
Acta Informatica 35, 1–15 (1998)

c© Springer-Verlag 1998

Structured numbers

Properties of a hierarchy of operations on binary trees

Vincent D. Blondel?

Institute of Mathematics, University of Liège, B-4000 Lìege, Belgium (e-mail: vblondel@ulg.ac.be)

Received: 11 December 1995 / 30 December 1996

Abstract. We introduce a hierarchy of operations on (finite and infinite) binary
trees. The operations are obtained by successive repetition of one initial opera-
tion. The first three operations are generalizations of the operations of addition,
multiplication and exponentiation for positive integers.

1 Introduction

The product of two positive integersa andb is equal to the sum ofb factors each
equal toa. Thebth exponent ofa, denoted bya ↑ b, can similarly be defined as
the product ofb factors each equal toa. The process of getting new operations
by repeating old ones ends with exponentiation because this last operation is not
associative. The definition

a ↑↑ b = a ↑ a ↑ a ↑ ... ↑ a︸ ︷︷ ︸
b factors

(1)

is ambiguous since for example (4↑ 4) ↑ 4 /= 4 ↑ (4 ↑ 4). For the the right hand
side of (1) to be well defined both the number of factors and the order in which
the operations↑ are performed have to be specified.

A way of doing this is to ask the second operand to carry not only a quan-
titative information, the number of timesa is repeated, but also a structured
information, the order in which the operations↑ are performed. Binary trees are
naturally designated object to convey such a structured information. The number
of external nodes (leaves) of a binary tree can be used to specify the number
of factors, and the structure of the tree can then be used to specify the order in
which the operations are performed.

? Parts of this work were completed while the author was at OCIAM Oxford, at KTH Stockholm
and at INRIA Paris.

2 V.D. Blondel

In this paper, we define countably many internal operations on binary trees.
The first operation, which we denote by.1 , is obtained by forming the binary
tree whose left and right subtrees are equal to the operands. This operation is
not associative. The second operation.2 is defined as follows: From the binary
treesa and b we construct the binary treea .2 b by repeating the operation.1

on the treea with the structure dictated byb. In the same way, we define an
operation .3 by repeating.2 , an operation.4 by repeating.3 , etc. We eventually
obtain countably many internal operations (.k for k ≥ 1) with the definition

a .k b = a .k−1a .k−1a .k−1k−1a︸ ︷︷ ︸
b factors

The number of external nodes of the binary tree resulting from the operation
.1 , .2 and .3 are equal to the sum, product and exponentiation of the number
of external nodes of the operands. These three operations are thought of as
binary trees counterparts of the usual operations of addition, multiplication and
exponentiation. The operations.k for k ≥ 4 have no natural number counterparts
since for these cases the structure of the trees have to be taken into account to
compute the number of external nodes of a.k -product.

The object of this paper is to study some of the properties of the operations.k

described above and formalized in the second section of the paper. In Sect. 3 the
operations are shown to satisfy algebraic properties that generalize elementary
properties for integers. In Sect. 4 we show that binary trees can be decomposed
in a unique way as products of prime binary trees. In Sect. 5 we analyse the
operations.k for k ≥ 4. In Sect. 6 we describe various integer valued functions
associated to trees and show how these functions behave with respect to.k -
products of binary trees. In a final section we argue that the notions introduced
for finite binary trees can be generalized for infinite trees. This is achieved by
formalizing binary trees by means of factorial languages.

Different authors have proposed to continue the hierarchy +,×, ↑ on nat-
ural numbers by introducing operations of “super-exponentiation”. D. Knuth’s
recursive definition [18] is

a ↑↑ b = a ↑ (a ↑ (a ↑ (a . . . ↑ a) . . .))︸ ︷︷ ︸
b

a ↑↑↑ b = a ↑↑ (a ↑↑ (a ↑↑ (a . . . ↑↑ a) . . .))︸ ︷︷ ︸
b

a ↑ ... ↑︸ ︷︷ ︸
k

b = a ↑ ... ↑︸ ︷︷ ︸
k−1

(a ↑ ... ↑︸ ︷︷ ︸
k−1

a... ↑ ... ↑︸ ︷︷ ︸
k−1

a) . . .))

︸ ︷︷ ︸
b

This definition coincide, modulo elementary notational modifications, with the
definition originally given by Ackermann of a recursive function that is not
primitive recursive (see [13]). The definition has the disadvantage of making an
arbitrary choice on how the non-associative operations are performed and, as a
result, these operations exhibit poor algebraic properties (see, however, [1]).

