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Introduction

Iterative Algorithms
Φ : M → M iteration map

xt ∈ M, xt −→ xt+1 ∈ M

Shifted Iterative Algorithms
Φ : M×U → M iteration map, U set of shift parameters

xt ∈ M, ut ∈ U (xt, ut) −→ xt+1 ∈ M
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Iterative Algorithms
Φ : M → M iteration map

xt ∈ M, xt −→ xt+1 ∈ M

Shifted Iterative Algorithms
Φ : M×U → M iteration map, U set of shift parameters

xt ∈ M, ut ∈ U (xt, ut) −→ xt+1 ∈ M

Example: Shifted Inverse Iteration on S
n−1.

A ∈ R
n×n, M = S

n−1, U = R \ σ(A).

Iteration Step

Φ : M×U → M, Φ(x, u) =
(A − uI)−1x

‖(A − uI)−1x‖
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Introduction

Iterative Algorithms
Φ : M → M iteration map

xt ∈ M, xt −→ xt+1 ∈ M

Shifted Iterative Algorithms
Φ : M×U → M iteration map, U set of shift parameters

xt ∈ M, ut ∈ U (xt, ut) −→ xt+1 ∈ M

Observation: (M,U , Φ) describes a discrete-time control System:

x0 ∈ M

xt+1 = Φ(xt, ut)
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Introduction

Motivation:

Control theoretical description of numerical algorithms

Better understanding of algorithms

Optimization of shift strategies using control theoretical tools

Justify existing shift strategies

Creation of new algorithms
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Examples

Example I: Shifted Inverse Iteration on Projective Spaces

A ∈ F
n×n

M = FP
n−1 = {Set of one dimensional subspaces of F

n}

U = F \ σ(A)

Φ : M×U → M defined by

Φ(X , u) = (A − uI)−1X

Questions and remarks:

Can we find feedback controls to reach eigenvectors by arbitrary

initial points?

Can we find feedback controls to reach specific eigenvectors by

arbitrary initial points?
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Examples

Example II: Shifted Inverse Iteration on Grassmann Manifolds

A ∈ R
n×n

M = Grass(p, n) = {Set of p-dimensional subspaces of R
n}

U set of feedback maps F : ST(p, n) → R
p×p

U = {∀X ∈ ST(p, n), ∀M ∈ GLp(R) : F (XM) = M−1F (X)M}

Φ : M×U → M defined by procedure

1) Choose X ∈ ST(p, n) such that 〈X〉 = X

2) Solve AX+ − X+F (X) = X

3) Φ(X , F ) := X+ := 〈X+〉
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Examples

Example II: Shifted Inverse Iteration on Grassmann Manifolds

Questions and remarks

The choice F = R with R(X) = (XT X)−1XT AX leads to

Grassmann Rayleigh Quotient Iteration (Absil, Mahony, Sepulchre,

Van Dooren, 2002).

Does the Grassmann Rayleigh Quotient Iteration has global

convergence properties?

Can we find feedback laws for global convergence?

Can we find feedback laws for global convergence to a specific

eigenspace?
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Examples

Example III: Shifted Inverse Iteration on Flag Manifolds

A ∈ F
n×n

M = Flag(Fn) = {V = (V1, . . . , Vn) |Vi ⊆ Vi+1, dimF Vi = i}

U = F \ σ(A)

Φ : M×U → M defined by

Φ(V, u) =
(

(A − uI)−1V1, . . . , (A − uI)−1Vn

)

Questions and Remarks

Algorithm is closely related to the QR algorithm (on isospectral

manifolds).

Can we steer to arbitrary eigenflags?
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Examples

Example IV: Shifted QR Algorithm on Isospectral Manifolds

A ∈ C
n×n

M = {Q∗AQ |Q ∈ Un(C)}

U = C \ σ(A)

Φ : M×U → M defined by

Φ(X, u) = (X − uI)∗Un(C)(X − uI)(X − uI)Un(C)

where (X − uI)Un(C) is the unitary factor of the QR decomposition

of (X − uI).
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Examples

Example V: Shifted Inverse Iteration on Hessenberg Manifolds

A ∈ F
n×n regular

M = HessA(Fn) = {V = (V1, . . . , Vn) ∈ Flag(Fn) |AVi ⊆ Vi+1}

U = F \ σ(A)

Φ : M×U → M defined by

Φ(V, u) =
(

(A − uI)−1V1, . . . , (A − uI)−1Vn

)

Questions and Remarks

Algorithm is closely related to the QR algorithm on Hessenberg

Matrices.

Can we steer to arbitrary Hessenberg eigenflags?
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Examples

Example VI: Restart-Shifts of Krylov Methods

M = Grass(p, n)

U = R
k[t]

x0 ∈ R
n \ {0}, K(x0) = 〈x0, Ax0, . . . , A

p−1x0〉 ∈ M

Φ : M×U → M defined by

Φ(K(x), u) = u(A)K(x) = K(u(A)x)

Questions and Remarks

Find shifts to approximate specific eigenspaces (Beattie, Embree,

Sorensen, Rossi).
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Reachable Sets

System Σ = (M,U , Φ); x0.

Definition: Reachable set of x0 ∈ M

R(x0) := {x wich can be reached from x0 in finite many steps}

Definition: k ∈ N, Φk : M×Uk → M

Φ1(x, u) = Φ(x, u)

Φk(x, u1, . . . , uk) = Φ(Φ(x, u1, . . . , uk−1), uk)

Proposition:

R(x0) := {x ∈ M|∃N ∈ N, ∃u ∈ UN : x = ΦN (x0, u)}
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Reachable Sets

System Σ = (M,U , Φ).

