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Abstract

Abstract. We show that the simultaneous stabilizability of three
linear systems, that is the question of knowing whether three linear
systems are simultaneously stabilizable, is an undecidable question. It
is undecidable in the sense that it is not possible to find necessary and
sufficient conditions for simultaneous stabilization of the three systems
that involve only a combination of arithmetical operations (additions,
substractions, multiplications and divisions), logical operations (‘and’
and ‘or’) and sign tests operations (equal to, greater than, greater
than or equal to,...) on the coefficients of the three systems.
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1 Introduction

When is it possible to find a single rational controller that simultaneously
stabilizes three, or more, linear systems? At present nobody is capable of
giving a comprehensive answer to this question and this paper is devoted to it.

We first clearly state what we mean by ‘simultaneously stabilizes’.

We restrict our attention to single-input single-output linear, time invariant
systems that are rational but not necessarily causal. By ‘system’ we mean
systems that satisfy these conditions. Each of our k£ systems is represented
in the frequency domain by a real rational function p;(s) € R(s) (i = 1, ..., k).
To control our systems we allow ourselves the use of a linear, time invariant
rational controller. Such a controller is also represented in the frequency
domain by a real rational function c(s) € R(s). By ‘controller’ we mean
controllers that satisfy these conditions.

Finally, our goal is to achieve closed loop internal stability with the controller.
That is, we require that the four closed loop transfer functions p;(s)c(s)(1 +
pi(s)e(5)) L pi(3)(1+ pils)e(s) L, e(s)(1+ pils)e(s) ™ and (1+ pi(s)e(s)) !
associated to the k systems p;(s) (i = 1,..., k) have no poles in the extended
right half plane. A controller that satisfies that condition is said to be a
simultaneous stabilizing controller of p;(s) (i =1, ..., k).

Our question is:

Under what conditions on the systems p;(s) (i = 1,...,k) does
there exist a simultaneous stabilizing controller?

This problem has been formulated for some years now (see, for example, [18]
or [15]) and, despite many efforts, it has remained unsolved ever since for
three or more systems.

The case k = 1 —the stabilization of a single plant— is easily dealt with. There
always exists a stabilizing controller for a single system. Moreover, once a
stabilizing controller of a single system is found, it is easy to parametrize the
infinite set of all stabilizing controllers of this system. This parametrization
is known as the Youla-Kucera parametrization and was discovered in 1976,



see [22].

By using the Youla-Kucera parametrization, it is possible to rephraze the
simultaneous stabilization question of two systems into one of strong stabi-
lization —stabilization with a stable controller— of a single system. The strong
stabilization question was solved in 1974 by D. Youla et al. [21] and has a
surprising and elegant solution: a system is stabilizable by a stable controller
if and only if it has an even number of real unstable zeros between each pair
of real unstable poles. What is really remarkable in this condition, known as
the parity interlacing property, is that it involves only real poles and zeros
and not the complex ones.

It was proved by B. Anderson [1] that the parity interlacing condition can
be checked by performing only elementary arithmetic operations (additions,
substractions, multiplications and divisions) on the coefficients of the system:
the real poles and zeros do not have to be computed explicitly.

Thus the simultaneous stabilizability question for £ = 2 is fully solved; we
can first translate it into a strong stabilization question by using the Youla-
Kucera parametrization and then check the parity interlacing property.

The picture is different for three systems. For k = 3 the question is open and
is nowadays commonly referred to as the simultaneous stabilization problem
for three systems. It is recognized as one of the hard open problem in linear
system theory and has attracted much attention this last decade.

The presently available results are in the form of necessary conditions [8],
[19], sufficient conditions [20] [5], [12] or untractable necessary and sufficient
conditions [8], [7]. Despite all these efforts, there exist at present no tractable
necessary and sufficient conditions for testing the simultaneous stabilizability
of three or more systems.

Our ambition in this paper is to explain one of the reasons for the control
community’s failure to produce such simultaneous stabilizability conditions.
We show in the central theorem of the paper “Theorem 9- that it is hopeless
to search for a general tractable criterion to test the simultaneous stabiliz-
ability of three systems because such a criterion... does not exist.

