Acta Informatica 35, 1-15 (1998) m@

i

© Springer-Verlag 1998

Structured numbers
Properties of a hierarchy of operations on binary trees

Vincent D. Blondel*

Institute of Mathematics, University of &ge, B-4000 Lége, Belgium (e-mail: vblondel@ulg.ac.be)

Received: 11 December 1995 / 30 December 1996

Abstract. We introduce a hierarchy of operations on (finite and infinite) binary
trees. The operations are obtained by successive repetition of one initial opera-
tion. The first three operations are generalizations of the operations of addition,
multiplication and exponentiation for positive integers.

1 Introduction

The product of two positive integessandb is equal to the sum df factors each
equal toa. Thebth exponent of, denoted bya 1 b, can similarly be defined as

the product ot factors each equal ta. The process of getting new operations

by repeating old ones ends with exponentiation because this last operation is not
associative. The definition

atMb=atatat..ta Q)
b factors

is ambiguous since for example {44) + 4 # 41 (4 1 4). For the the right hand
side of (1) to be well defined both the number of factors and the order in which
the operationg are performed have to be specified.

A way of doing this is to ask the second operand to carry not only a quan-
titative information, the number of times is repeated, but also a structured
information, the order in which the operatiohsre performed. Binary trees are
naturally designated object to convey such a structured information. The number
of external nodes (leaves) of a binary tree can be used to specify the number
of factors, and the structure of the tree can then be used to specify the order in
which the operations are performed.

* Parts of this work were completed while the author was at OCIAM Oxford, at KTH Stockholm
and at INRIA Paris.

2 V.D. Blondel

In this paper, we define countably many internal operations on binary trees.
The first operation, which we denote by, is obtained by forming the binary
tree whose left and right subtrees are equal to the operands. This operation is
not associative. The second operatibris defined as follows: From the binary
treesa andb we construct the binary tre@? b by repeating the operation
on the treea with the structure dictated bly. In the same way, we define an
operation? by repeating? , an operation® by repeating®, etc. We eventually
obtain countably many internal operatioris for k > 1) with the definition

akp=akTlaktlaksl, k1a

b factors

The number of external nodes of the binary tree resulting from the operation
1,2 and ? are equal to the sum, product and exponentiation of the number
of external nodes of the operands. These three operations are thought of as
binary trees counterparts of the usual operations of addition, multiplication and
exponentiation. The operatiofisfor k > 4 have no natural number counterparts
since for these cases the structure of the trees have to be taken into account to
compute the number of external nodes of groduct.

The object of this paper is to study some of the properties of the operétions
described above and formalized in the second section of the paper. In Sect. 3 the
operations are shown to satisfy algebraic properties that generalize elementary
properties for integers. In Sect. 4 we show that binary trees can be decomposed
in a unique way as products of prime binary trees. In Sect.5 we analyse the
operationsk for k > 4. In Sect. 6 we describe various integer valued functions
associated to trees and show how these functions behave with respéct to
products of binary trees. In a final section we argue that the notions introduced
for finite binary trees can be generalized for infinite trees. This is achieved by
formalizing binary trees by means of factorial languages.

Different authors have proposed to continue the hierarchy,+ on nat-
ural numbers by introducing operations of “super-exponentiation”. D. Knuth’s
recursive definition [18] is

attb = at(@t@t(@...1a)...)
b
atttbh = att@tt@tt(@...1ta)..)
b
at..th = at..f(@@t..ta..1..1a)...)
~—— —— Y~ Y~~~
K k—1 k—1 k—1

b

This definition coincide, modulo elementary notational modifications, with the
definition originally given by Ackermann of a recursive function that is not
primitive recursive (see [13]). The definition has the disadvantage of making an
arbitrary choice on how the non-associative operations are performed and, as a
result, these operations exhibit poor algebraic properties (see, however, [1]).

