

Numerical Algorithms as Discrete-Time Control Systems

Jens Jordan

University of Würzburg, Université de Liège

Contents:

Dynamical systems and Computation Day – p.2/23

Contents:

Introduction

Contents:

Examples

Contents:

- Introduction
- Examples
- Reachable Sets

Contents:

- Introduction
- Examples
- Reachable Sets
- Controllability

Contents:

- Introduction
- Examples
- Reachable Sets
- Controllability
- Current and Future Work

Iterative Algorithms $\Phi: \mathcal{M} \to \mathcal{M}$ iteration map

$$x_t \in \mathcal{M}, \qquad x_t \longrightarrow x_{t+1} \in \mathcal{M}$$

Iterative Algorithms $\Phi: \mathcal{M} \to \mathcal{M}$ iteration map

$$x_t \in \mathcal{M}, \qquad x_t \longrightarrow x_{t+1} \in \mathcal{M}$$

Shifted Iterative Algorithms

 $\Phi:\mathcal{M}\times\mathcal{U}\to\mathcal{M}$ iteration map, $\mathcal U$ set of shift parameters

$$x_t \in \mathcal{M}, u_t \in \mathcal{U} \qquad (x_t, u_t) \longrightarrow x_{t+1} \in \mathcal{M}$$

Iterative Algorithms $\Phi: \mathcal{M} \to \mathcal{M}$ iteration map

$$x_t \in \mathcal{M}, \qquad x_t \longrightarrow x_{t+1} \in \mathcal{M}$$

Shifted Iterative Algorithms

 $\Phi:\mathcal{M}\times\mathcal{U}\to\mathcal{M}$ iteration map, $\mathcal U$ set of shift parameters

$$x_t \in \mathcal{M}, u_t \in \mathcal{U} \qquad (x_t, u_t) \longrightarrow x_{t+1} \in \mathcal{M}$$

Example: Shifted Inverse Iteration on \mathbb{S}^{n-1} . $A \in \mathbb{R}^{n \times n}$, $\mathcal{M} = \mathbb{S}^{n-1}$, $\mathcal{U} = \mathbb{R} \setminus \sigma(A)$. Iteration Step

$$\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}, \qquad \Phi(x, u) = \frac{(A - uI)^{-1}x}{\|(A - uI)^{-1}x\|}$$

Iterative Algorithms $\Phi: \mathcal{M} \to \mathcal{M}$ iteration map

$$x_t \in \mathcal{M}, \qquad x_t \longrightarrow x_{t+1} \in \mathcal{M}$$

Shifted Iterative Algorithms

 $\Phi:\mathcal{M}\times\mathcal{U}\to\mathcal{M}$ iteration map, $\mathcal U$ set of shift parameters

$$x_t \in \mathcal{M}, u_t \in \mathcal{U} \qquad (x_t, u_t) \longrightarrow x_{t+1} \in \mathcal{M}$$

Observation: $(\mathcal{M}, \mathcal{U}, \Phi)$ describes a discrete-time control System:

$$\begin{array}{rccc} x_0 & \in & \mathcal{M} \\ x_{t+1} & = & \Phi(x_t, u_t) \end{array}$$

Motivation:

Dynamical systems and Computation Day – p.4/23

Motivation:

Control theoretical description of numerical algorithms

- Control theoretical description of numerical algorithms
- Better understanding of algorithms

- Control theoretical description of numerical algorithms
- Better understanding of algorithms
- Optimization of shift strategies using control theoretical tools

- Control theoretical description of numerical algorithms
- Better understanding of algorithms
- Optimization of shift strategies using control theoretical tools
- Justify existing shift strategies

- Control theoretical description of numerical algorithms
- Better understanding of algorithms
- Optimization of shift strategies using control theoretical tools
- Justify existing shift strategies
- Creation of new algorithms