Structured numbers 3

Operations on graphs, trees and binary trees constitute a classical object of
study in theoretical computer science (see [20], [21], [19], [17, Vol. 1 Section
2.3]) but we have found no reference that uses the particular structure of binary
trees as a mean for defining repeated operations. The contribution that is probably
closest to ours is the “arithmetic of shapes” developed by I.M. Etherington half a
century ago in the context of genetics. The transmission of a probability distribu-
tion of genes by mating is an operation that is commutative but not associative.
In order to describe this operation, Etherington has introduced in [6] operations
on trees that are similar to.1 , .2 and .3 and that have given rise to the widely
studied genetic algebras (see [6], [15] and [5]). The operations.k for k ≥ 4 are
not defined in the context of genetic algebras because the trees considered there
are not ordered and there is no natural definition of.k for k ≥ 4 for unordered
trees.

Motivated by the remarks made in this introduction, binary trees are intro-
duced in [2], [3] and [4] as one possible representation of the concept of “struc-
tured number”. A motivation for this terminology is justified by the following
observation: Free groups with a simple generator are isomorphic to (Z, +), free
monoids with a single generator are isomorphic to (N, +) and free groupoids with
a single generator are isomorphic to (BT, .1) whereBT denotes the set of binary
trees and .1 is the first operation in our hierarchy. This analogy motivates the
notationSN used in [2] for denoting the set of binary trees which can be seen
as one possible representation of the notion of structured number.

2 The operations

Let BT be the set of binary trees [17, Vol. 1 Sect. 2.3] defined by the symbolic
equation [9]:

BT = • +
.

/ \
BT BT

.

A treea ∈ BT different from the one node tree• is ordered in such a way that
we can make a distinction between the left subtreeaL ∈ BT and the right subtree
aR ∈ BT. For notational convenience we represent a binary treea ∈ BT by its
horizontal paranthesed expressionφ(a) ∈ {•, (,)}∗, whereφ : BT → {•, (,)}∗ is
recursively defined by

φ(•) = •

φ(
.

/ \
aL aR

) = (φ(aL) φ(aR))

In the sequel we identifya ∈ BT with φ(a). A binary treea ∈ BT is
represented by• if it is the one node tree, and by (aLaR) if it has the left

4 V.D. Blondel

()

(())

((()))

Fig. 1. Binary trees and their corresponding paranthesed expressions

and right subtreeaL andaR, respectively. Some binary trees together with their
paranthesed expressions are drawn in Fig. 1.

The number of external nodes (leaves) of a binary treea ∈ BT is called the
weight of a.

Definition 1. Theweight functionweight : BT → N is defined inductively by

weight(a) =

{
1 if a = •
weight(aL) + weight(aR) if a = (aLaR)

Binary trees that are distinct but that have identical weight are said to differ by
their shape.

We define countably many operations on binary trees.

Definition 2. The operation.1 : BT × BT → BT is defined by a.1 b = (ab). For
k ≥ 2, the operations.k : BT × BT → BT are defined by

a .k b =

{
a if b = •
(a .k bL) .k−1(a .k bR) if b = (bLbR)

The integer k is called the index of the operation.k .

The operation .k+1 has a simple expression in terms of.k . Supposea, b are
binary trees andn ≥ 1 is the weight ofb. The binary treec = a .k+1b is then
equal to the tree resulting from the.k -product ofn treesa, in an order prescribed
by the shape ofb. For example

a .k+1(••) = (a .k a)

and
a .k+1((•(••))(••)) = ((a .k (a .k a)) .k (a .k a))

Elementary examples of binary trees resulting from the operations.1 , .2 and .3

are given in Fig. 2. The treea .1 b is obtained by constructing the tree whose left
and right subtrees area andb respectively. The treea .2 b is obtained by grafting

Structured numbers 5

=
3 2

=
1 




1 



=

=
1

=
1 1








2

1
=

=

Fig. 2. Binary trees resulting from the operations of addition, multiplication and exponentiation

a copy of the treea at the leaves of the treeb. No such simple geometrical
description is available fora .3 b.

From the definition of the functionweight and of the operation.1 we deduce
thatweight(a .1 b) = weight(a) +weight(b). Since the operations of higher index
are defined by successive repetition of.1 the next result is easely obtained.

Proposition 1. Let a, b be binary trees.

1. weight(a .1 b) = weight(a) + weight(b)
2. weight(a .2 b) = weight(a).weight(b)
3. weight(a .3 b) = weight(a)weight(b)

In the sequel the three first operations.1 , .2 and .3 on binary trees will be
called addition, multiplication and exponentiation. There exist no natural number
counterpart to.k for k ≥ 4 because in this case the weight ofa .k b depends on
the weight ofa andb but also on their respective shape.

