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a  b  s  t  r  a  c  t

The  concept  of Elementary  Flux  Modes  (EFMs)  has been  of  central  importance  in  a number  of  studies
involving  the  analysis  of  metabolism.  In  Provost  and Bastin  (2007)  this  concept  is  used  to  translate  the
metabolic  networks  of  the  different  phases  of  CHO  cell  cultures  into  macroscopic  bioreactions  linking
extracellular  substrates  to  products.  However,  a critical  issue  concerns  the  calculation  of these  elementary
flux vectors,  as  their  number  combinatorially  increases  with  the size  of  the  metabolic  network.  In this
study,  a detailed  metabolic  network  of CHO  cells  is  considered,  where  the  above-mentioned  combinatorial
explosion  makes  the  computation  of  the elementary  flux  modes  impossible.  To  alleviate  this  problem,
ynamical modeling
etabolic networks
nderdetermined systems
ammalian cells

a  methodology  proposed  in  Jungers  et  al. (2011)  is  used  to compute  a decomposition  of  admissible  flux
vectors  in  a minimal  number  of  elementary  flux  modes  without  explicitly  enumerating  all  of  them.  As
a result,  a set of macroscopic  bioreactions  linking  the  extracellular  measured  species  is  obtained  at  a
very  low  computational  expense.  The  procedure  is  repeated  for the  several  cell culture  phases  and  a
global  model  is  built  using  a multi-model  approach,  which  is  able  to successfully  predict  the  evolution

of  experimental  data.

. Introduction

Macroscopic models of bioprocesses have been used in many
pplications, ranging from simulation to estimation, optimization
nd control (Bastin and Dochain, 1990). These models represent
he conversion of substrates into products by a few macroscopic
eactions, without taking the intracellular reaction network into
onsideration (black box representation).

These models can be derived using two main approaches. The
rst approach is essentially data-driven. Macroscopic models are
erived solely from the experimental observation of the time
volution of a few extracellular components (substrates, prod-
cts of interest, inhibiting compounds). Various techniques can
e combined, including data analysis techniques such as princi-
al component analysis to deduce the number of bioreactions and
artial stoichiometry (Bernard and Bastin, 2005), and identification

ethods based on – whenever possible – decoupling techniques to

stimate independently the stoichiometry and the kinetics (con-
ept of C-identifiability) (Chen and Bastin, 1996; Hulhoven et al.,

∗ Corresponding author.
E-mail addresses: francisca.zamorano@umons.ac.be (F. Zamorano),

lain.vandewouwer@umons.ac.be (A. Vande Wouwer),
aphael.jungers@uclouvain.be (R.M. Jungers),
eorges.bastin@uclouvain.be (G. Bastin).

168-1656/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jbiotec.2012.05.005
© 2012 Elsevier B.V. All rights reserved.

2005). In the second approach, the available prior knowledge about
the metabolic network is exploited, and a macroscopic set of reac-
tions is derived in agreement with the intracellular metabolism
(Haag et al., 2005).

This is the second approach which is of interest in the present
study, and particularly, the procedure devised in Provost and Bastin
(2004) where dynamic models are derived from the concept of Ele-
mentary Flux Modes (EFMs) for a metabolic network of CHO cells
under balanced growth conditions. This latter assumption stipu-
lates that the intracellular metabolites do not accumulate in the
cell, or in other words, that the intracellular processes occur much
faster than those happening outside the cell. In Provost and Bastin
(2007), this approach is further used to translate the metabolic net-
works of the different phases of the cell culture into macroscopic
bioreactions linking extracellular substrates to products. However,
a critical issue concerns the calculation of these elementary flux
vectors, as their number combinatorially increases with the size of
the metabolic network.

This latter point is one of the motivations behind this study,
in which we  consider a more detailed metabolic network of CHO
cells developed by the authors in Zamorano et al. (2010),  where
the above-mentioned combinatorial explosion makes the compu-

tation of the elementary flux modes impossible. To alleviate this
problem, we  apply a methodology to compute a decomposition of
admissible flux vectors in a minimal number of elementary flux
modes without explicitly enumerating all of them, as proposed by

dx.doi.org/10.1016/j.jbiotec.2012.05.005
http://www.sciencedirect.com/science/journal/01681656
http://www.elsevier.com/locate/jbiotec
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Fig. 1. Prediction of the three different models – biomass and 9 first components –

he authors in Jungers et al. (2011).  As a result, a set of macroscopic
ioreactions linking the extracellular measured species is obtained
t a very low computational cost. Further, the procedure is repeated
or the different cell culture phases (exponential growth, transition
nd death) to determine local dynamic models, which can then be
ssembled to form a global (piecewise) model for the entire culture.
he multi-model approach has already been applied successfully
o describe the behavior of complex bioprocesses in other areas of
pplications such as wastewater treatment (Smets, 2002), or the
ulture of micro-algae in photo-bioreactors (Mocquet et al., 2010).