Examples

Example I: Shifted Inverse Iteration on Projective Spaces

- $A \in \mathbb{F}^{n \times n}$
- $\mathcal{M} = \mathbb{FP}^{n-1} = \{ \text{Set of one dimensional subspaces of } \mathbb{F}^n \}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(\mathcal{X}, u) = (A - uI)^{-1}\mathcal{X}$$

Example I: Shifted Inverse Iteration on Projective Spaces

- $A \in \mathbb{F}^{n \times n}$
- $\mathcal{M} = \mathbb{FP}^{n-1} = \{ \text{Set of one dimensional subspaces of } \mathbb{F}^n \}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(\mathcal{X}, u) = (A - uI)^{-1}\mathcal{X}$$

Questions and remarks:

- Can we find feedback controls to reach eigenvectors by arbitrary initial points?
- Can we find feedback controls to reach specific eigenvectors by arbitrary initial points?

Example II: Shifted Inverse Iteration on Grassmann Manifolds

- $A \in \mathbb{R}^{n \times n}$
- $\mathcal{M} = Grass(p, n) = \{ Set of p-dimensional subspaces of \mathbb{R}^n \}$
- \mathcal{U} set of feedback maps $F: \mathrm{ST}(p, n) \to \mathbb{R}^{p \times p}$

 $\mathcal{U} = \{ \forall X \in \mathrm{ST}(p, n), \forall M \in \mathrm{GL}_p(\mathbb{R}) : F(XM) = M^{-1}F(X)M \}$

•
$$\Phi: \mathcal{M} imes \mathcal{U}
ightarrow \mathcal{M}$$
 defined by procedure

1) Choose $X \in ST(p, n)$ such that $\langle X \rangle = \mathcal{X}$ 2) Solve $AX^+ - X^+F(X) = X$ 3) $\Phi(\mathcal{X}, F) := \mathcal{X}^+ := \langle X^+ \rangle$

Example II: Shifted Inverse Iteration on Grassmann Manifolds

Questions and remarks

- The choice F = R with $R(X) = (X^T X)^{-1} X^T A X$ leads to Grassmann Rayleigh Quotient Iteration (Absil, Mahony, Sepulchre, Van Dooren, 2002).
- Does the Grassmann Rayleigh Quotient Iteration has global convergence properties?
- Can we find feedback laws for global convergence?
- Can we find feedback laws for global convergence to a specific eigenspace?

Examples

Example III: Shifted Inverse Iteration on Flag Manifolds

- $A \in \mathbb{F}^{n \times n}$
- $\mathcal{M} = \operatorname{Flag}(\mathbb{F}^n) = \{ \mathcal{V} = (V_1, \dots, V_n) \mid V_i \subseteq V_{i+1}, \dim_{\mathbb{F}} V_i = i \}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(\mathcal{V}, u) = \left((A - uI)^{-1} V_1, \dots, (A - uI)^{-1} V_n \right)$$

Example III: Shifted Inverse Iteration on Flag Manifolds

- $A \in \mathbb{F}^{n \times n}$
- $\mathcal{M} = \operatorname{Flag}(\mathbb{F}^n) = \{ \mathcal{V} = (V_1, \dots, V_n) \mid V_i \subseteq V_{i+1}, \dim_{\mathbb{F}} V_i = i \}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(\mathcal{V}, u) = \left((A - uI)^{-1} V_1, \dots, (A - uI)^{-1} V_n \right)$$

Questions and Remarks

- Algorithm is closely related to the QR algorithm (on isospectral manifolds).
- Can we steer to arbitrary eigenflags?

Example IV: Shifted QR Algorithm on Isospectral Manifolds

- $A \in \mathbb{C}^{n \times n}$
- $\mathcal{M} = \{ Q^* A Q \, | \, Q \in \mathrm{U}_n(\mathbb{C}) \}$
- $\mathcal{U} = \mathbb{C} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(X,u) = (X - uI)^*_{\mathcal{U}_n(\mathbb{C})}(X - uI)(X - uI)_{\mathcal{U}_n(\mathbb{C})}$$

where $(X - uI)_{U_n(\mathbb{C})}$ is the unitary factor of the QR decomposition of (X - uI).