6 V.D. Blondel

3 Algebraic properties

The properties of the operations.1 , .2 , .3 for binary trees are similar to those of
+, ., ↑ for natural numbers.

Theorem 1. 1. Let a be a binary tree and k≥ 3.

1. a .2 • = a = • .2 a
2. a .k • = a and• .k a = •

2. Let a, b, c be binary trees and k≥ 2.

1. a .k (b .1 c) = (a .k b) .k−1(a .k c)
2. a .k (b .2 c) = (a .k b) .k c

3. Let a, b, c, d be binary trees.

1. Left cancellation: If a.2 b = a .2 c then b= c.
2. Right cancellation: If a.2 b = c .2 b then a= c.

Proof. 1. The equalitiesa .k • = a for k ≥ 2 follow from the definition of .k .
We prove• .2 a = a by induction ona. The result is clearly true fora = • so
let a = (aLaR) and assume that• .2 aL = aL and• .2 aR = aR. Thena = aL .1 aR =
(• .2 aL) .1 (• .2 aR) = • .2 (aL .1 aR) = • .2 a and the theorem is proved. The equalities
• .k a = a are proved by induction ona.

2. The first property is a rephrasement of the definition of.k . We prove the
second property by induction onc. Whenc = • we havea .k (b .2 c) = a .k (b .2 •) =
a.kb = (a.kb).k• = (a.kb).kc so letc = (cLcR) and assume thata .k (b.2cL) = (a .k b) .k cL

anda .k (b.2cR) = (a .k b) .k cR. Then by successive applications of the first property
we obtain

(a .k (b .2 cL)) .k−1(a .k (b .2 cR)) = ((a .k b) .k cL) .k−1((a .k b) .k cR)

a .k ((b .2 cL) .1 (b .2 cR)) = (a .k b) .k (cL .1 cR)

a .k (b .2 (cL .1 cR)) = (a .k b) .k (cL .1 cR)

and thus
a .k (b .2 c) = (a .k b) .k c.

3. We prove the right cancellation rule only, the proof of the left cancellation
rule is similar. We proceed by induction onb. The result is clearly true forb = •
so letb = (bLbR) and assume that the result holds forbL andbR. If a .2 b = c .2 b,
then (a .2 bL) .1 (a .2 bR) = (c .2 bL) .1 (c .2 bR) and a .2 bL = c .2 bL. By the induction
hypothesis we are lead to the conclusion. �

When evaluated withk = 2 the Properties 2.1 and 2.2 give

1. a.(b + c) = a.b + a.c
2. a.(b.c) = (a.b).c

whereas an evaluation withk = 3 gives

1. a(b+c) = ab.ac

Structured numbers 7

2. a(b.c) = (ab)c

These four usual identities inZ have thus counterparts for binary trees. Cen-
tral in the sequel is the fact that multiplication is associative.

Counterexamples
Commutativity. The operations.k are non commutative. Fork = 1 andk = 2 this
can be seen from the examples (••) .1 • /= • .1 (••) and (••) .2 (•(••)) /= (•(••)) .2 (••)
whereas for the operations of higher index it suffices to notice thata .k • /= • .k a
for any binary treea different from•.

Associativity.The operation.1 is not associative as is easily seen from the
example• .1 (• .1 •) /= (• .1 •) .1 •. The operations.k for k ≥ 3 are not associative
either. For example, (a .k •) .k a /= a .k (• .k a) whena /= •. Thus, by Theorem 1, the
only associative operation is.2 .

Cancellation rule.The left cancellation rule does not hold for the operations
.k when k ≥ 3. Indeed, for any binary treea and k ≥ 3 we have• .k a = •.
Thus • .k a = • .k b for all binary treesa and b which clearly shows that the
left cancellation rule does not hold. In Sect. 5 we give necessary and sufficient
conditions for the equalitya .k b = a .k d.

The right cancellation rule is harder to analyse. It is known to hold fork = 1,
k = 2, k = 3 andk = 4 but the general case is yet unsettled. We conjecture here
that it holds for all .k whenk ≥ 1.

4 Prime trees and prime decomposition

Definition 3. A binary tree a is prime if it is different from the one node tree•
and if a = b .2c implies that b= • or c = •. Trees that are not prime are composite.