This paper is organized as follows. Section 2.1 introduces the
eneral form of a dynamic model of batch cell cultures and the
oncept of Elementary Flux Modes (EFMs). The methodology for
he computation of a minimal set of EFMs and the decomposition of
n admissible flux distribution is presented in Section 2.2.  A prac-
ical application of the methodology is presented in Section 3.1,
here sets of macroscopic bioreactions are computed for each of
he phases of batch cultures of CHO-320 cells. Section 3.2 discusses
he construction of a piecewise dynamic model for the entire cul-
ure, based on the previous local models. Finally, Section 4 draws
he main conclusions of this work.
nta: growth phase model; green: transition phase model; red: death phase model.

2. Theory

2.1. Cell culture modeling

2.1.1. Dynamics of a batch culture
In general, cell cultivation in a batch process can be divided in at

least three phases, according to the physiological states of the cells.

• The first phase corresponds to the exponential growth, where the
concentration of the carbon source and all other substrates are in
excess and there is sufficient dissolved oxygen allowing a rapid
proliferation of the biomass. Lactate, alanine and ammonia are
produced because of the high level of glucose and glutamine.

• The second phase is transition, where the sugar concentration
decreases below a critical level and the produced lactate and ala-
nine start to be consumed instead. There is sufficient dissolved
oxygen in the medium in order to allow the oxidative pathways

metabolize lactate and alanine and keep the cellular division,
however in a less effective way.

• The third state corresponds to cellular death, where programmed
cell death takes place upon exposure to stress encountered in the
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Fig. 2. Prediction of the three different models – 10 remaining components – m

bioreactor. There could be various causes for apoptosis: nutrient
depletion, waste byproduct accumulation, hypoxia, mechanical
agitation, etc (Arden and Betenbaugh, 2004).

The lag phase is not considered in this study as a metabolic net-
ork describing the biochemical process followed by the cells to
earrange and adapt their metabolism to the new environmen-
al conditions would be difficult to represent and most certainly,
ntracellular measurements would be necessary.
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Fig. 3. Linear switching functions.
Time [h]

: growth phase model; green: transition phase model; red: death phase model.

For a cell culture carried out in batch mode in a stirred tank
reactor, the dynamics of substrates and products are described by:

dS
dt

= −vsX(t)

dP
dt

= vpX(t)

(1)

where

• X(t) is the biomass concentration,
• S(t) is the vector of substrate concentrations,
• P(t) is the vector of product concentrations,
• vs is the vector of specific uptake rates,
• vp is the vector of specific production rates.

Clearly, vs and vp are linear combinations of some of the (intracel-
lular) metabolic fluxes v. Thus, by defining appropriate matrices Ns

and Np, the stoichiometric matrices for the extracellular substrates
and final products, respectively, this relation can be expressed as:
vs(t) = Nsv(t)

vp(t) = Npv(t).
(2)
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Fig. 4. Global model validation

.1.2. Metabolic network and elementary flux modes
The intracellular metabolism of living cells is usually repre-

ented by a metabolic network under the form of a hypergraph
ncoding a set of biochemical reactions. In this hypergraph, each
ode represents a particular intracellular metabolite and the edges
epresent the metabolic reactions or fluxes.

According to the pseudo steady-state assumption of metabolic
ux analysis (MFA), it is assumed that the fluxes are balanced at
ach internal node, i.e. intracellular metabolites do not accumulate
n the cell. This means that the net sum of production and consump-
ion fluxes, weighted by their stoichiometric coefficients, is zero
or each internal metabolite of the network. This steady-state bal-
nce around the internal metabolites is expressed by the algebraic
elation:

v = 0 v � 0 (3)

here v = (v1, v2, . . . , vn)T is the n-dimensional column vector
f fluxes and N = [nij] is the m × n stoichiometric matrix of the

etabolic network (m is the number of internal metabolites and

 is the number of fluxes). More precisely, a flux vj denotes the rate
f reaction j and a non-zero nij is the stoichiometric coefficient of
he metabolite i in reaction j.
Time [h]

g linear weighting functions).