Example V: Shifted Inverse Iteration on Hessenberg Manifolds

- $A \in \mathbb{F}^{n \times n}$ regular
- $\mathcal{M} = \operatorname{Hess}_A(\mathbb{F}^n) = \{ \mathcal{V} = (V_1, \dots, V_n) \in \operatorname{Flag}(\mathbb{F}^n) | AV_i \subseteq V_{i+1} \}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(\mathcal{V}, u) = \left((A - uI)^{-1} V_1, \dots, (A - uI)^{-1} V_n \right)$$

Example V: Shifted Inverse Iteration on Hessenberg Manifolds

- $A \in \mathbb{F}^{n \times n}$ regular
- $\mathcal{M} = \operatorname{Hess}_A(\mathbb{F}^n) = \{ \mathcal{V} = (V_1, \dots, V_n) \in \operatorname{Flag}(\mathbb{F}^n) | AV_i \subseteq V_{i+1} \}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(\mathcal{V}, u) = \left((A - uI)^{-1} V_1, \dots, (A - uI)^{-1} V_n \right)$$

Questions and Remarks

- Algorithm is closely related to the QR algorithm on Hessenberg Matrices.
- Can we steer to arbitrary Hessenberg eigenflags?

Examples

Example VI: Restart-Shifts of Krylov Methods

•
$$\mathcal{M} = \operatorname{Grass}(p, n)$$

$$\bullet \ \mathcal{U} = \mathbb{R}^k[t]$$

•
$$x_0 \in \mathbb{R}^n \setminus \{0\}, \ K(x_0) = \langle x_0, Ax_0, \dots, A^{p-1}x_0 \rangle \in \mathcal{M}$$

•
$$\Phi: \mathcal{M} imes \mathcal{U}
ightarrow \mathcal{M}$$
 defined by

$$\Phi(K(x),u) = u(A)K(x) = K(u(A)x)$$

Example VI: Restart-Shifts of Krylov Methods

•
$$\mathcal{M} = \operatorname{Grass}(p, n)$$

• $\mathcal{U} = \mathbb{R}^k[t]$

- $x_0 \in \mathbb{R}^n \setminus \{0\}, \ K(x_0) = \langle x_0, Ax_0, \dots, A^{p-1}x_0 \rangle \in \mathcal{M}$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by

$$\Phi(K(x), u) = u(A)K(x) = K(u(A)x)$$

Questions and Remarks

 Find shifts to approximate specific eigenspaces (Beattie, Embree, Sorensen, Rossi).

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$; x_0 . **Definition:** Reachable set of $x_0 \in \mathcal{M}$

 $R(x_0) := \{x \text{ wich can be reached from } x_0 \text{ in finite many steps}\}$

Reachable Sets

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$; x_0 . **Definition:** Reachable set of $x_0 \in \mathcal{M}$

 $R(x_0) := \{x \text{ wich can be reached from } x_0 \text{ in finite many steps}\}$

Definition: $k \in \mathbb{N}$, $\Phi_k : \mathcal{M} \times \mathcal{U}^k \to \mathcal{M}$

$$\Phi_1(x,u) = \Phi(x,u)$$

$$\Phi_k(x,u_1,\ldots,u_k) = \Phi(\Phi(x,u_1,\ldots,u_{k-1}),u_k)$$

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$; x_0 . **Definition:** Reachable set of $x_0 \in \mathcal{M}$

 $R(x_0) := \{x \text{ wich can be reached from } x_0 \text{ in finite many steps}\}$

Definition: $k \in \mathbb{N}$, $\Phi_k : \mathcal{M} \times \mathcal{U}^k \to \mathcal{M}$

$$\Phi_1(x, u) = \Phi(x, u)$$

$$\Phi_k(x, u_1, \dots, u_k) = \Phi(\Phi(x, u_1, \dots, u_{k-1}), u_k)$$

Proposition:

$$R(x_0) := \{ x \in \mathcal{M} \mid \exists N \in \mathbb{N}, \exists u \in \mathcal{U}^N : x = \Phi_N(x_0, u) \}$$