The weight of a product of binary trees is equal to the product of the weights.
It is therefore clear that any binary tree whose weight is a prime number is
automatically prime. The converse of this statement is not true. The binary tree
(•(•(••))) has weight 4 and is a prime binary tree. It is easy to see that four
of the five binary trees of weight four are prime and that, in general, a natural
numbern is prime if and only if all binary trees of weightn are prime.

In Table 1 we give, for the first values ofn ≥ 1, the numberCn of binary
trees of weightn, the numberIn of composite trees of weightn, and the number
Pn of prime trees of weightn. It is well-known that the number of binary trees
of weigth n is equal to thenth Catalan numberCn = (2n − 2)!/(n!(n − 1)!) (see
[14], [12], [11] or [21]). No simple expression forIn or Pn seems available. The
sequencePn does not appear in the recent encyclopedic list of integer sequences
[22]. Ph. Flajolet has shown [9] thatTn − In is equal to 0 ifn is prime, is equal to
(Cp)2 if n = p2 is the square of a prime, and is otherwise asymptotic to 2CpCn/p

wherep is the smallest prime factor ofn.
Binary trees different from the one node tree can be decomposed into products

of prime binary trees. The decomposition is unique up to, and including, the
sequence in which the factors appear. We first need a lemma for proving this.

8 V.D. Blondel

Lemma 1. Let a1, a2, b1, b2 be binary trees such that a1 .2 a2 = b1 .2 b2. If a1 and
b1 (or a2 and b2) are prime, then a1 = b1 and a2 = b2.

Proof. If a1 = b1, then the left cancellation rule for multiplication shows that
a2 = b2. We proceed by induction ona2 to prove thata1 = b1. If a2 = • then
a1 = b1 .2 b2. Sincea1 is prime andb1 is different from• we must haveb2 = •
and thusa1 = b1. Assume now thata1 .2 a2 = b1 .2 b2 anda2 = (a2La2R). If b2 = •,
then a1 .2 a2 = b1 and the theorem is proved, so assumeb2 = (b2Lb2R). We have
(a1 .2 a2L) .1 (a1 .2 a2R) = (b1 .2 b2L) .1 (b1 .2 b2R). By the cancellation rule for addition
and the induction hypothesis we then concludea1 = b1 as requested. �

It is now easy to show:

Theorem 2 (Existence and uniqueness of prime decomposition).Let a be a
binary tree different from•. Then a = a1 .2 a2 .2 · · · .2 an for some n≥ 1 and
some prime binary trees ai . If a = b1 .2 b2 .2 · · · .2 bm is another such decomposition.
Then n= m and ai = bi for i = 1, ..., n.

Proof. Let a be a binary tree different from•. If a is prime, thenn = 1 anda1 = a
is the decomposition sought. Ifa is composite, there existsa1 and a2 different
from • and such thata = a1 .2 a2. The factors can then be further decomposed
until prime factors are reached. Since the weight of the factors are positive and
strictly decreasing, the procedure must end after a finite number of steps. Thus
a = a1 .2 a2 .2 · · · .2 an for somen ≥ 1 andai prime binary trees.

Assume now thata = b1 .2 b2 .2 · · · .2 bm is another such decomposition. By the
lemma we must havea1 = b1 anda2 .2 a3 .2 · · · an = b2 .2 b3 .2 · · · bm. But then by
successive repetition of the same argument we are lead to the conclusion.�

The decomposition given in the theorem is called a prime decomposition.
The i th factor in the decomposition is uniquely determined and is thei th factor
of a. We can characterise the binary trees whose sum is prime.

Theorem 3. Let a, b be binary trees different from the one node tree•. Then a.1 b
is prime if and only if the first factors of a and b are distinct.

Proof. (Necessity)Let the first factors ofa and b be distinct and assume by
contradiction thata .1 b is not prime. Thena = c1 .2 c2 for some c1 and c2

different from•. Sincec2 is different from• we may writec2 = c2L .1 c2R. Hence
a .1 b = (c1 .2 c2L) .1 (c1 .2 c2R). By the cancellation rule this leads toa = c1 .2 c2L and
b = c1 .2 c2R. But sincec1 is different from• these last identies show that the first
factors ofa andb are identical and a contradiction is thus attained.
(Sufficiency)Let a, b be distinct from• and assume by contradiction thata = c.2a′

andb = c.2b′ for somec different from•. Thena.1b = (c.2a′).1(c.2b′) = c.2(a′ .1b′) =
c .2 c′ with c andc′ different from•. A contradiction is achieved and the theorem
is proved. �

5 The operations .k for k ≥ 3

Multiplication of binary trees is associative. The result ofa .3 b therefore depends
on a and on the weight ofb but not otherwise on the shape ofb.