The simultaneous stabilizability question for three or more linear systems



is —in the sense that we give to decidability— undecidable. It is not possi-
ble to find a general criterion that involves only the coefficients of three or
more linear systems, arithmetical operations (additions, substractions, mul-
tiplications and divisions), logical operations (‘and’ and ‘or’) and sign tests
operations (equal to, greater than, greater than or equal to,...) and that is
necessary and sufficient for simultaneous stabilizability of the systems.

Questions that can be solved by using only the above mentioned elementary
operations are sometimes refered to as ‘tractable’. This paper points thus to
an intrinsic limitation of simultaneous stabilizability conditions: it is possible
to find necessary or sufficient conditions for simultaneous stabilization and it
is also possible to find equivalent formulations, but it is not possible to find
tractable necessary and sufficient conditions.

Section 2 sets out the notations. Section 3 states the simultaneous stabiliza-
tion question in the convenient and classical factorization set-up. Our notion
of a decidable question is presented in Section 4. Section 5 introduces a deep
result of analytic function theory that is used in our central Section 6. In
that final section, we show in Theorem 9 that the simultaneous stabilization
question of three or more systems is not a decidable question.

This paper contains some of the material from the first author’s PhD thesis.
See [6].

2 Notations

R is the set of real numbers and Q is the set of rational numbers. R[s] is the set
of real polynomials in the variable s. R(s) is the set of real rational functions.
Q(p) is the set of rational functions in the variable § and with coefficients in
Q. Cw is the extended complex plane CU{oc} topologized with the Riemann
sphere topology and R, is the extended real line, RU {cc}. D is the open
unit disc {s € C: |s| < 1}, D is the closed unit disc {s € C: |s| < 1} and
Cioo = {s € C: R(s) > 0} U{oo} is the extended closed right half plane.
Assume that €2 is a subset of Co. A real rational function f(s) € R(s) is



Q-stable if it has no poles in Q 1. S(Q) is the set of all Q-stable rational
functions. We use U(f2) to denote the set of functions in S(£2) whose inverse
are in S(£2) and we call such rational functions 2-bistable rational functions.
Finally, to shorten the notations, we denote U = U(Cj) and S = S(Cioo).

3 Simultaneous stabilization

A rational function is stable if and only if it has no poles in the extended
closed right half plane, i.e. if and only if it belongs to the set S.
Throughout this paper we consider a controller to be within a unity feedback
loop with the system and we adopt the following, usual, definition of stability
for this closed loop configuration.

Definition 1 A controller ¢(s) € R(s) is a stabilizing controller for a system
p(s) € R(s) if and only if the four transfer functions p(s)c(s)(1+p(s)e(s))t,
c(s)(1+ p(s)e(s)) ™ p(s) (1 +p(s)e(s)) ™" and (1+ p(s)c(s))™ belong to S.

We also need the definition of strong stabilization.

Definition 2 A system p(s) € R(s) is strongly stabilizable if and only if there
exists a stable stabilizing controller for p(s). A stable stabilizing controller is
called a strong stabilizing controller.

According to the first definition, the simultaneous stabilization question for
k systems is.

Question 1 Under what necessary and sufficient condition(s) on {p;(s) :
i = 1,....,k} does there exist a stabilizing controller c¢(s) € R(s) for the k
systems p;(s) € R(s)?

The question of simultaneous stabilization of £ + 1 systems encompasses
that of strong simultaneous stabilization of k£ systems, i.e. that of simul-
taneous stabilization of k systems with a stable controller. Indeed, assume

'We draw the reader’s attention on the fact that this is pure convention. Other authors
define Q-stability in exactly the opposite way.



that we have a system p(s) = 0, then the four transfer functions p(s)c(s)(1+
p()e()) ™, e()(1 + p(s)e()) ™%, p(s)(1 + pls)e(s)) ™ and (1 + p(s)e(s))"!
associated to the controller ¢(s) € R(s) and to the system p(s) = 0 are equal
to 0,¢(s),0 and 1. The constants 0 and 1 are, by definition, stable, and thus
the controller ¢(s) stabilizes p(s) = 0 if and only if it is stable.
Simultaneous stabilization of the k41 systems py = 0, p1, p2, ..., pr is therefore
equivalent to simultaneous stabilization of the k systems py, po, ..., pr with a
stable controller.