For a given metabolic network, the set S of possible flux distri-
butions is the set of vectors v that satisfy the linear system (3).  This
set S is the pointed polyhedral cone resulting from the intersection
of the kernel of N with the non-negative orthant. This implies that
there exists a set of elementary flux vectors ei, the extreme rays (or
edges) of this polyhedral cone, such that any flux distribution v can
be expressed as a non-negative linear combination of them:

v = w1e1 + w2e2 + . . . + wqeq wi � 0. (4)

The n × q non-negative matrix E with column vectors ei obviously
satisfies NE = 0 and Eq. (4) can be written in matrix form as

v = Ew with w � (w1, w2, . . . , wq)T . (5)

Thus, the elementary flux vectors are a way  of representing the set
of possible flux distributions. The dynamics of the concentration of
each substrate and product in a batch reactor, where no exchange
occurs with the outside environment, are written as follows:
d

dt

(
S(t)

P(t)

)
=
(

−Ns

Np

)
vX. (6)
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Fig. 5. Global model validation

rom Eqs. (5) and (6),  we obtain:

d

dt

(
S(t)

P(t)

)
=
(

−Ns

Np

)
EwX. (7)

The product of stoichiometric matrices Ns and Np times the ele-
entary flux modes matrix E yields the stoichiometric matrix for

 set of macroscopic reactions, linking the extracellular substrates
o the final products. Let us consider that the reaction scheme of
he process involves N macroscopic reactions and M extracellu-
ar species, either substrates or products, with K being the M × N

atrix for the stoichiometric coefficients.

=
(

−Ns

Np

)
E (8)

hen, if the vector � is defined as:
=
(

S(t)

P(t)

)
, (9)
Time [h]

g linear weighting functions).

The dynamic model defined by the macroscopic bioreactions may
be written as:

d�

dt
= Kw(t)X(t) = Kϕ(�, t) (10)

where w(t) is the vector of the specific reaction rates wi of the
macroscopic bioreactions and ϕ is the vector of reaction rates.

2.2. Computation of the elementary flux modes and of minimal
flux decomposition

2.2.1. Problem statement
A well known issue related to the EFMs representation is that

the number of such vectors grows exponentially with the size of the
network. This means that for detailed metabolic networks, such as
the one considered in the following of this study, the computation
of matrix E becomes prohibitive.

In general, the decomposition of a flux distribution v in the
convex basis of elementary flux vectors ei does not necessitate
the whole enumeration of the convex basis but requires only the

knowledge of a few elementary vectors. Thus, the objective is to
determine a minimal such decomposition (which directly com-
plies with the target of a macroscopic model). Nonetheless, when
the vector v is the solution of an underdetermined metabolic
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Fig. 6. Global model validation

ux analysis problem, the situation is more complex, though it
ay  be possible to find a decomposition with even less elemen-

ary flux modes. Indeed, it is not known a priori which vector,
mong all admissible flux distributions, is the one that can be
ecomposed in the minimal number of elementary flux modes.
he information needed for computing these elementary vectors
an be obtained directly from the stoichiometric matrix N together
ith the extracellular measurements. Herein, this methodology is
sed to compute this decomposition without actually evaluating
he whole convex basis, thanks to the convex programming tech-
iques presented in Jungers et al. (2011).

.2.2. Definition of some polytopes of interest
If we consider system (3) and take the constraints imposed by

he extracellular measurements into account, it is possible to write

N

Nm

)
v =
(

0

vm

)
v � 0. (11)

or a given metabolic network and a given set of measurements.
m stands for the stoichiometric matrix of the extracellular species
nd vm is the vector of measurements.

As demonstrated in Jungers et al. (2011) and Provost (2006),
ny admissible flux distribution v can be expressed as a convex
ombination of n-m elementary flux vectors ei. n-m corresponds
o the degrees of freedom of the system, if N and Nm are full rank

atrices. Notice that the decomposition of v in the convex basis

ei} is not unique.

Moreover, if the number of measurements p is smaller than n-
, then there is at least one vector v* that can be expressed as

 convex combination of only p elementary flux vectors. Hence,
Time [h]

 a smaller glucose uptake rate.

the objective is to determine such a decomposition in a minimal
number of elementary flux vectors {ei} .