Structured numbers 9

Table 1. Number of binary trees, composite trees and prime binary trees of given weight

weight n Cn In Pn

1 1 1 0
2 1 0 1
3 2 0 2
4 5 1 4
5 14 0 14
6 42 4 38
7 132 0 132
8 429 9 420
9 1430 4 1426
10 4862 28 4834
11 16796 0 16796
12 58786 98 58688

Proposition 2. Let a, b1, b2 be binary trees and assume thatweight(b1) =
weight(b2). Then a.3 b1 = a .3 b2.

We use this result for introducing a new notation. Letn ≥ 1 anda ∈ BT.
By a .3 n we mean the binary treea .3 b whereb is any binary tree of weightn.
A similar construction is possible for operations of higher index.

Definition 4. Let k ≥ 3. The operations♦k : BT × BT → N are defined induc-
tively by

1. a ♦3 b = weight(b)
2.

a ♦k b =

{
1 if b = •
(a ♦k bL).((a .k bL) ♦k−1 (a .k bR)) if b = (bLbR)

With this purpose-built definition we have:

Theorem 4. Let a, b be binary trees and k≥ 3. Then a.k b = a .3 (a ♦k b).

Proof. We proceed by induction onk. For k = 3 the result is contained in
Proposition 2. We assume that the result holds for.k−1 and show, by induction
on b, that it also holds for.k . If b = •, thena .k • = a = a .3 • = a .3 1 = a .3 (a ♦k •)
so letb = (bLbR) and assume thata .k bL = a .3 (a ♦k bL) anda .k bR = a .3 (a ♦k bR).
We have

a .k b = a .k (bLbR)

= (a .k bL) .k−1(a .k bR)

= (a .k bL) .3 ((a .k bL) ♦k−1 (a .k bR))

= (a .3 (a ♦k bL)) .3 ((a .k bL) ♦k−1 (a .k bR))

= a .3 ((a ♦k bL)((a .k bL) ♦k−1 (a .k bR)))

= a .3 (a ♦k b)

and the theorem is proved. �

10 V.D. Blondel

Cancellation rules for.1 and .2 were analysed in Sect. 3. We have shown that
the left cancellation rule does not hold fork ≥ 3 since, for example,• .k a = • .k b
for any binary treesa and b. With the help of Theorem 4 this observation can
now be made more precise.

Theorem 5. Let a, b, d be binary trees different from• and k ≥ 3. Then a.k b =
a .k d if and only if a♦k b = a ♦k d.

Proof. (Necessity)By Theorem 4 we know thata .k b = a .3 (a ♦k b) anda .k d =
a .3 (a ♦k d). Hencea .3 (a ♦k b) = a .3 (a ♦k d). But then the prime decomposition
theorem leads toa ♦k b = a ♦k d as requested.
(Sufficiency)This part is trivial. If a ♦k b = a ♦k d, thena .k b = a .3 (a ♦k b) =
a .3 (a ♦k d) = a .k d. �

Corollary 1. Let a, b, d be binary trees different from•. Then a.3 b = a .3 d if and
only if weight(b) = weight(d).

Some of the algebraic properties of the operations.k are summarized in
Table 2

Table 2. Algebraic properties of the operations.k

Commutativity Associativity neutral cancellation rules
.1 no no no a .1 b = c .1 d ⇔ a = c andb = d
.2 no yes a .2 • = a a .2 b = c .2 b ⇔ a = c

• .2 a = a a .2 b = a .2 d ⇔ b = d
.3 no no a .3 • = a a .3 b = c .3 b ⇔ a = c

• .3 a = • a .3 b = a .3 d ⇔ weight(b) = weight(d)
.4 no no a .4 • = a a .4 b = c .4 b ⇔ a = c

• .4 a = • a .4 b = a .4 d ⇔ a ♦4 b = a ♦4 d
.k no no a .k • = a Conjecture:a .k b = c .k b ⇔ a = c
(k ≥ 5) • .k a = • a .k b = a .k d ⇔ a ♦k b = a ♦k d

6 Valuations

A valuation µ is a function defined on binary trees and taking values inZ.
Operations on integers can be used in a natural way to define valuations.

Definition 5. Associated to∆ : Z×Z → Z and e∈ Z is a valuationµ : BT → Z
defined inductively by

µ(a) =

{
e if a = •
µ(aL)∆µ(aR) if a = (aLaR)

Valuations that can be obtained in this way are called inductive.

We immediatly recognise that the weight function is an inductive valuation
obtained by settinga∆b = a + b ande = 1. Other inductive valuations are given
next.

