N , one expresses the invariance of
the manifold

θk − θ1 = hk ⇒ θ̇k − θ̇1 = ḣk

As shown in [SPL03], the functions hk have the first-order approximation

hk(r, ε) = ε(uspac
k − uspac

1 ) + O(ε2), 1 < k ≤ N . (9)

The slow dynamics are obtained by substituting the approximation (9) in (5):

ṙk = eiθ1(1 + iε(uspac
k − uspac

1 )) + O(ε2) . (10)

For the difference rjk = rj − rk, this yields the slow dynamics

ṙjk = εieiθ1(uspac
j − uspac

k ) + O(ε2) . (11)

The controls uspac
k , 1 < k ≤ N , can now be determined to assign formations

for the group of particles moving in parallel. As an illustration, we follow
the approach proposed in [BL02] to stabilize formations of (non-oriented)
particles: the desired formation is specified by the critical points of a scalar
potential

U =
N∑

j=1

∑
k>i

UI(rjk)

where the potential UI(rjk) = UI(rj − rk) = UI(rkj) determines the desired
interaction from particle k on particle j. For instance, the choice

UI(rjk) = log ‖rjk‖+
r0

‖rjk‖ (12)

results in the feedback

∇UI =
∂UI

∂rj
=

(
1

‖rjk‖ −
r0

‖rjk‖2
)

rjk

‖rjk‖ (13)

from particle k on particle j which vanishes only at the equilibrium distance
‖rjk‖ = ‖rj − rk‖ = r0. Gradient-like dynamics for the slow system (10) are
obtained with the feedback control

uspac
k = −

∑
j !=k

< ∇UI(rkj), ieiθk > (14)

which causes the scalar potential U to decrease along the solutions in the slow
manifold [SPL03]. Equilibrium configurations that minimize the potential U
favor uniform spacing between the particles, e.g. see Figure 1.

Choose spacing control that inserts nonlinear springs 
between all pairs of particles:



Parallel Motion
N = 10, ρo = 10



Circular Motion 

K1 = −1 ⇒ pθ = 0

For compatibility, the slow dynamics must remain on 
the balanced manifold

ṗθ =
1

N

N∑

j=1

eiθj θ̇j = PT
θ uspac

= 0

Negative coupling of the alignment anti-synchronizes 
the phases in the fast dynamics

Figure 3: Shape coordinates used for the parallel and circular feedback control, where ρk = ‖r̃k‖,
after [11].

In shape coordinates, the dynamics for particle k are

ρ̇k = sinφk

φ̇k = −
(

f(ρk)− 1
ρk

)
cos φk − sinφk cos φk.

Convergence results for this system are presented in [11]. A Lyapunov function candidate for the
system of N particles is the sum of individual functions, VI , given by

VI = − log(| cos φk|) + H(ρk),

and f(ρk)− 1
ρk

= dH
dρk

. The time derivative of VI along the trajectories of this system is given by

V̇I =
(

sinφk

cos φk

)
φ̇k +

(
f(ρk)− 1

ρk

)
ρ̇k

= −sin2 φk

cos φk
.

Therefore, V̇I ≤ 0 in the set {(ρk,φk)|ρk > 0, |φk| < π
2 } with equality at (ρk,φk) = (ρ1, 0), where

f(ρ1)− 1
ρ1

= 0.

For the purposes of the proof, we enforce that the spacing control preserve the fixed center of
mass, i.e. ṗθ = 0 using a matrix projector, Π, as follows.

ṗθ =
1
N

N∑
j=1

eiθjuspac
j = P T

θ uspac
j = 0

where P T is the matrix formed by the columns of cos θj and sin θj . We multiply the spacing controls
by Π = (I − Pθ(P T

θ Pθ)−1P T
θ ) so that the above constraint is satisfied.