The condition given above for stabilization is not very convenient because it
involves four transfer functions. We condense this unpractical condition by
using the so-called factorization approach. We give hereafter a short intro-
duction to this theory and refer the interested reader to [17] for more details.

It is easy to check that S is a commutative ring. The invertible elements
of the ring S are the stable real rational functions whose inverse is stable.
We have denoted the set of invertible elements of S by U. Two elements of
S are coprime in S if and only if they have no common zeros in C;,. The
next theorem says that any element of R(s) can be expressed as a ratio of
two coprime elements of S. This factorization procedure is a generalization
of the usual factorization of rational functions as ratios of polynomials.

Theorem 1 Assume that p(s) € R(s). There exists ny(s),dy(s) € S coprime

in S such that p(s) = Z;((jg Such a fractional factorization of p(s) is called

a coprime fractional factorization of p(s) in S.

Note that coprime fractional factorizations are not unique.
The link between coprime fractional factorizations and stabilization is given

in the next theorem?.

Theorem 2 Let p,c € R(s) be a system and a controller and let p = Z—z and
¢ = g be any coprime fractional factorizations of p and ¢ in S. Then c
stabilizes p if and only if n.n, + d.d, € U.

2When clear from the context, we drop the reference to the complex variable s and
write, for example, p for p(s).



As a consequence of this theorem, we formulate simultaneous stabilization
under the following form.

Theorem 3 Let p; € R(s) (1 = 1,...,k) and let p; = 5 be any coprime
fractional factorizations of p; in S. Then p; are simultaneously stabilizable if
and only if there exist n.,d. € S such that n.n; +d.d; € U (i =1,..., k).

It is this formulation that is used in the central section.

4 decidability and algebraic numbers

This section is in three parts. We first give our definition of decidability,
thereafter we define algebraic and transcendental numbers and finally we
prove a result that links decidable questions and algebraic numbers.

4.1 decidable

We give the example of polynomial stability to illustrate what we mean by
a ‘decidable question’. The example is then generalized to an abstract setting.

We say that the real polynomial p(s) = a; + ass + ... + ap18™ (ap1 # 0)
of degree n is stable if and only if it has no zeros with positive or zero real part.

For each positive integer n there exists a test on the coefficients —known as
the Routh-Hurwitz criterion— that allows to check, without computing its
roots, whether a polynomial of order n is stable. Up to second order poly-
nomials the test is trivial: a polynomial of order less than or equal to two
is stable if and only if all its coefficients have the same sign. The criterion
becomes more interesting when n > 3. We give its formulation for third
order polynomials.

The polynomial p(s) = a; + ass + azs® + ays® (ay # 0, a; € R) is stable if
and only if either

a; >0 (i =1,2,3,4) and asaz — ajay > 0



or
a; <0 (i=1,2,3,4) and asaz — ayay < 0.

The remarkable feature of the Routh-Hurwitz criterion is that it involves only

the coefficients of the polynomial and three sorts of elementary operations.

In our criterion, we use only:

1. the coefficients a; (i = 1,2, 3,4),
2. substractions and multiplications,
3. the ‘and’” and ‘or’ logical operations (we denote these by A and V),

4. strict positivity and strict negativity tests (> and <).

Due to this particular feature, the criterion can be rewritten under the form
of a logical sentence.
The polynomial

p(s) = ay + ags + azs® + ayus®

is stable if and only if the logical sentence
(((a1 > 0) A (ag > 0) A (a3 > 0) A (ag > 0) A (agas — ajay > 0))
\/((a1 < O) VAN (CLQ < O) VAN (a3 < O) A (a4 < 0) A (CLQCZg —a1aq4 < 0)))

is true.

The binary question of deciding whether a third order polynomial is stable
by using only its four coefficients is a typical example of what we mean by a
decidable question: it can be answered by using a finite number of elementary
operations.