Structured numbers 11

Maximal height.If we seta∆b = 1 + max(a, b) ande = 0 the valuation obtained
gives the maximal height of all external nodes. This quantity is referred to as the
height of the tree and the corresponding valuation is denoted byheight.

Minimal height.The valuation obtained witha∆b = 1 + min(a, b) and e = 0
gives the minimal height of all external nodes and is denotedminheight.

Strahler number.The valuation obtained witha∆b = [a = b] + max(a, b) and
e = 0 appear in various contexts (the expression [a = b] outputs 1 whena = b
and outputs 0 otherwise). In [8] it is called the “register function” and is used
to calculate the minimal number of registers needed to evaluate an arithmetic
expression (see also [16]). The same function is known in hydrology as the
Horton-Strahler function and is used to describe characteristics of river flows
(see [23], [24] and references cited therein). The Strahler number of a tree is
equal to the height of the maximal complete tree that can be embedded in the
tree [8]. We denote this valuation byStrahler.

2-bud. The valuation obtained witha∆b = [a = b] + min(a, b) and e = 0 (note
the similarity with the definition of the Strahler number) has, to our knowledge,
never been analysed. We denote this function by 2− bud. The 2-bud of a binary
treea can be shown equal the largestn ≥ 0 for which thenth first factors ofa
are equal to (••). The 2− bud of a binary treea is thus equal to the largestn
for which a = ((••) .3 n) .2 b for some treeb. Because of the grafting interpretation
of the operation.2 this number corresponds also to the heightn of the largest
complete binary tree (••) .3 n that appear everywhere on the boundary ofa.

Boolean valuation.The valuation obtained witha∆b = [a = b] ande = 0 outputs
1 if the weight of the tree is even and outputs 0 if it is odd.

In Table 3 we list some possible choices of operation∆ and their resulting
valuations. Several of these inductive valuations have remarkable properties with
respect to.k .

Theorem 6. Assume∆ : Z × Z → Z, e = 0, and letµ be the inductive valuation
associated to∆ and e. If a+ (b∆c) = (a + b)∆(a + c) for all a, b, c ∈ Z, then

1. µ(a .2 b) = µ(a) + µ(b)
2. µ(a .3 b) = µ(a).µ(b)
3. µ(a .4 b) = µ(a)µ(b)

Proof. We prove the first identity by induction onb. Forb = • we haveµ(a .2•) =
µ(a) = µ(a) + µ(•) so let b = (bLbR) and assume thatµ(a .2 bL) = µ(a) + µ(bL)
andµ(a .2 bR) = µ(a) + µ(bR). We have then

µ(a .2 b) = µ(a .2 (bL .1 bR))

= µ((a .2 bL) .1 (a .2 bR))

= µ(a .2 bL)∆µ(a .2 bR)

= (µ(a) + µ(bL))∆(µ(a) + µ(bR))

= µ(a) + (µ(bL)∆µ(bR))

= µ(a) + µ(b)

12 V.D. Blondel

The other identities are similarly proved. �

Corollary 2. Let µ be one of the valuations height, minheight, Strahler or2 −
bud. Then

1. µ(a .2 b) = µ(a) + µ(b)
2. µ(a .3 b) = µ(a).µ(b)
3. µ(a .4 b) = µ(a)µ(b)

Proof. The corresponding pairs (∆, e) satisfy the conditions of Theorem 6.�

Table 3. Some inductive valuations

a∆b e resulting valuation
a + b 1 weight
1 + max(a, b) 0 height
1 + min(a, b) 0 minheight
[a = b] + max(a, b) 0 strahler
[a = b] + min(a, b) 0 2 − bud
[a = b] 0 1 if weight is even

0 if weight is odd

7 Infinite trees

The operations.k introduced for finite binary trees can be extended to infinite
binary trees. For convenience we shall look at infinite trees as languages over
2-letter alphabets.

Let Σ be a finite alphabet andL1, L2 ⊆ Σ∗ be two languages overΣ (for
definitions see [19]). The product ofL1 andL2 is the languageL1 · L2 = {x1 · x2 :
x1 ∈ L1, x2 ∈ L2}. Givenx ∈ Σ∗, the languagex · L and the residualx−1 · L of L
by x are defined byx ·L = {x}·L andx−1 ·L = {y ∈ Σ∗ : x ·y ∈ L}, respectively.
If n ≥ 0, the truncation ofL at sizen is the languagedLen = {x ∈ L : |x| ≤ n}
where |x| is the length ofx. For a languageL and n ≥ 0 we defineL0 = {ω}
(ω denotes the empty word),Ln+1 = Ln · L andL∗ =

⋃∞
i =0 Li . Finally, a language

L over Σ is factorial if x, v ∈ Σ∗ and x · v ∈ L implies thatx ∈ L. Factorial
languages always containω unless they are empty.