2.4 Trajectory Tracking

The parallel and circular feedback controls are used to define five behavior primitives which can
be combined to track piecewise-linear trajectories. The behavior primitives use impulsive controls

5

u
spac

= Πu
bal

,



Beacon Control Law
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Fig. 2. Circular motion of a single particle around the fixed beacon R

ρk exceeds the equilibrium distance ρ0 and a repulsive interaction otherwise.
(The choice f(ρk) = 1 − (ρ0/ρk)2 is proposed in [JK03]). With the control
(16), the Lyapunov function

Uk = − log | <
r̃k

ρk
, ieiθk > | +

∫ ρk

ρ̄
(f(s)− 1

s
)ds

has a global minimum at a relative equilibrium which corresponds to circular
motion around the fixed beacon: the equilibrium is determined by a velocity
vector orthogonal to the relative position vector (i.e. < r̃k, eiθk >= 0), and a
distance ρ̄ to the beacon such that f(ρ̄) = 1

ρ̄ . Note that ubal
k is nonzero for

ρk = ρ̄ since this is an equilibrium value in the shape coordinates [JK03].
Assuming Ṙ = 0, the time-derivative of Uk satisfies

U̇k = − <
r̃k

ρk
, eiθk >2 / <

r̃k

ρk
, ieiθk >

The Lyapunov function Uk provides a global convergence analysis for the
single particle model. In particular, it can be used to prove asymptotic stability
of the clockwise rotation around the fixed beacon.

The design of circular motion for N particles in the balanced manifold is
an immediate extension of the single particle design: we apply (16) to each
particle 1 ≤ k ≤ N , with the fixed beacon replaced by the center of mass of
the group R = 1

N

∑
k rk. Under the constraint Ṙ = pθ = 0, the Lyapunov

function U =
∑

k Uk provides the same global convergence analysis for the
group of particles as for a single particle.

Inserting the control law (16) in the general formula (15) thus yields a sta-
bilizing control law for the original particle model (1). The conclusions of the
asymptotic analysis, which assumes large values for the parameter |K|, seem
well retained in simulations even when a time-scale separation is not enforced
between the fast stabilization of the center of mass and the slow stabilization
of the circular formation on the balanced manifold, e.g. see Figure 3.
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Figure 2: Parallel motion for N = 10 and ρo = 10 without and with spacing control.

We define the formation spacing control in terms of the negative of this gradient, i.e.

uspac
k = −

N∑
j !=k

< ∇UI(rkj), ieiθk > .

A Lyapunov function, U , that can be used to prove convergence to the set of formations that
minimize U is

U =
N∑

k=1

N∑
j>k

UI(rkj).

An example of parallel motion is shown in Figure 2.

2.3 Circular Motion

Consider the following variant of a single particle/beacon control law from [11],

uspac
k = −f(ρk) <

r̃k

ρk
, ieiθk > − <

r̃k

ρk
, eiθk >,

where f(ρk) is given by

f(ρk) = 1−
(

ρo

ρk

)2

.

The particles move in a circular trajectory about the center of mass, R = 1
N

∑N
j=1 rj . We define

the vector from the center of mass to particle k by r̃k = rk −R, and its magnitude by ρk = ‖r̃k‖,
as shown in Figure 3. The radius is controlled by the first term, while the heading is driven to the
tangent of the circle by the second term.

4

[Justh and Krishnaprasad, 2002]

ubal
k = −f(ρk) <

r̃k

ρk

, ieiθk > − <
r̃k

ρk

, eiθk >

In the slow dynamics, the particle center of mass is fixed



Circular Motion
N = 10, ρo = 10



Extension: Shape Changes
Modify beacon control law to track elliptical trajectory:

e =

√
1 −

b2

a2
= 0.94N = 10, a = 30, b = 10,



Extension: Trajectory Tracking
[Paley, Leonard and Sepulchre, 2004]

N = 20, ρo = 25



Higher Harmonics

Stabilize higher harmonics of complex order parameter:

4

2

2
1 1

1 1

N = 4Example: 

Km > 0 ⇒ pmθ → 1

Km < 0 ⇒ pmθ → 0



Stabilization of the Splay State 

Figure 1: The complex order parameter, pθ = eiψ.

correspond to parallel and circular (i.e. a fixed center of mass) collective motion. We stabilize the
harmonics of the particle headings using alignment controls that are composed of gradients of the
potentials Vm = N

2 |pmθ|2. For example, for m = 1, we have

V1(θk) =
N

2
pθpθ

∇V1(θk) =
N

2

(
pθ

(
∂

∂θk
pθ

)
+

(
∂

∂θk
pθ

)
pθ

)
= N"

{
pθ

(
∂

∂θk
pθ

)}
= "

{
−ipθe

−iθk

}
=

1
N

N∑
j=1

sin(θj − θk)

Alignment controls can be designed to stabilize a set of pmθ to either 0 or 1 by changing the
sign of the coupling gain, K. Positive coupling produces the synchronized state; negative coupling
produces the incoherent state. For example, the state pθ = p2θ = . . . = pN

2 θ = 0, is the splay state
of evenly spaced particle headings which corresponds to uniform particle spacing on the circle. We
will provide spacing controls, uspac

k , that stabilize the circular motion to a desired radius, ρ.