Using Eq. (5),  system (11) is equivalent to the system:(
NE

NmE

)
w =

(
0

vm

)
w � 0. (12)

We observe that the first equation NEw = 0 is trivially satisfied inde-
pendently of w since by definition NE = 0. Hence, system (12) may
be reduced to the second equation:

NmEw = vm w � 0. (13)

or equivalently written

(
NmE −vm

)(w

1

)
= 0. (14)

In this form, it is clear that the set of admissible weighting vectors
w that satisfy Eq. (13) constitutes a convex polytope that will be
denoted H. Therefore, there exists a set of appropriate edge vectors
hi such that any arbitrary convex combination of the form:

w =
∑

i

ˇihi ˇi � 0
∑

i

ˇi = 1 (15)

is necessarily an admissible w satisfying Eq. (13). The convex basis
vectors hi have a critical property: the number of non-zero entries
in these vectors is equal to the number of measurements p.
From a metabolic viewpoint, each vector hi is a solution w of Eq.
(13). Vectors Ehi correspond to minimal flux distributions v:

v̂i = Ehi v ∈ F.  (16)
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Fig. 7. Global model validation

ach minimal flux distribution v̂i represents the simplest path-
ays that satisfies the pseudo-steady state assumption and the

onstraints imposed by the extracellular measurements. Eq. (16)
mplies that a minimal flux distribution (in terms of EFMs) can
e obtained by different combinations of EFMs and in turn, of
etabolic pathways. This will be illustrated further in the article,
hen we will assess the calculation procedure of the minimal set

f EFMs.

.2.3. Decomposing v in a convex basis
As already stated, the number of distinct extreme rays or cone

ertices that are generated when computing the cone S may
ecome very large because it combinatorially increases with the
ize of the underlying metabolic network. It is also the case for the
umber of vectors hi that are vertices of the polytope H.

We  apply here the method presented in Jungers et al. (2011) to
ecompose a flux distribution v in a minimal number (p < n − m)
f elementary flux modes. To this end, we introduce yet another
one K ⊂ R

p. This cone is the projection of S by the matrix Nm :
 = {y = Nmv : v � 0, Nv = 0}.

We  know that the vector vm is in K because of Eq. (11). So, vm

an be expressed as a convex combination of p extreme rays yi of
one K (because K has dimension p).

m =
p∑
i

˛iyi ˛i � 0
∑

i

˛i = 1. (17)
ow, the extreme rays of K are the projections of extreme rays ei of
 under the matrix Nm. This implies that the corresponding convex
ombination of the ei gives us the required v . In other words, if yi
Time [h]

 a smaller glucose uptake rate.

is an extreme ray of the projected cone K, then ei is an extreme ray
of cone S.

vm = Nmv ⇒ yi = Nmei (18)

As vm has been decomposed in p extreme rays in Eq. (17), a decom-
position in the extreme rays of cone S is also achieved

vm =
p∑
1

˛iNmei = Nm

p∑
1

˛iei (19)

and thus, v is decomposed in a minimal set of p elementary flux
vectors.

v =
p∑
1

˛iei (20)

For more details on the algorithm and the theory behind it, the
reader is referred to references Jungers et al. (2009, 2011).

3. Results and discussion

3.1. Macroscopic bioreactions for cultures of CHO cells

In this section we apply the methodology described above to
three detailed (and underdetermined) metabolic networks describ-
ing the metabolism of CHO-320 cells. Each network represents the
metabolism of one of the culture phases of a cell in a batch cul-
ture: exponential growth, transition and death. For each of these

networks, a minimal set of elementary flux modes is computed
by applying the procedure described in Section 2.2. For reasons of
space, the details of matrices N for the growth, transition and death
phases are not presented. To retrieve the list of reactions describing



416 F. Zamorano et al. / Journal of Biotechnology 164 (2013) 409– 422

0 100 200 300
0

0.2

0.4

T
yr

os
in

e 
[m

M
]

Time [h]
0 100 200 300

0

0.5

1

T
hr

eo
ni

ne
 [m

M
]

Time [h]

0 100 200 300
0

0.5

1

Ly
si

ne
 [m

M
]

Time [h]
0 100 200 300

0

0.5

1

Is
ol

eu
ci

ne
 [m

M
]

Time [h]

0 100 200 300
0

0.5

1

Le
uc

in
e 

[m
M

]

Time [h]
0 100 200 300

0

0.5

1

V
al

in
e 

[m
M

]
Time [h]

0 100 200 300
0

0.2

0.4

P
he

ny
la

la
ni

ne
 [m

M
]

Time [h]
0 100 200 300

0

0.1

0.2
M

et
hi

on
in

e 
[m

M
]

Time [h]

 using

t
e
(

c
e
1
t
l
g
n
a
m
e
s

s
E
l
m
s
p

g
a
i
w
o
a
a
b

Fig. 8. Global model validation

he different phases, the reader is referred to references Zamorano
t al. (2010) and Zamorano (2012).  Their dimensions are (72 × 100),
72 × 100) and (40 × 64), respectively.