Proposition 3. Let L, L1, L2, ... be factorial languages overΣ, x ∈ Σ∗ and n≥
0. The languages x−1 · L, dLen, L =

⋃∞
i =0 Li , L =

⋂∞
i =0 Li , L1 · L2 and L∗ are

factorial.

A binary tree is entirely specified by its set of internal nodes. Any internal
node can be reached by starting from the root and specifying the finite sequence
of left and right movements needed to reach it. Let us denote these movements
by a and b respectively. A node can thus be seen as a word over the alphabet
Σ = {a, b}. A finite (infinite) tree will therefore have a representation as a finite
(infinite) language overΣ. To the one node binary tree• corresponds the empty
languageL = ∅, the tree (••) is represented byL = {ω} and the two binary trees

Structured numbers 13

of weight 3 have{ω, a} and{ω, b} as corresponding languages. It is easy to see
that languages generated by binary trees are factorial. The converse is also true:
Any factorial language over a 2-letter alphabet can be seen as a representation
of a particular binary tree, the corresponding binary tree is infinite when the
language is. We denote byFL the set of factorial languages and byFFL the
set of finite factorial languages over the two letter alphabet{a, b}. There is an
obvious bijection betweenFFL andBT.

Definition 6. The operation .1 : FFL × FFL → FFL is defined by L1 .1 L2 =
{ω} ∪ a · L1 ∪ b · L2. For k ≥ 2, the operations.k : FFL × FFL → FFL are
defined inductively by

L1 .k L2 =

{
L1 if L2 = ∅
(L1 .k a−1L2) .k−1(L1 .k b−1L2) if L2 /= ∅

We now remove the finiteness condition on the languages L1 and L2 and define,
for finite or infinite languages, the operations.k (k ≥ 0) by

L1 .k L2 = ∪∞
i =0(dL1ei .k dL2ei)

Proposition 4. The operations.k are operations from FL× FL to FL.

Proof. The statement is clearly true for finite languages because any.k product
of two finite languages can be expressed in terms of finitely many operations of
the form given in Proposition 3. We complete the proof by observing that the
result of a .k product of infinite languages is defined by a countable union of
finite factorial languages. �

Most properties of the operations.k for finite binary trees were proved by
induction. This principle does not anymore hold for infinite binary trees and
many of the properties shown for finite binary trees do therefore not hold for
infinite binary trees. It is nevertheless possible to show that the Properties 2.1
and 2.2 of Theorem 1 remain satisfied for infinite binary trees. On the other hand
the Properties 3.1 and 3.2 in the same theorem may be violated by infinite binary
trees. Assume for example thatL1 = Σ∗, L2 = {ω} and L3 = {ω, a, b}. Then
L1 .2 L2 = L1 .2 L3 but L2 /= L3.

The result of operations of index greater or equal to 3 can be expressed as
.2 products of identical factors. Infinitely many factors are multiplied when the
second operand is infinite. The operation.2 correspond to the usual multiplication
of languages of computer science and the operation.3 therefore degenerates into
the Kleene star operation when the second operand is infinite.

Theorem 7. Let L1, L2 be two factorial languages. Then

1. L1 .2 L2 = L2 · L1

2.

L1 .3 L2 =

{
Ln

1 some n≥ 1 if L2 is finite
L∗

1 if L2 is infinite

14 V.D. Blondel

Proof. We prove the result forL2 finite by induction onL1. The result is clearly
true forL1 = ∅; so letL2 = L′

2 .1 L′′
2 and assume thatL1 .3 L′

2 = Ln′
1 andL1 .3 L′′

2 = Ln′′
1

for somen′, n′′ ≥ 0. We have then

L1 .3 L2 = L1 .3 (L′
2 .1 L′′

2)

= (L1 .3 L′
2) .2 (L1 .3 L′′

2)

= Ln′
1 · Ln′′

1

= Ln′+n′′
1

as requested. Assume now thatL2 is infinite. We show that the languagesL∗
1 and

L1.
3L2 coincide. Indeed, ifx ∈ Σ∗ andx ∈ L1.