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi).$

Definition: Reachable set of $x_0 \in \mathcal{M}$

 $R(x_0) := \{x \text{ wich can be reached from } x_0 \text{ in finite many steps}\}$

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$. **Definition:** Reachable set of $x_0 \in \mathcal{M}$

 $R(x_0) := \{x \text{ wich can be reached from } x_0 \text{ in finite many steps}\}$

Definition: System Semigroup

$$\Gamma_{\Sigma} := \{ \Phi : \mathcal{M} \to \mathcal{M} \, | \, \exists N \in \mathbb{N}, \exists u \in \mathcal{U}^N : \Phi = \Phi_N(\cdot, u) \}$$

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$. **Definition:** Reachable set of $x_0 \in \mathcal{M}$

 $R(x_0) := \{x \text{ wich can be reached from } x_0 \text{ in finite many steps}\}$

Definition: System Semigroup

$$\Gamma_{\Sigma} := \{ \Phi : \mathcal{M} \to \mathcal{M} \, | \, \exists N \in \mathbb{N}, \exists u \in \mathcal{U}^N : \Phi = \Phi_N(\cdot, u) \}$$

Proposition: The reachable set of $x_0 \in \mathcal{M}$ is always an orbit of the semigroup action $\alpha : \Gamma_{\Sigma} \times \mathcal{M} \to \mathcal{M}$, $\alpha(\Phi, x) = \Phi(x)$. I.e

$$R(x_0) = \alpha(\Gamma_{\Sigma}, x_0)$$

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$. **Definition:** Reachable set of $x_0 \in \mathcal{M}$

 $R(x_0) := \{x \text{ wich can be reached from } x_0 \text{ in finite many steps}\}$

Definition: System Semigroup

$$\Gamma_{\Sigma} := \{ \Phi : \mathcal{M} \to \mathcal{M} \, | \, \exists N \in \mathbb{N}, \exists u \in \mathcal{U}^N : \Phi = \Phi_N(\cdot, u) \}$$

Proposition: The reachable set of $x_0 \in \mathcal{M}$ is always an orbit of the semigroup action $\alpha : \Gamma_{\Sigma} \times \mathcal{M} \to \mathcal{M}$, $\alpha(\Phi, x) = \Phi(x)$. I.e

$$R(x_0) = \alpha(\Gamma_{\Sigma}, x_0)$$

Corollary: If Γ_{Σ} is a group the reachable sets form a partition on \mathcal{M} .

Example I, III and IV (Scalar Shifted Inverse Iteration)

• $A \in \mathbb{F}^{n \times n}$ regular, $\mathcal{M} = \mathbb{FP}^{n-1}$, $\operatorname{Flag}(\mathbb{F}^n)$, $\operatorname{Hess}_A(\mathbb{F}^n)$, $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$

• $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A - uI)^{-1} \cdot x$

Example I, III and IV (Scalar Shifted Inverse Iteration)

• $A \in \mathbb{F}^{n \times n}$ regular, $\mathcal{M} = \mathbb{FP}^{n-1}$, $\operatorname{Flag}(\mathbb{F}^n)$, $\operatorname{Hess}_A(\mathbb{F}^n)$, $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$

• $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A - uI)^{-1} \cdot x$

Proposition: For all Scalar Shifted Inverse Iterations

$$\Gamma_{\Sigma} := \{ \prod_{t=1}^{N} (A - u_t I)^{-1} \, | \, N \in \mathbb{N}, u_t \in \mathbb{F} \setminus \sigma(A) \}$$

Example I, III and IV (Scalar Shifted Inverse Iteration)