To apply this procedure we need to define stoichiometric matri-
es N and Nm and the vector of extracellular measurements vm for
ach phase. The set of experimental data contains, respectively 19,
8 and 17 extracellular measurements for the exponential growth,
ransition and death phases. The data set contains the time evo-
ution of the extracellular concentration of the main substrates:
lucose and glutamine, the main metabolic products: lactate, ala-
ine and ammonia, and the concentration of 14 additional amino
cids. The extracellular concentration of these species was deter-
ined through enzymatic kits and HPLC. The specific uptake and

xcretion rates are obtained by linear regression. These vectors of
pecific uptake/excretion rates vm are listed in Table 1.

The dimension of the vector vm will then determine the dimen-
ion of the matrix containing the minimal set of vectors ei (Emin).
ach elementary vector defines a metabolic path linking extracel-
ular substrates to final products, which can be translated into a

acroscopic reaction. Proceeding in this way, the set of 19 macro-
copic reactions presented in Table 2 describes the main metabolic
rocesses occurring during the growth phase.

Thus, the minimal set of EFMs obtained for the exponential
rowth phase has been translated into a set of macroscopic biore-
ctions, from which a general model can be deduced. At this point,
t is worth noticing that each run of the model reduction algorithm

ill yield different minimal sets of EFMs, thus giving different sets

f macroscopic reactions. The reader is reminded about vectors hi
nd Eq. (16) which states that the pseudo-steady state assumption
nd the constraints imposed by the extracellular measurements can
e satisfied by different minimal flux distributions v̂i. Hence, each
 a smaller glucose uptake rate.

time the calculation procedure is launched, a particular vector hi
is found and in turn, a minimal flux distribution v̂i. An estimation
of the reaction rates for the macroreactions are obtained from Eq.
(13). As NmE is a p × p matrix, then w is easily obtained from:

w = (NmE)−1vm (21)

The resulting reaction rates wi for each of the macroscopic reac-
tions taking place during the exponential growth phase are listed
in Table 3.

In the same way, a minimal set of elementary vectors for
the transition phase is obtained. The number of extreme rays ei
matches the number of entries in vector vm. Thus, the 18 result-
ing elementary flux vectors are presented in Table 4, from which a
set of macroscopic reactions is defined. Notice that the metabolic
changes corresponding to this phase of the culture are reflected by
the macroscopic reactions obtained. Lactate, alanine and glutamate
are now consumed as substrates, and since glucose is depleted, it
no longer appears as a substrate. The estimated reaction rates wi

are listed in Table 3.
The same procedure is now applied to the reaction network

defining the metabolism of the death phase of the culture. As vector
vm includes 17 experimental measurements, the same number of
elementary vectors are obtained. This set of extreme rays generate
the corresponding macroscopic bioreactions presented in Table 5.

Now that cells are dying, there is no production of biomass any
longer and the metabolism is centered in the production of energy
with CO2 as main product. The resulting reaction rates wi are pre-
sented in Table 3.



F. Zamorano et al. / Journal of Biotechnology 164 (2013) 409– 422 417

0 100 200 300
0

2

4

6

B
io

m
as

s 
[1

09  c
el

ls
/L

]
Time [h]

0 100 200 300
0

5

10

15

20

G
lu

co
se

 [m
M

]

Time [h]

0 100 200 300
0

2

4

6

G
lu

ta
m

in
e 

[m
M

]

Time [h]
0 100 200 300

0

10

20

30

40

La
ct

at
e 

[m
M

]

Time [h]

0 100 200 300
0

2

4

6

A
m

m
on

ia
 [m

M
]

Time [h]
0 100 200 300

0

0.5

1

1.5

A
la

ni
ne

 [m
M

]

Time [h]

Fig. 9. Global model validation using a smaller glucose uptake rate and physiological switching functions.

Table  1
Specific uptake/excretion rates for the three cell culture phases.