3L2, thenx ∈ (dL1ei .
3dL2ei) for some

i . But then by the finite case there exist somen for which x ∈ (dL1ei)n ⊆ Ln
1 ⊆

L∗
1. Assume now thatx ∈ L∗

1. Thenx ∈ Ln
1 for somen. But thenx ∈ L1 .3 dL2ei

for somei and thusx ∈ L1 .3 L2 as requested. �
Remark.The condition in Definition 6 that the languages be factorial is not
essential. The operations.k can equally be defined for arbitrary language defined
over 2-letter alphabets.

Notes added in proof

1. The right cancellation rule conjectured at the end of Sect. 3 has recently been proved by Philippe
Duchon (“Some new results on a family of operations for binary trees”, submitted, 1997).

2. The results contained in this article have been presented at a seminar at INRIA-Paris in October
1995. An abstract of the seminar appears in “Algorithms Seminars 1994–1995”, INRIA Technical
Report 2669, Bruno Salvy (ed.), 1995.

Acknowledgements.We wish to express our sincere thanks to anonymous reviewers for their helpful
remarks. We are also thankful to Professor D. Welsh, Oxford University, Professor Ph. Delsarte,
University of Louvain, Professor Ph. Flajolet, INRIA, Dr S. Gaubert, INRIA, Professor M. Nivat,
University of Paris, and Professor D. Knuth, Stanford University for commenting a first version of
this paper.

References

1. G. R. Blakley, I. Borosh: Knuth’s iterated powers, Adv. in Math.34 (1979) 109-136.
2. V. Blondel: Structured numbers, Technical Report TRITA/MAT-94-31, Department of mathe-

matics, Royal Institute of Technology, S-10044 Stockholm (1994).
3. V. Blondel: Operations on structured numbers, Research report 2464, INRIA BP 105, F-78153

Le Chesnay Cedex (1995).
4. V. Blondel: Une famille d’oṕerations sur les arbres binaires, C. R. Acad. Sci. Paris, Série 1321

(1995) 491-494.
5. R. Costa: Shape identities in genetic algebras, Lin. Algebra and its Appl.214 (1995) 119-131.
6. I. M. Etherington: On non-associative combinations, Proc. Royal Soc. of Edinburgh58-59

(1937-1938) 153-162.
7. I. M. Etherington: Genetic algebras, Proc. Royal Soc. of Edinburgh58-59(1937-1938) 242-258.
8. Ph. Flajolet, J. C. Raoult, J. Vuillemin: The number of registers required for evaluating arithmetic

expressions, Theoret. Comp. Sc.9 (1979) 99-125.
9. Ph. Flajolet: Analyse d’algorithmes de manipulation d’arbres et de fichiers, Cahiers BURO,

30-35 (1981) 1-209.
10. Ph. Flajolet: Personnal communication, 1996.

Structured numbers 15

11. M. Gardner: Mathematical games: Catalan numbers, Sci. Amer. (1976) 120-122.
12. H. W. Gould: Research bibliography of two special number sequences, Mathematica Monon-

galiae12 (1971).
13. J. W. Grossman, R. Z. Zeitman: An inherently iterative computation of Ackermann’s function,

Theoret. Comp. Science57 (1988) 327-330.
14. P. Hilton, J. Pedersen: Catalan numbers and their various uses, in: W. Lederman, ed., Handbook

of applicable mathematics. John Wiley, Chichester, 1990
15. J. H. Holgate: Population algebras, J. Royal Statist. Soc. Ser. B43 (1981) 1-19.
16. R. Kemp: The average number of register needed to evaluate a binary tree optimally, Acta

Informatica11 (1979) 363-372.
17. D. E. Knuth: The art of computer programming, Vol. I and II. Addison-Wesley, Reading, MA,

1968.
18. D. E. Knuth: Mathematics and computer science: coping with finiteness, Science194 (1976)

1235-1242.
19. J. van Leeuwen: Handbook of theoretical computer sciences, Vol. A and B. North-Holland,

Amsterdam, 1990
20. C. Pair, A. Quere: D́efinition et étude des bilangages régulier, Information and Control13

(1968) 565-593.
21. R. Sedgewick, Ph. Flajolet: An introduction to the analysis of algorithms. Addison-Wesley,

Reading, MA, 1996
22. N. J. A. Sloane, S. Plouffe: The encyclopedia of integer sequences. Academic Press, New York,

1995
23. A. N. Strahler: Hypsomic analysis of erosional topography, Bulletin Geological Society of

America63 (1952) 1117-1142.
24. X. G. Viennot: Trees, in: M. Lothaire, ed., Mots. Mélanges offerts̀a M.-P. Scḧutzenberger.

Hermes, Paris, 1990.