2.2 Parallel Motion

For parallel motion, i.e. |pθ| = 1, to design the formation spacing control we follow the approach
developed in [1]. Consider the following interparticle scalar potential,

UI(rkj) = log ‖rkj‖+
ρo

‖rkj‖
which is an even function of rkj = rk− rj . Using ∂rkj

∂rk
= 1, the gradient of this potential is given by

∇UI(rkj) =
(

1
‖rkj‖ −

ρo

‖rkj‖2
)

rkj

‖rkj‖ .
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N = 10, ρo = 10



Extension: Topology Changes

N = 4, ρo = 10, A =

Modify network adjacency matrix to form subgroups,
while preserving splay state over all particles:



Overview of Research Topics

• Feedback control laws for stabilization of 
collective motion

• Quantitative metrics for evaluation/planning 
of measurement distributions

• Sensor network design for adaptive 
oceanographic sampling



Objective Analysis
[Gandin, 1965]

[Bretherton, Davis and Fandry, 1976] 

θ(X) = φ(X) + v

ε2(x) =
(
φ(x) − φ̂(x)

)2

x, X ∈ R
2
× R

+φ̂(x) = Bθ(X),

Used to compute a gridded error map of an estimate 
formed from noisy measurements of scalar field:



Gauss-Markov Theorem

3.2 Non-collocated measurements

Suppose the measurements, θ, are not taken at the error map grid points, (x, t). For compactness
we will denote the grid point locations by the pseudo-vector x. Let X be the measurement location
pseudo-vector. Then, in the case of additive measurement noise, v ∈ Rm, we can the write the
measurements as a function of the field φ at X.

θ(X) = φ(X) + v

Then the autocorrelations matrices can be written

Cφθ = E
[
φ(x)(φ(X) + v)T

]
= E(φ(x)φ(X)T ) + E(vvT )

and

Cθ = E
[
(φ(X) + v)(φ(X) + v)T

]
= E(φ(X)φ(X)T ) + E(φ(X)vT ) + E(vφ(X)T ) + E(vvT )

We use the shorthand Cx = E(φ(x)φ(x)T ), CxX = E(φ(x)φ(X)T ), CX = E(φ(X)φ(X)T ), and
Cv = E(vvT ). We also assume the measurement noise is uncorrelated to the field so that
E(φ(X)vT ) = E(vφ(X)T ) = 0. Thus we can write the error covariance as

Ce = Cx − CxX(CX + Cv)−1CT
xX

Note that this requires an inversion of an M×M matrix. For Cx →∞ and linear measurements,
the Gauss-Markov result is identical to the discrete measurement update step of a Kalman filter.
The error covariance can be put in the so-called information filter form which requires an inversion
of an N × N matrix [15]. The trade-off is between the number of gridpoints and the number of
measurements.

Also note that we are only interested in the diagonal of Ce(x, t) which is the error variance at
each grid point. The error map values are the square root of the error variance at the points (x, t),
i.e. the root-mean-square (rms) error.

3.3 Autocorrelation Function

The autocorrelation matrices are generated using a minimally parameterized model of statistical
structure of the process. Following [8], we normalize the error covariance by the process variance
which is the diagonal of Cx. Assuming a spatially homogeneous field, the process variance is a
constant scalar. Thus the model autocorrelation function has unit magnitude.

We use an isotropic autocorrelation function Cx,X = F (ξ, η) where ξ = ‖x−X‖ and η = |t−T |
after [14]:

F (ξ, η) =
(

1− ξ2

σ2
1

)
exp

[
−1

2

(
ξ2

σ2
o

+
η2

τ2

)]
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[Liebelt, 1967] 

evaluating sensor arrays, is the square root of the variance of the error of this estimator,

ε2(x, t) =
(
φ(x, t)− φ̃(x, t)

)2

A gridded error map can be computed using the location of measurements taken, the assumed
measurement error, and the space-time covariance of the process of interest. One model of this
covariance which we are investigating, is Gaussian in space and time with spatial scale, σ, and
temporal scale, τ . The characteristic scales can be estimated from the autocorrelation statistics
and, in general, are not uniform functions of space and time.