We say that the polynomial stability question is decidable because it is de-
cidable for each fixed polynomial degree n.

The abstract notion of decidability is only a formalization of this simple and
intuitive idea. We say that a binary question () associated to an n-uple
(a1, ...,a,) € R" is decidable if and only if there exists a logical sentence L
that involves only elementary operations on the entries of the n-uple and
that is true if and only if @) is.

We formalize this concept with the next two definitions.



Definition 3 An elementary operation is any one of

1. the four arithmetic operations: addition, substraction, multiplication
and division. These are commonly referred to as rational operations,

2. the two logical operations: ‘and’ and ‘or’,

3. the five test operations: =, >, <,> or <.

Definition 4 A binary question Q) associated to an n-uple (ay,...,a,) € R"
1s decidable if and only if there exists a meaningful logical sentence L of finite
length that involves only elementary operations on the entries a; of the n-uple
and such that L is true if and only if Q) 1s.

In other words, a binary question Q(ay, ..., a,) associated to an n-uple

(ag, ..., an)

is decidable if and only if there exists a logical sentence of finite length
L(ay, ..., a,) that is made up of elementary operations only and such that

V(ay,...,a,) €R" : (Q(ay,...,a,) is true < L(ay,...,a,) is true).

With this definition, and for each n € N, the following questions are decid-
able: when is a real (or complex) polynomial of order n stable? when is a
n X n matrix positive definite? when do two polynomials of order n have a
common zero? when are two linear systems of order n simultaneously stabi-
lizable?

Similarly to the example of polynomial stability, we say that a binary question
associated to an n-uple in R™ —without specifying the value of n— is decidable
if and only if it is decidable for each fixed value of n. Therefore, the stability
of a polynomial, the positive definiteness of a matrix, the coprimeness of two
polynomials and the simultaneous stabilizability of two linear systems are all
decidable questions.

On the other hand, we show in Section 6 that the question: when are three
systems simultaneously stabilizable? is not decidable.



4.2 Algebraic numbers

Algebraic numbers are numbers that are roots of polynomials whose coeffi-
cients are integers (see, for example, [16] or [4]).

Definition 5 A real number is algebraic if and only it is the root of a poly-
nomial that has integer (or rational) coefficients. A real number that is not
algebraic is transcendental.

For example, —1,v/2, i = v/—1 and V\/\l/—gjgl are algebraic numbers whereas

m, e and F(i) are not, they are transcendental. It is in general not true that
the ratio of two transcendental numbers is a transcendental number. For our
simultaneous stabilization purposes we need the next non-trivial result. The
proof of this theorem may safely be ignored by those readers wishing to make
a fast reading. It is totally independent of the rest of the paper.

42

Theorem 4 The real number &) 15 transcendental.
4

Proof

Our proof is based on a result contained in the third section of the last chapter

of ‘Transcendental number theory’ (A. Baker, p. 158, [4]). This result states:
21

“The transcendence degree of the field L generated by w; = %, Wy = iwy,

m = wil, and 75 = —in; over the rationals Q is at least 2.”

It is trivial to see that the field L generated by wy, we, n; and 72 can equally

be written as

*(3)
L=q( \/é L0, ).
A subfield of L is given by
42
F:Q(Fél(i),ﬂ-)

21
Both % and ¢ are algebraic over F' and so L is a finite extension of F'.

By Steinitz Theorem (see [16], p. 140, Lemma 15.2), the combined fact that
L is a finite extension of F' and that L has a transcendence degree over Q of
at least 2 implies that the transcendence degree of F' over Q is at least 2.

10



Since F = Q(rii) , ), this implies that the transcendence degree of F' over
4

Q is precisely equal to 2 and, hence, that both 7 and r%%i) are transcendental
4

numbers. This ends the theorem. ]

4.3 decidability and algebraic numbers

In this section we establish a link between decidability and algebraic numbers.
As previously, we first illustrate our point with the example of polynomial
stability and then generalize the concept in an abstract setting.