• $A \in \mathbb{F}^{n \times n}$ regular, $\mathcal{M} = \mathbb{FP}^{n-1}$, $\operatorname{Flag}(\mathbb{F}^n)$, $\operatorname{Hess}_A(\mathbb{F}^n)$, $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$

• $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A - uI)^{-1} \cdot x$

Proposition: For all Scalar Shifted Inverse Iterations

$$\Gamma_{\Sigma} := \{\prod_{t=1}^{N} (A - u_t I)^{-1} \mid N \in \mathbb{N}, u_t \in \mathbb{F} \setminus \sigma(A)\}$$

Theorem: (Helmke, J 2002) For $\mathbb{F} = \mathbb{C}$, Γ_{Σ} is a Group. If A is diagonalizable then Γ_{Σ} is homeomorphic to $(\mathbb{C}^*)^k$ whereas k is the number of different eigenvalues of A.

Example I, III and IV (Scalar Shifted Inverse Iteration)

• $A \in \mathbb{F}^{n \times n}$ regular, $\mathcal{M} = \mathbb{FP}^{n-1}$, $\operatorname{Flag}(\mathbb{F}^n)$, $\operatorname{Hess}_A(\mathbb{F}^n)$, $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$

• $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A - uI)^{-1} \cdot x$

Proposition: For all Scalar Shifted Inverse Iterations

$$\Gamma_{\Sigma} := \{\prod_{t=1}^{N} (A - u_t I)^{-1} \mid N \in \mathbb{N}, u_t \in \mathbb{F} \setminus \sigma(A)\}$$

Theorem: (Helmke, J 2002) For $\mathbb{F} = \mathbb{C}$, Γ_{Σ} is a Group. If A is diagonalizable then Γ_{Σ} is homeomorphic to $(\mathbb{C}^*)^k$ whereas k is the number of different eigenvalues of A. **Theorem:** (J 2003) For $\mathbb{F} = \mathbb{R}$ there exists an open set of Matrices

 $\mathcal{S} \subset \mathbb{R}^{n \times n}$ such that Γ_{Σ} is not a Group.

Example I, Shifted Inverse Iteration on \mathbb{CP}^{n-1}

- $A \in \mathbb{C}^{n \times n}$, cyclic (i.e. it exists $v \in \mathbb{C}^n$ such that $\langle x, Ax, A^2x, \dots A^{n-1}x \rangle = \mathbb{C}^n$).
- $\mathcal{M} = \mathbb{CP}^{n-1}$
- $\mathcal{U} = \mathbb{C} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Example I, Shifted Inverse Iteration on \mathbb{CP}^{n-1}

- $A \in \mathbb{C}^{n \times n}$, cyclic (i.e. it exists $v \in \mathbb{C}^n$ such that $\langle x, Ax, A^2x, \dots A^{n-1}x \rangle = \mathbb{C}^n$).
- $\mathcal{M} = \mathbb{CP}^{n-1}$
- $\mathcal{U} = \mathbb{C} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Theorem: (Helmke, Fuhrmann 2000) Let $\mathbb{F} = \mathbb{C}$ and A be cyclic. There is a bijective correspondence between the closures of the reachable sets $\overline{R(x)}$ and the A-invariant subspaces of \mathbb{C}^n .

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$.

Definition: System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$ is said to be controllable if there exist $x_0 \in \mathcal{M}$ such that every point in \mathcal{M} can be reached from x_0 at least arbitrarily close. (I.e.

$$\exists x_0 \in \mathcal{M} : \quad \overline{R(x_0)} = \mathcal{M}$$

System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$.

Definition: System $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$ is said to be controllable if there exist $x_0 \in \mathcal{M}$ such that every point in \mathcal{M} can be reached from x_0 at least arbitrarily close. (I.e.

$$\exists x_0 \in \mathcal{M} : \quad \overline{R(x_0)} = \mathcal{M}$$

Remark: If $\Sigma = (\mathcal{M}, \mathcal{U}, \Phi)$ is controllable and Γ_{Σ} is a group, then every neighbourhood can be reached from every neighbourhood.