3.1 Gauss-Markov Theorem

Suppose that we seek to form an estimate, φ̂(x, t) ∈ Rn, as a linear combination of a set of
discrete measurements, θ(x, t) ∈ Rm. The measurement weights are determined by the matrix, A,
i.e.

φ̂ = Aθ

The Gauss-Markov theorem provides a linear minimum variance unbiased estimate of φ [15]. We
derive the estimator by minimizing the error covariance, which is defined in terms of the estimate
error, e = φ̂− φ.

Ce = E(eeT )

= E
[
(φ̂− φ)(φ̂− φ)T

]
= E

[
(Aθ − φ)(θT AT − φT )

]
= E(AθθT A)− E(φθT AT )− E(AθφT ) + E(φφT )

We now introduce the autocorrelation matrices, Cφ = E(φφ), Cθφ = CT
φθ = E(θφT ), and

Cθ = E(θθT ) > 0, which gives

Ce = ACθA
T − CφθA

T −ACT
φθ + Cφ

= (A− CφθC
−1
θ )Cθ(A− CφθC

−1
θ )T − CφθC

−1
θ CT

φθ + Cφ

where we have completed the square. The error covariance is minimum then for

A = CφθC
−1
θ

which yields
Ce = Cφ − CφθC

−1
θ CT

φθ

Furthermore, the estimate is unbiased if φ = E(φ̂) = CφθC
−1
θ E(θ).

9

⇒e(x) = φ(x) − φ̂(x)

x ∈

(
R

2
× R

+
)P

,X ∈

(
R

2
× R

+
)M

Theorem provides a linear minimum variance 
unbiased estimator:



Autocorrelation Function
[Lermusiaux, 1999] 

3.2 Non-collocated measurements

Suppose the measurements, θ, are not taken at the error map grid points, (x, t). For compactness
we will denote the grid point locations by the pseudo-vector x. Let X be the measurement location
pseudo-vector. Then, in the case of additive measurement noise, v ∈ Rm, we can the write the
measurements as a function of the field φ at X.

θ(X) = φ(X) + v

Then the autocorrelations matrices can be written

Cφθ = E
[
φ(x)(φ(X) + v)T

]
= E(φ(x)φ(X)T ) + E(vvT )

and

Cθ = E
[
(φ(X) + v)(φ(X) + v)T

]
= E(φ(X)φ(X)T ) + E(φ(X)vT ) + E(vφ(X)T ) + E(vvT )

We use the shorthand Cx = E(φ(x)φ(x)T ), CxX = E(φ(x)φ(X)T ), CX = E(φ(X)φ(X)T ), and
Cv = E(vvT ). We also assume the measurement noise is uncorrelated to the field so that
E(φ(X)vT ) = E(vφ(X)T ) = 0. Thus we can write the error covariance as

Ce = Cx − CxX(CX + Cv)−1CT
xX

Note that this requires an inversion of an M×M matrix. For Cx →∞ and linear measurements,
the Gauss-Markov result is identical to the discrete measurement update step of a Kalman filter.
The error covariance can be put in the so-called information filter form which requires an inversion
of an N × N matrix [15]. The trade-off is between the number of gridpoints and the number of
measurements.

Also note that we are only interested in the diagonal of Ce(x, t) which is the error variance at
each grid point. The error map values are the square root of the error variance at the points (x, t),
i.e. the root-mean-square (rms) error.

3.3 Autocorrelation Function

The autocorrelation matrices are generated using a minimally parameterized model of statistical
structure of the process. Following [8], we normalize the error covariance by the process variance
which is the diagonal of Cx. Assuming a spatially homogeneous field, the process variance is a
constant scalar. Thus the model autocorrelation function has unit magnitude.

We use an isotropic autocorrelation function Cx,X = F (ξ, η) where ξ = ‖x−X‖ and η = |t−T |
after [14]:

F (ξ, η) =
(

1− ξ2

σ2
1

)
exp

[
−1

2

(
ξ2

σ2
o

+
η2

τ2

)]
10

Cv = EI

and uncorrelated, zero mean noise:

CxX = F (ξ, η)

ξ = ‖(x1 − X1, x2 − X2)‖, η = |x3 − X3|

Assume homogeneous, isotropic, stationary field:



Temperature Correlation vs. Distance
[Davis, 2003] 

σo σ1

1/e



Temperature Correlation vs. Time
[Davis, 2003] 