Assume that § € R and that we wish to investigate the stability of the
polynomial p(s) = 1+ s+ (8s?+2s>. As noted above, the stability of a third
order polynomial is a decidable question and, hence, using the associated
logical sentence, the polynomial

p(s) =1+ Bs + Bs* + 25°

is stable if and only if the logical sentence

(1>0)A(B>0)A(B>0)A(2>0)A(F—2>0)
VIL<O0)A(B<O)A(B<0)A(2<0)A(—2<0))

is true.
After some trivial simplifications it appears that this logical sentence is true
if and only if

(B>0)A (B —2>0)

is. That is, if and only if

B e (V2,00).

We thus have the chain of equivalences

the polynomial 1 + s + Bs* + 2s° is stable
& (B>0)A(B*—2>0)is true
& Be(V2,0).

11



In the last equivalence the stability condition is expressed by means of an
open interval (\/i,oo) whose endpoints are the point at infinity and the
algebraic number /2.

A similar feature remains true in the abstract general case. Recall that Q(f)
denotes the set of rational functions of # with coefficients in Q.

Theorem 5 If Q(ay,...,a,) is a decidable binary question associated to an
n-uple (ai, ...,a,) and if all the entries a; of the n-uple are in Q(3) (a;(B) €
Q(B)), then there exist values Gy ; and oy ; (k =1,2 and j = 1,...,my,) that
are either equal to 00 or to algebraic numbers, such that

Qar(B), ..., an(B)) is true
< pJe (UTzl1(Q1,j751,j]) U (U?El[gljaﬁ?,j))'

Proof
Since the question Q(ay, ..., a,) is decidable, there exists a meaningful logical
sentence L(ay, ..., a,) of finite length that involves only elementary operations

on the entries a; of the n-uple and such that L(ay, ..., a,) is true if and only
if Q(ay,...,a,) is. Thus

VB ER : (Qai(B),...,an(P)) is true < L(ay(f), ..., an(B)) is true).

It remains to show that there exist values o ; and gy ; (k=1,2 and j =
1,...,my) that are either equal to oo or to algebraic numbers, such that

VB €R : L(ai(B),...,a,(B)) is true <

b e (U;nzll(gl,jvﬁl,j]) U (U;'n:QI[QQ,j?EZj))'
To prove this we proceed by induction on the size of the logical sentence
L(ay, ..., a,).

The logical sentence L(ay,...,a,) is either made up of two smaller logical
sentences Li(ay, ..., a,) and Ls(ay, ..., a,) linked by an ‘and’ or an ‘or’ logi-
cal operation (L(ay,...,a,) = Li(ay,...,a,) A La(ay, ..., an) or L(ay, ..., a,) =
Li(ay, ..., an)VLy(ay, ..., a,)) oris a nucleus expression of the form L(ay, ..., a,)
Ri(ay, ..., an) Ro(ay, ..., a,) where Ry(ay,...,a,) and Ry(ay, ..., a,) are ratio-

nal expressions of the coefficients ay, ..., a, (Ri(ai,...,a,) € Q(ay, ..., a,) for

12



i =1,2) and is any one of the five sign test operations <, <, >, >, =.
We analyse these two cases successively.

First, if L(ay, ..., a,) is a nucleus expression then L(ay(5), ..., a,(3)) is true if
and only if

Ry(ar(B), - an(B)) Ra(ar(B), ..., an(B))
for some € {<,<,>,> =}. By hypothesis a;(3) are rational expressions
of B (a;(8) € Q(B) for i = 1,2,...,n) and R,(ai,...,a,) are rational ex-
pressions of ay,...,a, (R;(ai,...,a,) € Q(ai,as,...,a,) for j = 1,2). Hence,
Ri(B) , Rj(a1(B), ..., an(B)) are also rational expressions of 3. The con-
dition Ry(ai(B),...,a,(5)) Ra(ai(B),...,a,(5)) is satisfied if and only if
R (B) R4(0) is, and this last condition is equivalent to

pe (Ugn=11(21,j>317j]> U (U}nﬁl [szaEZJ))

for some @ ; and g4 ; (k= 1,2 and j = 1,...,m;) that are equal to o0 or
to algebraic numbers. Thus the theorem is proved in the case of a nucleus
expression.