Definition: Reachable set of x0 ∈ M

R(x0) := {x wich can be reached from x0 in finite many steps}

Definition: System Semigroup

ΓΣ := {Φ : M → M|∃N ∈ N, ∃u ∈ UN : Φ = ΦN (·, u)}

Proposition: The reachable set of x0 ∈ M is always an orbit of the

semigroup action α : ΓΣ ×M → M, α(Φ, x) = Φ(x). I.e

R(x0) = α(ΓΣ, x0)

Corollary: If ΓΣ is a group the reachable sets form a partition on M.
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Reachable Sets

Example I, III and IV (Scalar Shifted Inverse Iteration)

A ∈ F
n×n regular, M = FP

n−1, Flag(Fn), HessA(Fn),

U = F \ σ(A)

Φ : M×U → M defined by Φ(x, u) = (A − uI)−1 · x

Proposition: For all Scalar Shifted Inverse Iterations

ΓΣ := {

N
∏

t=1

(A − utI)−1 |N ∈ N, ut ∈ F \ σ(A)}

Theorem: (Helmke, J 2002) For F = C, ΓΣ is a Group. If A is

diagonalizable then ΓΣ is homeomorphic to (C∗)k whereas k is the

number of different eigenvalues of A.

Theorem: (J 2003) For F = R there exists an open set of Matrices

S ⊂ R
n×n such that ΓΣ is not a Group.
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Reachable Sets

Example I, Shifted Inverse Iteration on CP
n−1

A ∈ C
n×n, cyclic (i.e: it exists v ∈ C

n such that

〈x, Ax, A2x, . . . An−1x〉 = C
n).

M = CP
n−1

U = C \ σ(A)

Φ : M×U → M defined by Φ(x, u) = (A − uI)−1 · x

Theorem: (Helmke, Fuhrmann 2000) Let F = C and A be cyclic. There is

a bijective correspondence between the closures of the reachable sets R(x)

and the A-invariant subspaces of C
n.
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Controllability

System Σ = (M,U , Φ).

Definition: System Σ = (M,U , Φ) is said to be controllable if there exist

x0 ∈ M such that every point in M can be reached from x0 at least

arbitrarily close. (I.e.

∃x0 ∈ M : R(x0) = M

Remark: If Σ = (M,U , Φ) is controllable and ΓΣ is a group, then every

neighbourhood can be reached from every neighbourhood.
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Controllability

Example I, Shifted Inverse Iteration on FP
n−1

A ∈ F
n×n

M = FP
n−1

U = F \ σ(A)

Φ : M×U → M defined by Φ(x, u) = (A − uI)−1 · x

Theorem:(Helmke, Fuhrmann 2000)

Let F = C. Shifted Inverse Iteration on CP
n−1 is controllable if and only if

A is cyclic (i.e.: it exists v ∈ C
n such that 〈x, Ax, A2x, . . . An−1x〉 = C

n).

Corollary: For F = C, A cyclic. One can steer nearly every initial point to

every specific target point.

Corollary: For F = C controllability is a generic property of the Shifted

Inverse Iteration. I.e.: It holds true for an open and dense set of matrices

S ⊂ C
n×n.
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Controllability

Example I, Shifted Inverse Iteration on FP
n−1

A ∈ F
n×n

M = FP
n−1

U = F \ σ(A)

Φ : M×U → M defined by Φ(x, u) = (A − uI)−1 · x

Remark:
Let F = R. If A is not cyclic, the Shifted Inverse Iteration on RP

n−1 is not

controllable. There exist cyclic matrices such that Shifted Inverse Iteration

on RP
n−1 is not controllable.

Remark:

For F = R it is unknown if controllability is a generic property of the Shifted

Inverse Iteration.
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Controllability

Example I 12 , Polynomial-Shift Inverse Iteration on FP
n−1

A ∈ F
n×n, M = FP

n−1

pα(u) = A − uI, pβ(v, w) = A2 + vA + wI

U := {u ∈ F, (v, w) ∈ F
2 | pα(u), pβ(v, w) ∈ GLn(F)}

Φ(x, u) = p−1
π(t)(u)x, π(t) ∈ {α, β}

Theorem:(J 2003)

Let F = R, C. Polynomial-Shift Inverse Iteration on FP
n−1 is controllable

if and only if A is cyclic.

Corollary: Controllability is a generic property of the Polynomial-Shift In-

verse Iteration.
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Controllability

Example III, Shifted Inverse Iteration on Flag(Cn))

A ∈ C
n×n

M = Flag(Cn)

U = F \ σ(A)

Φ : M×U → M defined by Φ(V, u) = (A − uI)−1 · V

Remark:
Let n > 2. The Shifted Inverse Iteration on Flag(Cn) is not controllable.

Corollary: Let n > 2. The Shifted Inverse Iteration on the isospectral

manifold MA = {Q∗AQ |Q ∈ Un(C)} is not controllable.
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Controllability

Example III, Shifted Inverse Iteration on HessA(Fn))

A ∈ F
n×n regular

M = HessA(Fn)

U = F \ σ(A)

Φ : M×U → M defined by Φ(V, u) = (A − uI)−1 · V

Theorem:(Helmke, J 2002)

Shifted Inverse Iteration on HessA(Fn) is controllable (for A) if and only if

Shifted Invesre Iteration on FP
n−1 is controllable (for A).

Corollary: Let F = C. Shifted Inverse Iteration on HessA(Cn) is

controllable if and only if A is cyclic.

Corollary: Let F = C. Controllability is a generic property of the Shifted

Inverse Iteration on HessA(Cn).
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Current and Future Work

Is shifted Inverse Iteration on RP
n−1 resp. HessA(Rn) generic?

Characterizations of system semigroups

Criteria for controllability

Adherence structure of reachable sets

Constructive controllability
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Thank you for your attention

http://www.mathematik.uni-wuerzburg.de/RM2
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