Structured numbers 3

Operations on graphs, trees and binary trees constitute a classical object of
study in theoretical computer science (see [20], [21], [19], [17, Vol. 1 Section
2.3]) but we have found no reference that uses the particular structure of binary
trees as a mean for defining repeated operations. The contribution that is probably
closest to ours is the “arithmetic of shapes” developed by I.M. Etherington half a
century ago in the context of genetics. The transmission of a probability distribu-
tion of genes by mating is an operation that is commutative but not associative.
In order to describe this operation, Etherington has introduced in [6] operations
on trees that are similar té, 2 and 2 and that have given rise to the widely
studied genetic algebras (see [6], [15] and [5]). The operatforier k > 4 are
not defined in the context of genetic algebras because the trees considered there
are not ordered and there is no natural definitiorfofor k > 4 for unordered
trees.

Motivated by the remarks made in this introduction, binary trees are intro-
duced in [2], [3] and [4] as one possible representation of the concept of “struc-
tured number”. A motivation for this terminology is justified by the following
observation: Free groups with a simple generator are isomorphi¢, tg) (free
monoids with a single generator are isomorphicNo+) and free groupoids with
a single generator are isomorphic 8T, 1) whereBT denotes the set of binary
trees and! is the first operation in our hierarchy. This analogy motivates the
notationSN used in [2] for denoting the set of binary trees which can be seen
as one possible representation of the notion of structured number.

2 The operations

Let BT be the set of binary trees [17, Vol. 1 Sect. 2.3] defined by the symbolic
equation [9]:

BT =e+ /\
BT BT

Atreea € BT different from the one node treeis ordered in such a way that
we can make a distinction between the left subtiee BT and the right subtree
ar € BT. For notational convenience we represent a binary &reeBT by its
horizontal paranthesed expressio@) € {e,(,)}*, where¢ : BT — {e,(,)}* is
recursively defined by

P(e) = o

o /\)= (6a) oar))
a_ ar

In the sequel we identify\a € BT with ¢(a). A binary treea € BT is
represented by if it is the one node tree, and by @g) if it has the left

4 V.D. Blondel

/\ — (+9)

AV e e

VAN
A (OB
'/\'

Fig. 1. Binary trees and their corresponding paranthesed expressions

and right subtreey andagr, respectively. Some binary trees together with their
paranthesed expressions are drawn in Fig. 1.

The number of external nodes (leaves) of a binary &eeBT is called the
weight of a.

Definition 1. Theweight functionweight : BT — N is defined inductively by
. |1 ifa=e
weight(a) = { weight(a,) + weight(ag) if a = (aar)

Binary trees that are distinct but that have identical weight are said to differ by
their shape.

We define countably many operations on binary trees.

Definition 2. The operation® : BT x BT — BT is defined by &b = (ab). For
k > 2, the operations : BT x BT — BT are defined by

akb_ a ifb=e
P\ (@b -iakbr) ifb = (bbg)

The integer k is called the index of the operatibn

The operation®** has a simple expression in terms 'bf Supposea, b are
binary trees andh > 1 is the weight ofb. The binary treec = ak*'b is then
equal to the tree resulting from tieproduct ofn treesa, in an order prescribed
by the shape ob. For example

ak*(ee) = (a¥ a)
and
akl((e(ee))(09)) = ((@* (a¥ @))* (a¥ @)

Elementary examples of binary trees resulting from the operatipAsand 3
are given in Fig. 2. The trea? b is obtained by constructing the tree whose left
and right subtrees a@andb respectively. The trea?b is obtained by grafting

Structured numbers 5

/\ 1 AN _ VAN
A\ VAWAN
./ \.

N 2 A VA A
N\ A A /

e o e o

O\ 1 A
- A A S
ATA SN

N
= ./ \. ./ \.
AN A

AN - _ AN RVAN

I
~

-

=
[y

. >
5

~

-
OoOod

Fig. 2. Binary trees resulting from the operations of addition, multiplication and exponentiation

a copy of the treea at the leaves of the trele. No such simple geometrical
description is available foa 3 b.

From the definition of the functiomeight and of the operatiod we deduce
thatweight(alb) = weight(a) +weight(b). Since the operations of higher index
are defined by successive repetition‘otthe next result is easely obtained.

Proposition 1. Let a, b be binary trees.