Secondly, suppose that L(ay, ..., a,) is made up of two logical sentences
Li(ay, ..., a,) and Lo(ay, ..., a,) linked by an ‘and’ or an ‘or’ logical operation.

By induction hypothesis assume that the values 51%:73‘ and g,lw- (k=1,2 and

j=1,...my) and 7; ; and g3 ; (k= 1,2 and j = 1,...,m}) are equal to £oc

or to algebraic numbers and are such that
Ly(a1(B), ., an(B)) is true < B € (U (al ;.71 ,]) U (Up[a3;.53))

and
Ly(ay(B), ..., an(B)) is true & 8 € (U, (a} ;.71 ,]) U (Uf2[e3,,73,)) -

Then, if L(ai, ...,a,) = Li(ay, ..., an) A Lo(aq, ..., a,) we have
L(a1(B), .., an(B3)) is true & B € (U (el ;71 ,]) U (Up[ah;,93,)))

13



m(<U§n:11(Q%,j7Eij]> U (Uggl[gg,jvag,j)))

whereas, if L(ay, ...,a,) = Li(ay, ..., an) V La(ay, ..., a,) we have
L(a(B), .., an(B)) is true & B € (U (e} ;.1 1) U (Uf2[eh,.55,)))

2 =2 2 =2
U ((U?:ll (Ql,jv Ul,j]) U (U;n:z)l [Qz,p ‘72,3'))) .
It is trivial to see that, in both cases we can rewrite the unions and intersec-
tions involved under the form

(Ugn:ll (a1, El,j]) U (U;El 02,5, EQ,J’))

for some 7y j and oy ; (k = 1,2 and j = 1,...,m;) equal to f-00 or to algebraic
numbers. Thus, by induction on the size of L, the theorem is proved. [ ]

5 Analytic functions

The results that we need are contained in two books on analytic functions
(see Nehari [13] and Goluzin [10]). We pick out a theorem from each of these
sources and then merge them into a single formulation that is more suitable
for our subsequent treatment. In all what follows we define A , F‘f(r; =
0.228....

Theorem 6 (Goluzin, [10], p.89) Suppose that the function F(z) = 2% +
ag1129M + g0zt + . for ¢ > 1, is reqular in the disk |z| < 1. Then
the image of that disk under the mapping & = F(z) completely covers some
segment of arbitrary predetermined slope that contains the point & = 0 and
1s of length no less than 2A = % = 0.45.... The number A cannot be
increased without additional restrictions on F(z). n

The proof of this theorem is not contained in the book itself but in a refer-
enced journal [3].
The next similar result is taken from Nehari [13].

14



Theorem 7 (Nehari, [13], p.328) If the odd analytic function

f(2) =24 a2’ + ...+ ag1 2+ L ]2 <1

is regular in |z| < 1, then the values taken by w = f(z) in |z| < 1 fully cover
the circle

472

()

lw| < =A=0.228....
The statement would not be true if the constant involved was replaced by a
larger value. [ ]

We define, and denote the range of an analytic function f(z) on D by f(D),
{f(2) : z € D}. Theorem 7 can be seen as a consequence of Goluzin’s
Theorem 6. Indeed, for any odd analytic function

f(2) =2+ asz® + ... +agn 122" + .

and for any complex number a strictly less than A we know by Theorem 6
that either a or —a is in the range of f(z) on |2| < 1. But, since f(z) is
an odd function, this means that both a and —a are in the range of f(z) on
|z| < 1. Hence the result.

Theorem 7 has the advantage for the authors that in contrast to Theorem 6,
a proof of it is contained in the book [13] rather than in a 1944 Russian jour-
nal. Particularly important for us is that the proof shows that the bound A
is the best achievable one by constructing an analytic function that achieves
the bound.

The function f.(z) (denoted by f(z) and introduced at the bottom of page
330 in [13]) is connected to the so-called elliptic modular function and is
defined by the converging infinite product

47‘{'2 ols [e%s) 1_|_672n7r%
fe(z) ' F4—(7}) (326 b H (1 __—(@en-1)riEz -1].

n=1 e 1-2

It is shown in [13] that f.(z) enjoys the following nice properties:

15



1. it is a real function: f.(zZ) = f.(2),
2. it is analytic on |z] < 1,
3. it is such that f.(0) = 0 and f/(0) =1,

4. it does not take the values A on D, i.e. f.(2) # A and f.(z) # —A,
z€D.