Example I, Shifted Inverse Iteration on \mathbb{FP}^{n-1}

•
$$\mathcal{M} = \mathbb{FP}^{n-1}$$

- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Example I, Shifted Inverse Iteration on \mathbb{FP}^{n-1}

- $A \in \mathbb{F}^{n \times n}$
- $\mathcal{M} = \mathbb{FP}^{n-1}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Theorem:(Helmke, Fuhrmann 2000)

Let $\mathbb{F} = \mathbb{C}$. Shifted Inverse Iteration on \mathbb{CP}^{n-1} is controllable if and only if A is cyclic (i.e.: it exists $v \in \mathbb{C}^n$ such that $\langle x, Ax, A^2x, \dots A^{n-1}x \rangle = \mathbb{C}^n$).

Example I, Shifted Inverse Iteration on \mathbb{FP}^{n-1}

- $A \in \mathbb{F}^{n \times n}$
- $\mathcal{M} = \mathbb{FP}^{n-1}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Theorem:(Helmke, Fuhrmann 2000)

Let $\mathbb{F} = \mathbb{C}$. Shifted Inverse Iteration on \mathbb{CP}^{n-1} is controllable if and only if A is cyclic (i.e.: it exists $v \in \mathbb{C}^n$ such that $\langle x, Ax, A^2x, \dots A^{n-1}x \rangle = \mathbb{C}^n$). **Corollary:** For $\mathbb{F} = \mathbb{C}$, A cyclic. One can steer nearly every initial point to every specific target point.

Example I, Shifted Inverse Iteration on \mathbb{FP}^{n-1}

- $A \in \mathbb{F}^{n \times n}$
- $\mathcal{M} = \mathbb{FP}^{n-1}$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Theorem:(Helmke, Fuhrmann 2000)

Let $\mathbb{F} = \mathbb{C}$. Shifted Inverse Iteration on \mathbb{CP}^{n-1} is controllable if and only if A is cyclic (i.e.: it exists $v \in \mathbb{C}^n$ such that $\langle x, Ax, A^2x, \dots A^{n-1}x \rangle = \mathbb{C}^n$). **Corollary:** For $\mathbb{F} = \mathbb{C}$, A cyclic. One can steer nearly every initial point to every specific target point.

Corollary: For $\mathbb{F} = \mathbb{C}$ controllability is a generic property of the Shifted Inverse Iteration. I.e.: It holds true for an open and dense set of matrices

Example I, Shifted Inverse Iteration on \mathbb{FP}^{n-1}

•
$$\mathcal{M} = \mathbb{FP}^{n-1}$$

- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Example I, Shifted Inverse Iteration on \mathbb{FP}^{n-1}

•
$$\mathcal{M} = \mathbb{FP}^{n-1}$$

- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Remark:

Let $\mathbb{F} = \mathbb{R}$. If A is not cyclic, the Shifted Inverse Iteration on \mathbb{RP}^{n-1} is not controllable. There exist cyclic matrices such that Shifted Inverse Iteration on \mathbb{RP}^{n-1} is not controllable.

Example I, Shifted Inverse Iteration on \mathbb{FP}^{n-1}

•
$$\mathcal{M} = \mathbb{FP}^{n-1}$$

- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(x, u) = (A uI)^{-1} \cdot x$

Remark:

Let $\mathbb{F} = \mathbb{R}$. If A is not cyclic, the Shifted Inverse Iteration on \mathbb{RP}^{n-1} is not controllable. There exist cyclic matrices such that Shifted Inverse Iteration on \mathbb{RP}^{n-1} is not controllable.

Remark:

For $\mathbb{F} = \mathbb{R}$ it is unknown if controllability is a generic property of the Shifted Inverse Iteration.