1. weight(a®b) = weight(a) + weight(b)
2. weight(a?b) = weight(a).weight(b)
3. weight(a 3 b) = weight(a)wei9nt®)

In the sequel the three first operatiohs 2 and 2 on binary trees will be
called addition, multiplication and exponentiation. There exist no natural number
counterpart toX for k > 4 because in this case the weightadf b depends on
the weight ofa andb but also on their respective shape.

6 V.D. Blondel

3 Algebraic properties

The properties of the operatiorls 2, 2 for binary trees are similar to those of
+,.,7 for natural numbers.

Theorem 1. 1. Let a be a binary tree and k 3.

1. a2e=a=e23
2. ake=a andeXa=e

2. Let a b, c be binary trees and & 2.

ak(blc)=(akb)*Yakc)
2. ak(?c)=(akb)kc

3. Letab,c,d be binary trees.

=

1. Left cancellation: If b =a?c then b=c.
2. Right cancellation: If &b = c?b then a=c.

Proof. 1. The equalitiesak e = a for k > 2 follow from the definition of ¥ .
We provee 2 a = a by induction ona. The result is clearly true foa = e so
let a = (a_ag) and assume that?a_ = a_ande?ag = ag. Thena=a_ lag =
(e2a.)t(e?ar) =e2(a. !ag) = ?a and the theorem is proved. The equalities
oK a =a are proved by induction oa.

2. The first property is a rephrasement of the definition‘ofWe prove the
second property by induction an Whenc = e we haveak (b?c) = aX (b2%e) =
akb = (akb)ke = (akb)*c so letc = (c_cgr) and assume thatk (b%c.) = (ak b)k ¢
andaX (b?cg) = (aX b) ¥ cr. Then by successive applications of the first property
we obtain

(@“ b2) Y@k (b?cR)) (@*b)kc)* H(@" b)k cr)
ak(b?c)r(?cr) = @b)*(cLicr)
ak¥Mb?(cLlcer) = @“b)<(cicr)

and thus
a¥((b?c)=(@"b)kc.

3. We prove the right cancellation rule only, the proof of the left cancellation
rule is similar. We proceed by induction d&n The result is clearly true fdo = e
so letb = (b_br) and assume that the result holds Bprandbg. If a2b =c?b,
then @2b) ! (@2%bg) = (c?b)?(c?bg) anda?b. = c?b.. By the induction
hypothesis we are lead to the conclusion. O

When evaluated withk = 2 the Properties 2.1 and 2.2 give

1. a(b+c)=ab+a.c
2. a.(b.c) =(a.b).c

whereas an evaluation with= 3 gives

1. ab+) =gb a¢

Structured numbers 7

2. a9 = (ab)°

These four usual identities il have thus counterparts for binary trees. Cen-
tral in the sequel is the fact that multiplication is associative.

Counterexamples

Commutativity. The operations are non commutative. Fér= 1 andk = 2 this
can be seen from the examples)le # o1 (ee) and @e)?(e(ee)) # (s(se))?(ee)
whereas for the operations of higher index it suffices to noticealiat # o X a
for any binary treea different frome.

Associativity.The operation® is not associative as is easily seen from the
examplee ! (e o) # (o1 @)1 e. The operations¢ for k > 3 are not associative
either. For example at)k a # a* (eX @) whena # . Thus, by Theorem 1, the
only associative operation i%.

Cancellation rule.The left cancellation rule does not hold for the operations
K whenk > 3. Indeed, for any binary trea andk > 3 we havee* a = e,
ThuseX a = ¢ X b for all binary treesa and b which clearly shows that the
left cancellation rule does not hold. In Sect.5 we give necessary and sufficient
conditions for the equalitaX b =a* d.

The right cancellation rule is harder to analyse. It is known to holdkferl,

k =2,k =3 andk = 4 but the general case is yet unsettled. We conjecture here
that it holds for allX whenk > 1.

4 Prime trees and prime decomposition

Definition 3. A binary tree a is prime if it is different from the one node teee
and if a= b?c implies that b= e or ¢ = e. Trees that are not prime are composite.