For further purposes we merge the Theorems 7 and 6 into a single one by
making use of the properties of the function f.(z).

Theorem 8 Assume that 3 € R. There exists an analytic function on |z| < 1
such that f(z) = f(z), f(0) =0, f/(0) =1 that leaves out the values £ if
and only if | 5] > A.

Proof
We first prove sufficiency. Let f.(z) be the function defined above. Assume
that § > A and define

g, A

1) 2550
Due to the properties of f.(z) it is easy to check that f(z):
1. is such that f(Z) = f(2),
2. is analytic on |z| < 1 (note that this fails when |3| < A),
3. is such that f(0) =0 and f/(0) =1,
4. leaves out the values =3 on D.

This ends the first part of the proof.

For necessity, assume by contradiction that f(z) satifies the conditions of the
theorem and that 0 < < A. By assumption, the image of the disc |z| < 1
under the mapping & = f(z) contains neither the value 3 nor the value —f.
Thus, the image does not cover any segment of the real line that contains
the origin and is of length 2A. This contradicts Theorem 6, hence the result.

]

This theorem is the crucial result that is needed for proving Theorem 9.

16



6 Simultaneous stabilization of three systems:
an undecidable question

Simultaneous stabilization has been defined in Section 3 and decidability in
Section 4. In this part we merge the results of these two sections and use our
Theorem 8 on analytic functions to show that the simultaneous stabilizability
question of three systems is an undecidable question.

Theorem 9 The simultaneous stabilizability of three systems is an undecid-
able question.

Proof

Assume that § € R and consider the three systems pi(s) = 0, p2g(s) =
(s—1)? — (s—1)?
w-aeee 204 Pas(s) = GrsGrne:

We proceed in two steps.
First, we show that,

(a) when = 0 the three systems are simultaneously stabilizable,
(b) when |3| > A the three systems are simultaneously stabilizable,

(¢) when 0 < || < A the three systems are not simultaneously stabilizable.

Note that we leave out the analysis of the case § = A.

Second, we show that the first step contradicts the fact that the simultaneous
stabilizability question of three systems is a decidable question.

Step 1.

(a) This point is trivial. When = 0 then p1(s) = 0 and pag = pso = %
It is easy to check that, for example, ¢(s) = 2 is a stabilizing controller of
these three systems.
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In order to prove points (b) and (c) we follow the factorization approach
briefly outlined in Section 3. Consider, for 3 # 0, the coprime fractional
factorization in S of the three systems

~oni(s) 0

ns) =575 "1

- n2(5) . %)2
p275<8) - dQ,ﬁ(s) - z%} . ﬁ

2
s—1

Paa(s) = n3(s) _ (m)

’ dzs(s) 3+ 0

Applying Theorem 3, these three systems are simultaneously stabilizable if

and only if there exist two functions n.(s),d.(s) € S such that

d.(s) eU
<z;—1>2nc(8) + <z;1 _5) d.(s) €U
(:_Dgnc(s) + (% +ﬁ) d.(s) € U.

That is, if and only if there exist two functions n.(s), d.(s) € S such that

s —1\? s—1 dC(S)
( ) nels) + ( _ 5) d.(s)

s+1 s+ 1

and

(0 o+ (2 )

s+1 s+
have no zeros in the extended right half plane.
Using the bilinear transformation z = jfi that maps the extended right half
plane C, , onto the closed unit disc D, these conditions are clearly equivalent
to that of the existence of two rational function n.(z) and d.(z) that have no
poles in D such that

d;(2)
Zng(2) + (2 = B)d, ()

18



and
22y (2) + (2 + B)dy(2)

have no zeros in D.