1/e

τ



σo = 20 km, σ1 = 40 km, τ = 5 days, E = 0.1



Sensitivity to Parameters

τ = 5 days τ = 2.5 days



σo = 10 km, σ1 = 20 km, τ = 2.5 days, E = 0.1



Sensitivity to Parameters II

σo = 10 km, σ1 = 20 km σo = 5 km, σ1 = 10 km



Scalar Entropy Metric

H(e) = −E(log Pr(e))

H(e) ≤
1

2
log

[
(2πe)P

tr(Ce)

P

]

I(e) + c ≥ − log

√
tr(Ce)

P

[Papoulis, 2002] 

where σo, σ1, and τ are determined by a priori statistical estimates of the process. Specifically,
σo is the 1/e spatial decorrelation scale, σ1 is the zero-crossing scale, and τ is the 1/e temporal
decorrelation scale. Note that the diagonal elements of Cx = F (0, 0) = 1 as required. Furthermore,
we specify a uniform instrument error Cv = EIM×M .

An snapshot of the error map calculated from the the AOSN-II experiment in Monterey, CA in
August 2003 is shown in Figure 8.

3.4 Numerical Considerations

We elect to use the Kalman form of the Gauss-Markov theorem which requires inverting a matrix
with dimensions determined by the number of measurements, M , rather than the information filter
form which requires inverting a matrix with dimensions determined by the number of grid points,
P . The information filter form has potential for a recursive form of this algorithm [16]. In the
meantime, several techniques were used to facilitate the numerical analysis.

First, we observe after [3] that the autocorrelation matrix, CX, is symmetric and positive definite.
To avoid scaling problems caused by nearly identical measurement locations, we can use Cholesky
decomposition to factor CX = UT U into an upper triangular matrix U which is readily inverted.
The same is true for CX + EI. Secondly, rather than calculate the exact inverse, we use the
psuedo-inverse which is calculated by Gaussian elimination.

Lastly, in order to minimize the number of measurements need to calculate the error map at
(x, t), we truncate the measurements in time. That is, in order to calculate the Ce at (x, ti), i =
1, . . . , n, we only include measurements in the set {(X, T )|ti − kτ < T < ti + kτ}. This produces a
conservative estimate of the error because removing measurements increases the error covariance.
The scale factor k = 1, 2, . . . is determined by the memory constraints of the processing computer.

3.5 Entropy Metric

In order to evaluate a measurement distribution, we will utilize entropy metrics which are a
natural extension of the objective map. One simple metric is to evaluate the trace of the error
covariance, tr(Ce(x, t)) normalized by the number of grid points, P . Note that this is equal to the
arithmetic mean of the eigenvalues, λ. We will describe the relationship between this metric and
two entropy/information quantities: the Shannon and Fisher information.

The Shannon information or entropy, H(e), of the error covariance is defined to be the expected
value of minus the log of the error probability distribution, P (e) [17]. For a multivariate normal
distribution it can be shown, see e.g. [5], that the entropy associated with the error map is

H(e) =
1
2

log
[
(2πe)P |Ce|

]
.

Since the determinant is a measure of volume, we see that the entropy is a scalar measure of the
compactness of the probability distribution [9].
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[Cover, 1991] 



AOSN-II SIO Glider 
Performance Profile



AOSN-II WHOI Glider 
Performance Profile



Overview of Research Topics

• Feedback control laws for stabilization of 
collective motion

• Quantitative metrics for evaluation/planning 
of measurement distributions

• Sensor network design for adaptive 
oceanographic sampling



Dimensionless Parameters

Ongoing Work on Mobile Sensor Networks

Derek Paley and Naomi Leonard
Dept. Mechanical and Aerospace Engineering

Princeton University

June 25, 2004

This describes objective mapping analysis [1] for a homogeneous, isotropic, and stationary pro-
cess using the autocorrelation function from [2],

F (ξ, η) =
(

1− ξ2

σ2
1

)
exp

[
−1

2

(
ξ2

σ2
o

+
η2

τ2

)]
where σo, σ1, and τ are determined by a priori statistical estimates of the process. Specifically,
σo is the 1/e spatial decorrelation length, σ1 is the zero-crossing length, and τ is the 1/e temporal
decorrelation time. In the following analysis, σ = σo and σ1 = 2σ.

1 One dimensional example

Using the sensor velocity, v, the length scale of interest, L, and the field 1/e decorrelation length,
σ, and time, τ , scales, we define the following two dimensionless parameters,

λ =
σ

L

γ =
vτ

σ
.