The weight of a product of binary trees is equal to the product of the weights.
It is therefore clear that any binary tree whose weight is a prime number is
automatically prime. The converse of this statement is not true. The binary tree
(e(e(ee))) has weight 4 and is a prime binary tree. It is easy to see that four
of the five binary trees of weight four are prime and that, in general, a natural
numbern is prime if and only if all binary trees of weight are prime.

In Table 1 we give, for the first values of > 1, the numbelC, of binary
trees of weight, the numbet,, of composite trees of weight, and the number
P, of prime trees of weighn. It is well-known that the number of binary trees
of weigthn is equal to thenth Catalan numbe€, = (2n — 2)!/(n!(n — 1)) (see
[14], [12], [11] or [21]). No simple expression fdf or P, seems available. The
sequencé, does not appear in the recent encyclopedic list of integer sequences
[22]. Ph. Flajolet has shown [9] that, — |, is equal to 0 ifn is prime, is equal to
(Cp)? if n = p? is the square of a prime, and is otherwise asymptotioce(?
wherep is the smallest prime factor af.

Binary trees different from the one node tree can be decomposed into products
of prime binary trees. The decomposition is unique up to, and including, the
sequence in which the factors appear. We first need a lemma for proving this.

8 V.D. Blondel

Lemma 1. Let &, ay, by, by be binary trees such thatd a, = by 2 b,. If a; and
b, (or a; and k) are prime, then a=b; and g = b,.

Proof. If a3 = by, then the left cancellation rule for multiplication shows that
a; = by. We proceed by induction oa, to prove thata; = by. If a; = e then

a; = by 2 b,. Sincea; is prime andb; is different frome we must haveb, = e
and thusa; = b;. Assume now tha#y 2a, = b; 2 by anda, = (ag aR). If by =,
thenay 2 a, = by and the theorem is proved, so assumae= (by bor). We have
(a12ag) ! (@12 ar) = (b1 2 by) (b1 2 byr). By the cancellation rule for addition
and the induction hypothesis we then conclagde= b; as requested. |

It is now easy to show:

Theorem 2 (Existence and uniqueness of prime decomposition)et a be a
binary tree different frome. Then a= a;2a,2 --- 2 a, for some n> 1 and
some prime binary trees alf a = b;2b,? - - - 2by, is another such decomposition.
Thenn=manda=Db fori =1,...,n.

Proof. Leta be a binary tree different from If a is prime, them = 1 anda; = a

is the decomposition sought. & is composite, there existy and a, different

from e and such thaa = a; 2 ay. The factors can then be further decomposed
until prime factors are reached. Since the weight of the factors are positive and
strictly decreasing, the procedure must end after a finite number of steps. Thus
a=a;?ay?---?a, for somen > 1 anda; prime binary trees.

Assume now thah = b;2b,? - - - 2by, is another such decomposition. By the
lemma we must hava; = b; anda,?az? ---a, = by%bs? ---by,. But then by
successive repetition of the same argument we are lead to the conclusiah.

The decomposition given in the theorem is called a prime decomposition.
Theith factor in the decomposition is uniquely determined and is thdactor
of a. We can characterise the binary trees whose sum is prime.

Theorem 3. Let a, b be binary trees different from the one node we&hen &b
is prime if and only if the first factors of a and b are distinct.

Proof. (Necessity) et the first factors ofa and b be distinct and assume by
contradiction thata ! b is not prime. Thena = ¢; ? ¢, for somec; and ¢,
different frome. Sincec; is different frome we may writec, = ¢y * cr. Hence
alb=(c12cy)t(ci2cR). By the cancellation rule this leads #o= c¢; 2 ¢y and

b = c12cr. But sincec; is different frome these last identies show that the first
factors ofa andb are identical and a contradiction is thus attained.
(Sufficiency).et a, b be distinct frome and assume by contradiction treat c2a’
andb = c2b’ for somec different frome. Thenalb = (c2a’)}(c?b’) = c?(a’tb’) =
c2c¢’ with ¢ andc’ different frome. A contradiction is achieved and the theorem
is proved. O