The first of these conditions imposes that d’(z) has no zeros in D. The
rational function defined by the ratio ¢/(z) , Z:((j)) then has no poles in D
and, dividing by d.(z), the above three conditions are equivalent to that of
the existence of a rational function ¢/(z) that has no poles in D and such

that

2d(2)+2-0

and
2d(2) + 2+ 3

have no zeros in D.
It remains to show that, when 3 < A such a function ¢/(z) does not exist

whereas it does exist when 3 > A. We prove these two points in (b) and (c),
respectively.

(b) Assume, by contradiction, that 3 < A, that ¢(z) has no poles in D and
that
2e(z)+2—f

and
2c(z) + 2+ B

have no zeros in D. Then, the function defined by
f(z), 2%c(2) + 2

satisfies all the conditions of Theorem 8 and leaves out the values +3 with
[ < A. A contradiction is achieved and this part is proved.

(c) Assume that § > A. We construct a rational function ¢(z) that satisfies
all the requested conditions.
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By Theorem 8, there exists an analytic function f(z) on D such that f(0) =
0, f/(0) =1 and that leaves out the values +=A. We define the function g(z)

“ o 30 (3)

Due to the properties of f(z), the function g(z) is such that

—_

g(z) is such that g(z) = g(z2),

N

g(z) is analytic on |z| < & (and 1< %),

w

(2)
(2)
- 9(0) =0 and ¢'(0) = 1,
4. g(z) leaves out the values £4 on |z| < £

In the sequel we construct, with the help of this function g(z), a real polyno-
mial p(z) € R[z] such that p(0) =0, p'(0) =1 and p(z) # £A4, |z]| < 1.

Because of the points 2 and 4, the real number u defined by
umin{int |g(=) — A, inf |g(=) + AJ}
z€D z€D
is strictly positive.

Because of the first three points, the function h(z) defined by

g(z) — 2

h(z),
is real and analytic in {z : [2| < Z}.
By Runge’s theorem (see Rudin [14]), there exists a real polynomial ¢(z) such

that
A2 _
—) , 2€D.

|M@—q@ﬂ<u<ﬁ

This polynomial is then also such that
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l9(2) — 2 — 2%q(2)| < p, z € D.

Our final step consists in the definition of the polynomial p(z)

p(2), 2+ 2%q(2) € R[z].
Clearly, p(0) = 0 and p'(0) = 1. But also, because

9(2) = p(2)| < p, z€ D
and
p < min{inf [g(z) — A|, inf [g(z) + A[}
z€D zeD

it follows that

l9(2) — p(2)| < |g(2) £ A|, z € D.

Hence,

p(z) # £A, z € D,

as requested.
A polynomial is a rational function with no poles of module less than or
equal to one and, thus, point (c) of our first step is proved.

Step 2. It remains to show the second step of the proof: the fact that the first

step contradicts the decidability of the simultaneous stabilizabition question

of three plants.

Assume, by contradiction, that the simultaneous stabilizability of three sys-

tems is a decidable question. Then, so is the simult?neous stabilizabil-

. s—1

ity (()f 0)121r three systems pi(s) = 0, pag(s) = m and ps3(s) =
s—1

(s2-1)+B(s+1)2"

But then, using Theorem 5, there exist values 7 ; and g, ; (k = 1,2 and

j = 1,...,my) that are either equal to £oo or that are algebraic numbers,
such that our three systems are simultaneously stabilizable if and only if

B e (U 1y0) U (Uilosy 72 ) -

21



But this contradicts our first step since we know from there that the three
systems are simultaneously stabilizable if and only if either

472 472

f e (—o0,— )U0,0] U ( , +00)
r(3) r(3)
or 42 )
T T
B € (—o0, —=—1<]U[0,0] U [, +00).
(1) *(3)
By Theorem 4, F‘f(ri) is a transcendental number, a contradiction is achieved
4
and the theorem is proved. [ ]

7 Conclusion

We believe that this paper closes a whole area of investigation of the si-
multaneous stabilization problem. There exist no criterion for simultaneous
stabilizability that involve only elementary operations on the coefficients. In
particular, it is not possible to find a criterion that involves only, say, solving
systems of linear equations, solving a Nevanlinna type interpolation problem
or evaluating a Cauchy index, because all these operations are conducted by
performing elementary operations only.
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