The parameter, γ, can be thought of as the number of length scales traveled in one time scale.

Furthermore, the following transformations apply to the length and time coordinates,

x → x

L

t → vt

L
.

1
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Dept. Mechanical and Aerospace Engineering
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This describes objective mapping analysis [1] for a homogeneous, isotropic, and stationary pro-
cess using the autocorrelation function from [2],

F (ξ, η) =
(

1− ξ2

σ2
1

)
exp

[
−1

2

(
ξ2

σ2
o

+
η2

τ2

)]
where σo, σ1, and τ are determined by a priori statistical estimates of the process. Specifically,
σo is the 1/e spatial decorrelation length, σ1 is the zero-crossing length, and τ is the 1/e temporal
decorrelation time. In the following analysis, σ = σo and σ1 = 2σ.

1 One dimensional example

Using the sensor velocity, v, the length scale of interest, L, and the field 1/e decorrelation length,
σ, and time, τ , scales, we define the following two dimensionless parameters,

λ =
σ

L

γ =
vτ

σ
.

The parameter, γ, can be thought of as the number of length scales traveled in one time scale.

Furthermore, the following transformations apply to the length and time coordinates,

x → x

L

t → vt

L
.

1

1D (space) plus time:

2D (space) and time:

L = 2a e =

√
1 −

b2

a2



γ = 1, λ > 1 γ < 1, λ > 1

γ > 1, λ < 1 γ = 1, λ < 1





Optimal Shape and Size
• Choose eccentricity that maximizes sensor 

footprint normalized area

• Choose semi-major axis that maximizes the 
sensor footprint area:

2 Two dimensional analysis

2.1 One sensor elliptical orbit

We use the same dimensionless parameters, γ and λ, as before. However, now L = 2a, where a,
is the length of the semi-major axis of an elliptical trajectory. We also have

e =

√
1− b2

a2

where b is the semi-minor axis of the ellipse. Thus, e = 0 is a circle and e = 1 is a line.

We assume the sensor is traveling at constant speed with a fixed sample interval, T . The
approximate ellipse circumference is

C ≈ π
(
3(a + b)−

√
(a + 3b)(3a + b)

)
.

Thus, we have the revisit interval of fixed point on the ellipse is R = C/v and the number of
measurements per revolution is Mo = R/T . We include measurements over the time interval,
(−R/2− kτ, R/2 + kτ), when evaluating the error map in the interval (−R/2, R/2), where k ≥ 1.

For each (γ, λ, e) coordinate in parameter space, we evaluate the normalized area of the sensor
swath, A/4a2. This sensor footprint is defined to be the minimum area of the error map bounded
by the maximum error threshold, Et, over one revolution. It was observed that the minimum area
occurs at either the points of maximum or minimum curvature of the ellipse. The advantage of
this metric over the mean error (i.e. normalized trace of the error covariance matrix) is that an
additional parameter that defines the region of interest is not required.

To find the optimal ellipse for each (γ, λ) pair at error threshold, Et, we choose the eccentricity,
eo, that corresponds to the maximum sensor footprint. Then, for each γ value, we find the optimal
λo as follows. We model the sensor footprint as a second order polynomial in λ with coefficients,
p1, p2, and p3, i.e.

A

4a2
= p1λ

2 + p2λ + p3

A

σ2
= p1 +

p2

λ
+

p3

λ2

A = σ2(p1 + p2η + p3η
2)

where we have used λ = σ/2a and introduced η = 1
λ . Differentiating A with respect to η and

setting the result equal to zero gives,
∂A

∂η
= σ2(p2 + 2p3η) = 0

λo =
1
ηo

=
−2p3

p2
.

Note in Figure 3 that λo →∞ for γ ≤ 2 which corresponds to a→ 0, i.e. a static sensor. Also,
as γ → ∞, the optimal curve appears to asymptote to about eo = .9 and λo = 0.25. In terms of
the optimal ellipse axes, this is ao = 2σ and bo = 0.87σ (for large γ).
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Optimal Shape and Size (N=1)



Phase-locked solutions (N=2)

Sync Anti-Sync
(best)

Anti-Sync
(worst)



Future Work

• Symmetry breaking feedback controls to 
stabilize collective motion with drift, e.g.

• Study utility of Fisher information matrix 
eigenstructure for non-periodic trajectories

• Consider non-homogeneous fields

• Optimal experiment design literature, e.g. 
Ucinski, 2004

ṙk = f(rk) + e
iθk