5 The operations ¥ for k > 3

Multiplication of binary trees is associative. The resuliadhb therefore depends
on a and on the weight ob but not otherwise on the shape lof

Structured numbers 9

Table 1. Number of binary trees, composite trees and prime binary trees of given weight

weightn | Cy In | Pn

1 1 1 0

2 1 0 1

3 2 0 2

4 5 1 4

5 14 0 14

6 42 4 38

7 132 0 132

8 429 9 420

9 1430 4 1426
10 4862 28 | 4834
11 16796 | O 16796
12 58786 | 98 | 58688

Proposition 2. Let a by, b, be binary trees and assume thatight(b;) =
weight(b,). Then a by =ab,.

We use this result for introducing a new notation. bet> 1 anda € BT.
By a3 n we mean the binary tree®b whereb is any binary tree of weight.
A similar construction is possible for operations of higher index.

Definition 4. Let k > 3. The operations)x : BT x BT — N are defined induc-
tively by

1. a0sb = weight(b)
2.

1 ifb=e

(@ Ok b).((@% b) Ox—1 (@ br)) if b = (bLbr)

With this purpose-built definition we have:

a<>kb={

Theorem 4. Let a, b be binary trees and k& 3. Then & b = a2 (a O« b).

Proof. We proceed by induction ok. For k = 3 the result is contained in
Proposition 2. We assume that the result holds¥ot and show, by induction
onb, that it also holds fok . If b = e, thenake=a=a3e=a31=a3(a(ye)
so letb = (b bg) and assume thatk b, = a3 (a {x b.) andak bgr = a2 (a Ok br).
We have

akb

a® (b br)

= (@%b)*1(@* bgr)

= @*b)3(@"h) Ox_1(@"br))

= (@3@okb) 3 ((@"b) Ok-1(abr))
= ad((@aoxb)(@" b) Ok—1 (@% bRr)))
= a%@okb)

and the theorem is proved. O

10 V.D. Blondel

Cancellation rules fot and? were analysed in Sect. 3. We have shown that
the left cancellation rule does not hold for> 3 since, for exampleska = ¥ b
for any binary trees andb. With the help of Theorem 4 this observation can
now be made more precise.

Theorem 5. Let a, b, d be binary trees different fromand k> 3. Then & b =
akd ifand only if a0k b =a Ok d.

Proof. (NecessityBy Theorem 4 we know tha X b =a?3(a {x b) anda® d =
a3 (a Ox d). Hencea? (a Ok b) = a3 (a Oy d). But then the prime decomposition
theorem leads ta ¢Ox b = a Ok d as requested.

(Sufficiency)This part is trivial. Ifa O b = a Oy d, thenaX b = a3 (a Ox b) =
ad(ard)=akd. O

Corollary 1. Leta b,d be binary trees different from Then &b = a3d if and
only if weight(b) = weight(d).

Some of the algebraic properties of the operatidnsare summarized in
Table 2

Table 2. Algebraic properties of the operatiorfs

Commutativity | Associativity | neutral cancellation rules

T no no no alb=cld<a=candb=d
z no yes a’e=a | a’b=c’bea=c

e2a=a |a?b=a?deb=d
3 no no ale=a |a’b=c3bea=c

e3a=e | ad3b=ad3d < weight(b) = weight(d)
4 no no a‘e=a |a?b=c?’bea=c

eta=e |a%b=a*deadsb=adsd
K no no akKe=a | ConjectureaXb=c¥b<a=c
(k > 5) eka=e |akb=zakde adrb=acd
6 Valuations

A valuation p is a function defined on binary trees and taking value<in
Operations on integers can be used in a natural way to define valuations.

Definition 5. Associatedta\ : ZxZ — Z and e€ Z is a valuationy : BT — Z
defined inductively by

(@) = { e ifa=e
: @) Ap(ar) if a = (aar)
Valuations that can be obtained in this way are called inductive.
We immediatly recognise that the weight function is an inductive valuation

obtained by settingAb = a+b ande = 1. Other inductive valuations are given
next.