Specie Exponential growth phase Transition phase Death phase

Glucose −1.6383 ± 0.244e−1 – –
Glutamine −4.7922 ± 1.107e−2 −1.4582 ± 7.678e−3 −8.9527 ± 62.97e−4

Arginine −1.7381 ± 1.659e−3 −8.9108 ± 0.271e−5 5.1413 ± 16.66e−5

Asparagine −1.2354 ± 0.203e−3 −1.7873 ± 3.316e−5 6.0603 ± 10.76e−5

Aspartate −2.7112 ± 4.304e−4 −4.6172 ± 4.601e−4 −7.4483 ± 20.77e−5

Isoleucine −1.7422 ± 0.521e−3 −4.1392 ± 2.982e−4 −1.7901 ± 2.393e−4

Leucine −2.9556 ± 0.610e−3 −3.1471 ± 2.109e−4 −1.1150 ± 8.286e−5

Lysine −3.0675 ± 0.839e−3 −2.7181 ± 1.628e−4 −4.9260 ± 17.34e−5

Methionine −8.1777 ± 1.777e−4 −6.6621 ± 6.668e−5 –
Phenylalanine −1.1747 ± 0.309e−3 −1.0902 ± 0.832e−4 −4.6531 ± 18.38e−5

Serine −1.0054 ± 0.499e−3 −4.4716 ± 3.295e−4 1.5091 ± 4.229e−4

Threonine −1.5358 ± 0.928e−3 −1.2195 ± 2.679e−4 −1.2157 ± 7.073e−4

Tyrosine −8.7011 ± 3.171e−4 −8.5351 ± 7.158e−5 −1.2778 ± 2.528e−4

Valine −2.0238 ± 0.664e−3 −2.7412 ± 2.827e−4 −1.5805 ± 4.369e−4

Lactate 2.9880 ± 0.599e−1 −2.0169 ± 4.971e−2 −3.8359 ± 3.793e−2

NH+
4 3.8858 ± 0.954e−2 1.4428 ± 8.118e−3 1.5064 ± 10.11e−3

−3 −4 −4

3

f
p
t
m

r

Glycine 2.6166 ± 0.847e
Alanine 1.0273 ± 0.144e−2

Glutamate 3.0143 ± 1.942e−3

.2. A piecewise dynamic model of CHO-320 cells

An estimation of the maximum reaction rates has been obtained
or each of the cell culture phase (see Table 3). To take account of
ossible substrate limitations, and guarantee concentration posi-
ivity during model simulation, it is suggested to modulate these

aximum rates with Monod factors.
i = wi
S1

(ks1 + S1)
S2

(ks2 + S2)
. . . . . .

Sni

(ksni
+ Sni

)
.  (22)
4.6293 ± 14.47e −5.3266 ± 22.34e
−1.1855 ± 56.37e−4 −2.1682 ± 1.527e−3

−9.7355 ± 8.015e−4 −9.0875 ± 11.29e−4

Subindex ni indicates the number of substrates participating in
reaction i.

Thus, the dynamical model can be rewritten as:

d�

dt
= KrX. (23)

In order to complete the model, it is necessary to select numerical

values for the half-saturation constants of substrates. Our aim in
this study is to propose a model structure and not to estimate these
values from experimental data. Clearly, our database is insufficient
for this latter purpose. Here, we select somewhat arbitrary values



418 F. Zamorano et al. / Journal of Biotechnology 164 (2013) 409– 422

0 100 200 300
0.2

0.4

0.6

0.8

1

G
ly

ci
ne

 [m
M

]

Time [h]
0 100 200 300

0.2

0.4

0.6

0.8

1

G
lu

ta
m

at
e 

[m
M

]

Time [h]

0 100 200 300
0.4

0.5

0.6

0.7

0.8

A
rg

in
in

e 
[m

M
]

Time [h]
0 100 200 300

0

0.05

0.1

0.15

0.2

A
sp

ar
ag

in
e 

[m
M

]

Time [h]

0 100 200 300
0

0.05

0.1

0.15

0.2

A
sp

ar
ta

te
 [m

M
]

Time [h]
0 100 200 300

0

0.1

0.2

0.3

0.4

S
er

in
e 

[m
M

]

Time [h]

Fig. 10. Global model validation using a smaller glucose uptake rate and physiological switching functions.
Table  2
Macroscopic reactions for the exponential growth phase.