Controllability

Example I_2^1 , Polynomial-Shift Inverse Iteration on \mathbb{FP}^{n-1}

$$igle \ A\in \mathbb{F}^{n imes n}$$
, $\mathcal{M}=\mathbb{F}\mathbb{P}^{n-1}$

•
$$p_{\alpha}(u) = A - uI$$
, $p_{\beta}(v, w) = A^2 + vA + wI$

•
$$\mathcal{U} := \{ u \in \mathbb{F}, (v, w) \in \mathbb{F}^2 \mid p_\alpha(u), p_\beta(v, w) \in \mathrm{GL}_n(\mathbb{F}) \}$$

•
$$\Phi(x,u) = p_{\pi(t)}^{-1}(u)x, \ \pi(t) \in \{\alpha,\beta\}$$

Example $I_{\frac{1}{2}}$, Polynomial-Shift Inverse Iteration on \mathbb{FP}^{n-1}

$$igle A\in \mathbb{F}^{n imes n}$$
, $\mathcal{M}=\mathbb{F}\mathbb{P}^{n-1}$

•
$$p_{\alpha}(u) = A - uI$$
, $p_{\beta}(v, w) = A^2 + vA + wI$

•
$$\mathcal{U} := \{ u \in \mathbb{F}, (v, w) \in \mathbb{F}^2 \mid p_\alpha(u), p_\beta(v, w) \in \mathrm{GL}_n(\mathbb{F}) \}$$

•
$$\Phi(x,u) = p_{\pi(t)}^{-1}(u)x, \ \pi(t) \in \{\alpha,\beta\}$$

Theorem:(J 2003)

Let $\mathbb{F} = \mathbb{R}, \mathbb{C}$. Polynomial-Shift Inverse Iteration on \mathbb{FP}^{n-1} is controllable if and only if A is cyclic.

Example $I_{\frac{1}{2}}$, Polynomial-Shift Inverse Iteration on \mathbb{FP}^{n-1}

•
$$A \in \mathbb{F}^{n imes n}$$
, $\mathcal{M} = \mathbb{F}\mathbb{P}^{n-1}$

•
$$p_{\alpha}(u) = A - uI$$
, $p_{\beta}(v, w) = A^2 + vA + wI$

•
$$\mathcal{U} := \{ u \in \mathbb{F}, (v, w) \in \mathbb{F}^2 \mid p_\alpha(u), p_\beta(v, w) \in \mathrm{GL}_n(\mathbb{F}) \}$$

•
$$\Phi(x,u) = p_{\pi(t)}^{-1}(u)x, \ \pi(t) \in \{\alpha,\beta\}$$

Theorem:(J 2003)

Let $\mathbb{F} = \mathbb{R}, \mathbb{C}$. Polynomial-Shift Inverse Iteration on \mathbb{FP}^{n-1} is controllable if and only if A is cyclic.

Corollary: Controllability is a generic property of the Polynomial-Shift Inverse Iteration.

Controllability

Example III, Shifted Inverse Iteration on $\operatorname{Flag}(\mathbb{C}^n)$)

- $A \in \mathbb{C}^{n \times n}$
- $\mathcal{M} = \operatorname{Flag}(\mathbb{C}^n)$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(\mathcal{V}, u) = (A uI)^{-1} \cdot \mathcal{V}$

Example III, Shifted Inverse Iteration on $\operatorname{Flag}(\mathbb{C}^n)$)

- $A \in \mathbb{C}^{n \times n}$
- $\mathcal{M} = \operatorname{Flag}(\mathbb{C}^n)$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\bullet \ \Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M} \text{ defined by } \Phi(\mathcal{V}, u) = (A uI)^{-1} \cdot \mathcal{V}$

Remark:

Let n > 2. The Shifted Inverse Iteration on $Flag(\mathbb{C}^n)$ is not controllable.

Example III, Shifted Inverse Iteration on $Flag(\mathbb{C}^n)$)

- $A \in \mathbb{C}^{n \times n}$
- $\mathcal{M} = \operatorname{Flag}(\mathbb{C}^n)$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(\mathcal{V}, u) = (A uI)^{-1} \cdot \mathcal{V}$

Remark:

Let n > 2. The Shifted Inverse Iteration on $Flag(\mathbb{C}^n)$ is not controllable.