Structured numbers 11

Maximal height.If we setaAb = 1+ max@, b) ande = 0 the valuation obtained
gives the maximal height of all external nodes. This quantity is referred to as the
height of the tree and the corresponding valuation is denotdukepht.

Minimal height. The valuation obtained witlaAb = 1 + min@,b) ande = 0
gives the minimal height of all external nodes and is denaté@theight

Strahler numberThe valuation obtained witaAb = [a = b] + max(@, b) and

e = 0 appear in various contexts (the expressiars[b] outputs 1 whera = b

and outputs O otherwise). In [8] it is called the “register function” and is used
to calculate the minimal number of registers needed to evaluate an arithmetic
expression (see also [16]). The same function is known in hydrology as the
Horton-Strahler function and is used to describe characteristics of river flows
(see [23], [24] and references cited therein). The Strahler number of a tree is
equal to the height of the maximal complete tree that can be embedded in the
tree [8]. We denote this valuation [Strahler.

2-bud. The valuation obtained witaAb = [a = b] + min(a,b) ande = 0 (hote

the similarity with the definition of the Strahler number) has, to our knowledge,
never been analysed. We denote this function bytitid. The 2-bud of a binary
treea can be shown equal the largest> 0 for which thenth first factors ofa

are equal to«e). The 2— bud of a binary treea is thus equal to the largest

for which a = ((ee)2n)2b for some treeh. Because of the grafting interpretation
of the operation? this number corresponds also to the heighof the largest
complete binary treeep) 3 n that appear everywhere on the boundaryaof

Boolean valuationThe valuation obtained withAb = [a = b] ande = 0 outputs
1 if the weight of the tree is even and outputs O if it is odd.

In Table 3 we list some possible choices of operatibrand their resulting
valuations. Several of these inductive valuations have remarkable properties with
respect toX .

Theorem 6. AssumeA : Z x Z — Z, e =0, and letu be the inductive valuation
associated taA and e. If a+ (bAc) = (a+b)A(a+c) for all a,b,c € Z, then

1. p@a?b) = p(a) + p(b)
2. w@a®b) = p(a).u(b)
3. u(a?b) = p(a)-®

Proof. We prove the first identity by induction dn Forb = e we haveu(a?e) =
(@) = u(a) + u(e) so letb = (b br) and assume thai(a? b.) = pu(a) + u(b.)
and p(a? br) = u(a) + u(br). We have then
p@tb) = pu(a? (bt bg))

= u(@?b)* (@?bg))

= w@?b)Au@?bg)

= (u(@) + (b)) A(u(@) + p(br))

= (@) + (u(bL) Ap(br))

= @)+ u(b)

12 V.D. Blondel

The other identities are similarly proved. O

Corollary 2. Let . be one of the valuations hghit, minheight, Strahler or2 —
bud. Then

1. w@?b) = p(@) + u(b)

2. p(@®b) = p(a).p(b)

3. u(a?b) = p(a)-®

Proof. The corresponding pairsy(, e) satisfy the conditions of Theorem 6.1

Table 3. Some inductive valuations

aAb e | resulting valuation

a+b 1 | weight

1+ maxg, b) 0 | height

1+ min@, b) 0 | minheight

[a =Db]+max@,b) | 0 | strahler

[a =Db]+min(a,b) | 0 | 2— bud

[a=Dh] 0 | 1if weightis even
0 if weight is odd

7 Infinite trees

The operations® introduced for finite binary trees can be extended to infinite
binary trees. For convenience we shall look at infinite trees as languages over
2-letter alphabets.

Let X be a finite alphabet and;, L, C X* be two languages oveY' (for
definitions see [19]). The product &f andL; is the languagé; - Ly = {X; - X2 :
X; € L1, % € Lp}. Givenx € ¥, the language - L and the residuat—- L of L
by x are defined by-L = {x}-L andx~1-L={y € £* : x-y € L}, respectively.
If n > 0, the truncation ot at sizen is the languaggL], = {x € L : |x| < n}
where |x| is the length ofx. For a languagé. andn > 0 we definel® = {w}
(w denotes the empty word)™! = L" - L andL* = |J;5, L'. Finally, a language
L over X' is factorial if x,v € X* andx - v € L implies thatx € L. Factorial
languages always contain unless they are empty.