EFM Macroscopic reaction

e1 Tyr → Glu + 4 CO2

e2 Glucose + 1.7 Gln → 1.7 Lactate + 3.3 NH+
4 + 6CO2

e3 Gln → Glu + NH+
4

e4 Ser → Gly
e5 Asn → Lactate + Urea
e6 3.3 Glucose + 6.4 Gln + Asn + 1.9 Asp + 1.2 Arg + 1.4 Thr + 1.7 Lys + 1.6 Val

+  1.3 Ile + 6.5 Leu + 1.7 Phe + Met  + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Eth + 0.4 Cho
→  25.8 Biomass + 2.9 Ala + 5 NH+

4 + 13.1 CO2

e7 15.2 Glucose + 7.7 Gln + 4.7 Asn + 14.2 Arg + 6.5 Thr + 13.5 Lys + 7.2 Val + 5.8 Ile
+  10 Leu + 7.8 Phe + 4.6 Met  + 5.7 Pro + 25.9 Trp + 2.5 His + 0.7 Eth + 2 Cho
→ 118.6 Biomass + 15.8 Ala + 8.6 Urea + NH+

4 + 134.2 CO2

e8 Glucose + 1.7 Val → 3.3 Lactate + 1.7 NH+
4 + 4.3 CO2

e9 2.1 Glucose + 2.5 Gln + Asn + 1.2 Arg + 3.4 Thr + 1.5 Lys + 1.6 Val + 4.2 Ile
+  5.1 Leu + 1.7 Phe + 1 Met  + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Eth + 0.4 Cho
→  25.8 Biomass + NH+

4 + 4.7 CO2

e10 15.2 Glucose + 7.7 Gln + 4.7 Asn + 9.4 Arg + 6.5 Thr + 6.5 Lys + 7.2 Val + 68.7 Ile
+  10 Leu + 7.8 Phe + 4.6 Met  + 5.7 Pro + 1.5 Trp + 2.5 His + 0.7 Eth + 2 Cho
→  118.6 Biomass + 19 Lactate + 30.6 Ala + 3.8 Urea + NH+

4 + 75.9 CO2

e11 Gln → Ala + NH+
4 + 2 CO2

e12 6.6 Glucose + 2.4 Gln + Asn + 1.2 Arg + 1.4 Thr + 8.1 Lys + 1.5 Val + 1.2 Ile
+  2.1 Leu + 1.7 Phe + 2.4 Met  + 1.2 Pro + 0.3 Trp + 0.5 His + 0.1 Eth + 0.4 Cho
→ 25.2 Biomass + 4.3 Gly + 3.9 NH+

4 + 21 CO2

e13 Gln → Lactate + Urea + CO2

e14 Glucose → 1.7 Lactate + CO2
e15 6.8 Glucose + 1.7 Gln + Asn + 6.2 Arg + 1.4 Thr + 1.4 Lys + 1.6 Val + 1.3 Ile

+  6.7 Leu + 1.7 Phe + Met  + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Eth + 0.4 Cho
→ 25.8 Biomass + 7 Lactate + 4.9 Urea + 6 NH+

4 + 14.5 CO2

e16 49.6 Glucose + 7.7 Gln + 4.7 Asn + 22.7 Arg + 6.5 Thr + 37.9 Lys + 7.2 Val + 5.8 Ile
+  10 Leu + 7.8 Phe + 4.6 Met  + 5.7 Pro + 1.5 Trp + 2.5 His + 0.7 Eth + 2 Cho
→  118.6 Biomass + 57.3 Gly + 17.1 Urea + NH+

4 + 136.9 CO2

e17 1.2 Glucose + Arg → 3 Lactate + Urea + 2 NH+
4 + 3.2 CO2

e18 7.3 Glucose + 3.5 Gln + Asn + 1.2 Arg + 1.4 Thr + 8.1 Lys + 1.5 Val + 1.2 Ile
+  2.1 Leu + 1.7 Phe + Met  + 1.2 Pro + 0.3 Trp + 0.5 His + 0.1 Eth + 0.4 Cho
→ 25.2 Biomass + 4.9 Lactate + 8.7 NH+

4 + 22.2 CO2

e19 Glucose + 1.7 Gln → 3.3 Lactate + 3.3 NH+
4 + 4.3 CO2
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Fig. 11. Global model validation using a smaller glu

qual to 0.1 mM,  i.e., values small enough to not interfere during
he growth phase but large enough to avoid stiffness difficulties in
he simulation of the model differential equations. The same idea
as been used in Provost and Bastin (2004).