Corollary: Let n > 2. The Shifted Inverse Iteration on the isospectral manifold $M_A = \{Q^*AQ \mid Q \in U_n(\mathbb{C})\}$ is not controllable.

Controllability

Example III, Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{F}^n)$)

- $A \in \mathbb{F}^{n \times n}$ regular
- $\mathcal{M} = \operatorname{Hess}_A(\mathbb{F}^n)$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(\mathcal{V}, u) = (A uI)^{-1} \cdot \mathcal{V}$

Example III, Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{F}^n)$)

- $A \in \mathbb{F}^{n \times n}$ regular
- $\mathcal{M} = \operatorname{Hess}_A(\mathbb{F}^n)$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(\mathcal{V}, u) = (A uI)^{-1} \cdot \mathcal{V}$

Theorem:(Helmke, J 2002)

Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{F}^n)$ is controllable (for A) if and only if Shifted Invesre Iteration on \mathbb{FP}^{n-1} is controllable (for A).

Example III, Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{F}^n)$)

- $A \in \mathbb{F}^{n \times n}$ regular
- $\mathcal{M} = \operatorname{Hess}_A(\mathbb{F}^n)$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(\mathcal{V}, u) = (A uI)^{-1} \cdot \mathcal{V}$

Theorem:(Helmke, J 2002)

Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{F}^n)$ is controllable (for A) if and only if Shifted Invesre Iteration on \mathbb{FP}^{n-1} is controllable (for A).

Corollary: Let $\mathbb{F} = \mathbb{C}$. Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{C}^n)$ is controllable if and only if A is cyclic.

Example III, Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{F}^n)$)

- $A \in \mathbb{F}^{n \times n}$ regular
- $\mathcal{M} = \operatorname{Hess}_A(\mathbb{F}^n)$
- $\mathcal{U} = \mathbb{F} \setminus \sigma(A)$
- $\Phi: \mathcal{M} \times \mathcal{U} \to \mathcal{M}$ defined by $\Phi(\mathcal{V}, u) = (A uI)^{-1} \cdot \mathcal{V}$

Theorem:(Helmke, J 2002)

Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{F}^n)$ is controllable (for A) if and only if Shifted Invesre Iteration on \mathbb{FP}^{n-1} is controllable (for A).

Corollary: Let $\mathbb{F} = \mathbb{C}$. Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{C}^n)$ is controllable if and only if A is cyclic.

Corollary: Let $\mathbb{F} = \mathbb{C}$. Controllability is a generic property of the Shifted Inverse Iteration on $\operatorname{Hess}_A(\mathbb{C}^n)$.

• Is shifted Inverse Iteration on \mathbb{RP}^{n-1} resp. $\operatorname{Hess}_A(\mathbb{R}^n)$ generic?

- Is shifted Inverse Iteration on \mathbb{RP}^{n-1} resp. $\operatorname{Hess}_A(\mathbb{R}^n)$ generic?
- Characterizations of system semigroups

- Is shifted Inverse Iteration on \mathbb{RP}^{n-1} resp. $\text{Hess}_A(\mathbb{R}^n)$ generic?
- Characterizations of system semigroups
- Criteria for controllability

- Is shifted Inverse Iteration on \mathbb{RP}^{n-1} resp. $\text{Hess}_A(\mathbb{R}^n)$ generic?
- Characterizations of system semigroups
- Criteria for controllability
- Adherence structure of reachable sets

- Is shifted Inverse Iteration on \mathbb{RP}^{n-1} resp. $\text{Hess}_A(\mathbb{R}^n)$ generic?
- Characterizations of system semigroups
- Criteria for controllability
- Adherence structure of reachable sets
- Constructive controllability

Thank you for your attention

http://www.mathematik.uni-wuerzburg.de/RM2

Dynamical systems and Computation Day – p.23/23