Proposition 3. Let L, Ly, Ly, ... be factorial languages over, x € X* and n>
0. The languages %! - L, [L]n,L = UZ,Li, L = N5Li, L1 - Lo and L* are
factorial.

A binary tree is entirely specified by its set of internal nodes. Any internal
node can be reached by starting from the root and specifying the finite sequence
of left and right movements needed to reach it. Let us denote these movements
by a andb respectively. A node can thus be seen as a word over the alphabet
¥ ={a,b}. Afinite (infinite) tree will therefore have a representation as a finite
(infinite) language ovel'. To the one node binary treecorresponds the empty
languagel = (), the tree ¢e) is represented bl = {w} and the two binary trees

Structured numbers 13

of weight 3 have{w, a} and{w, b} as corresponding languages. It is easy to see
that languages generated by binary trees are factorial. The converse is also true:
Any factorial language over a 2-letter alphabet can be seen as a representation
of a particular binary tree, the corresponding binary tree is infinite when the
language is. We denote Wyl the set of factorial languages and B¥L the

set of finite factorial languages over the two letter alphdlaeb}. There is an
obvious bijection betweeRFL andBT.

Definition 6. The operation! : FFL x FFL — FFL is defined by L! L, =
{w}Ua-LiUb- Ly For k > 2, the operations¥ : FFL x FFL — FFL are
defined inductively by

Lok, = Ly ifLo=0
P27 (LR ar i)k (L kb)) ifLa#0

We now remove the finiteness condition on the languagemsd L, and define,
for finite or infinite languages, the operatior§s (k > 0) by

La¥ Lo = Up([Lali [L2li)
Proposition 4. The operations¢ are operations from Flx FL to FL.

Proof. The statement is clearly true for finite languages becausefapyoduct
of two finite languages can be expressed in terms of finitely many operations of
the form given in Proposition 3. We complete the proof by observing that the
result of a¥ product of infinite languages is defined by a countable union of
finite factorial languages. O

Most properties of the operatiors for finite binary trees were proved by
induction. This principle does not anymore hold for infinite binary trees and
many of the properties shown for finite binary trees do therefore not hold for
infinite binary trees. It is nevertheless possible to show that the Properties 2.1
and 2.2 of Theorem 1 remain satisfied for infinite binary trees. On the other hand
the Properties 3.1 and 3.2 in the same theorem may be violated by infinite binary
trees. Assume for example thef = X*, L, = {w} andLz = {w,a,b}. Then
ng L, = ng L3 but L, ?f Ls.

The result of operations of index greater or equal to 3 can be expressed as
2 products of identical factors. Infinitely many factors are multiplied when the
second operand is infinite. The operatfonorrespond to the usual multiplication
of languages of computer science and the operatitinerefore degenerates into
the Kleene star operation when the second operand is infinite.

Theorem 7. Let Ly, L, be two factorial languages. Then

1. Lj_?l_z: Lz- Ll
2.
L3, = LT some n>1ifL; is finite
12 L if Ly is infinite

14 V.D. Blondel

Proof. We prove the result fok, finite by induction onL;. The result is clearly
true forLy = 0; so letL, = L, L5 and assume thay 3L, =L} andL; 3Ly = L}"
for somen’, n” > 0. We have then

L 3L,

L3 (L5 LY)
= (L3L)2(L13SLY)
- Lrl.ll . LT//

_ n’+n’’
= |_l

as requested. Assume now thatis infinite. We show that the languagke$ and
L:3L, coincide. Indeed, ik € X* andx € L;3L,, thenx € ([L;];3[L;];) for some
i. But then by the finite case there exist somér whichx € ([L1];)" C L] C
L;. Assume now thak € L;. Thenx € L] for somen. But thenx € Ly 3 [L;];
for somei and thusx € L, 3L, as requested. O

Remark.The condition in Definition 6 that the languages be factorial is not
essential. The operatiorfscan equally be defined for arbitrary language defined
over 2-letter alphabets.

Notes added in proof

1. The right cancellation rule conjectured at the end of Sect. 3 has recently been proved by Philippe
Duchon (“Some new results on a family of operations for binary trees”, submitted, 1997).

2. The results contained in this article have been presented at a seminar at INRIA-Paris in October
1995. An abstract of the seminar appears in “Algorithms Seminars 1994-1995", INRIA Technical
Report 2669, Bruno Salvy (ed.), 1995.

AcknowledgementsWe wish to express our sincere thanks to anonymous reviewers for their helpful
remarks. We are also thankful to Professor D. Welsh, Oxford University, Professor Ph. Delsarte,
University of Louvain, Professor Ph. Flajolet, INRIA, Dr S. Gaubert, INRIA, Professor M. Nivat,
University of Paris, and Professor D. Knuth, Stanford University for commenting a first version of
this paper.

References

=

G. R. Blakley, I. Borosh: Knuth'’s iterated powers, Adv. in Madd.(1979) 109-136.

V. Blondel: Structured numbers, Technical Report TRITA/MAT-94-31, Department of mathe-

matics, Royal Institute of Technology, S-10044 Stockholm (1994).

3. V. Blondel: Operations on structured numbers, Research report 2464, INRIA BP 105, F-78153
Le Chesnay Cedex (1995).

4. V. Blondel: Une famille d’oprations sur les arbres binaires, C. R. Acad. Sci. Pagise 3321
(1995) 491-494.

5. R. Costa: Shape identities in genetic algebras, Lin. Algebra and its 2p$(1995) 119-131.

6. |. M. Etherington: On non-associative combinations, Proc. Royal Soc. of Edintag¢i9
(1937-1938) 153-162.

7. 1. M. Etherington: Genetic algebras, Proc. Royal Soc. of Edinb5&g59(1937-1938) 242-258.

8. Ph. Flajolet, J. C. Raoult, J. Vuillemin: The number of registers required for evaluating arithmetic
expressions, Theoret. Comp. S¢(1979) 99-125.

9. Ph. Flajolet: Analyse d’algorithmes de manipulation d’arbres et de fichiers, Cahiers BURO,
30-35(1981) 1-209.

10. Ph. Flajolet: Personnal communication, 1996.

n

Structured numbers 15

11.
12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Gardner: Mathematical games: Catalan numbers, Sci. Amer. (1976) 120-122.

H. W. Gould: Research bibliography of two special number sequences, Mathematica Monon-
galiae12 (1971).

J. W. Grossman, R. Z. Zeitman: An inherently iterative computation of Ackermann’s function,
Theoret. Comp. Sciencg7 (1988) 327-330.

P. Hilton, J. Pedersen: Catalan numbers and their various uses, in: W. Lederman, ed., Handbook
of applicable mathematics. John Wiley, Chichester, 1990

J. H. Holgate: Population algebras, J. Royal Statist. Soc. S48.(8981) 1-19.

R. Kemp: The average number of register needed to evaluate a binary tree optimally, Acta
Informaticall (1979) 363-372.

D. E. Knuth: The art of computer programming, Vol. | and Il. Addison-Wesley, Reading, MA,
1968.

D. E. Knuth: Mathematics and computer science: coping with finiteness, SdfAa@976)
1235-1242.

J. van Leeuwen: Handbook of theoretical computer sciences, Vol. A and B. North-Holland,
Amsterdam, 1990

C. Pair, A. Quere: Efinition et étude des bilangageggulier, Information and Contral3

(1968) 565-593.

R. Sedgewick, Ph. Flajolet: An introduction to the analysis of algorithms. Addison-Wesley,
Reading, MA, 1996

N. J. A. Sloane, S. Plouffe: The encyclopedia of integer sequences. Academic Press, New York,
1995

A. N. Strahler: Hypsomic analysis of erosional topography, Bulletin Geological Society of
America63 (1952) 1117-1142.

X. G. Viennot: Trees, in: M. Lothaire, ed., Mots.élnges offertex M.-P. Schitzenberger.
Hermes, Paris, 1990.