Consequently, a local dynamic model is obtained for each of the
ell culture phases. In Figs. 1 and 2 the prediction of the three dif-
erent models is presented. As expected, all three models fit well

he available data in their respective time span.

A global model describing the complete dynamics of a CHO-320
ell culture, can be defined as an interpolation between the three
odels obtained in the previous section for growth, transition and

able 3
eaction rates for the three sets of macroscopic reactions.

Reaction rate Exponential growth phase 

w1 7.6104e−4

w2 3.3737e−3

w3 1.9371e−4

w4 9.2342e−4

w5 5.2333e−4

w6 1.7039e−4

w7 7.8766e−6

w8 6.1698e−4

w9 1.8203e−4

w10 4.0478e−6

w11 8.0719e−3

w12 9.4097e−5

w13 2.3533e−2

w14 1.7277e−1

w15 1.0689e−5

w16 1.5793e−5

w17 1.0180e−3

w18 8.1690e−6

w19 6.4727e−3
Time [h]

uptake rate and physiological switching functions.

death phases. The influence of each model is controlled by means of
weighting functions �g, �m and �d (see Murray-Smith and Johansen
(1997) for more on the multi-model approach), such that the global
model is formulated as follows:

d�

dt
= �g

d�g

dt
+ �m

d�m

dt
+ �d

d�d

dt
.  (24)
Many local basis functions could be used. One of the simplest option
is provided by linear functions of time �g, �m and �d, as shown in
Fig. 3. In order to blend the three models, the first transition occurs
in a time span starting from 75 h until 95 h, time of the culture at

Transition phase Death phase

1.4006e−4 1.9790e−5

3.8043e−4 1.9790e−5

4.1514e−5 5.8637e−6

5.7292e−4 2.0670e−4

8.3348e−7 9.2354e−5

5.1261e−5 2.4921e−5

2.9480e−4 1.1288e−4

3.2716e−4 3.6726e−2

3.3813e−2 5.9150e−4

2.7660e−4 6.2670e−5

5.4907e−5 7.6960e−5

5.6892e−4 7.3303e−7

2.6781e−4 2.4188e−5

2.7978e−5 2.1403e−4

2.4642e−5 7.2050e−4

5.4348e−5 7.4763e−5

7.0945e−5 3.3575e−4

9.0659e−5 –
– –
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Table 4
Macroscopic reactions for the transition phase.

EFM Macroscopic reaction

e1 Tyr → NH+
4 + 9 CO2

e2 Gln → 2 NH+
4 + 3 CO2

e3 3 Leu + Met → 2 Urea + 20 CO2

e4 Ser → Gly
e5 Asn → Urea + 3 CO2

e6 13.7 Lactate + 2.2 Gln + Asn + 2.6 Asp + 1.2 Arg + 1.4 Thr + 1.4 Lys + 1.6 Val + 1.3 Ile
+2.2  Leu + 1.7 Phe + Met  + 1.9 Ala + 4.5 Glu + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Etn + 0.4 Cho
→25.8  Biomass + 0.7 Urea + 23.8 CO2

e7 Ala + Asp → Urea + 4 CO2

e8 Val → Gly + 2 CO2

e9 Lactate → 3 CO2

e10 Ile + Leu → Urea + 9 CO2

e11 Lys + 2 Phe → 2 Urea + 18 CO2

e12 Gln → Urea + 4 CO2

e13 Lys + 2 Glu → 2 Urea + 10 CO2

e14 Lys + 2 Val → 2 Urea + 10 CO2

e15 Thr + Ile → Urea + 9 CO2

e16 Thr + 1.5 Lys → 2 Urea + 9 CO2
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ber of environmental factors such as hypoxia, waste by-product
accumulation, mechanical agitation and nutrient depletion among
others (Arden and Betenbaugh, 2004; Laken and Leonard, 2001).
Based on the limited information provided by the evolution of the

Table 5
Macroscopic reactions for the death phase.

EFM Macroscopic reaction

e1 Ala + Gly → Asn
e2 Lys + 2 Gly → 2 Urea + 6 CO2

e3 Asp + 3 Leu + Pro → Ser + Arg + 18 CO2

e4 Gly → NH+
4 + CO2

e5 Thr → NH+
4 + 3 CO2

e6 3 Ala + 1 Pro → Arg + 8 CO2

e7 Glu → Ser + 2 CO2

e8 Lactate → 3 CO2

e9 Gln → 2 NH+
4 + 5 CO2

e10 2 Val → Urea + 9 CO2

e11 2 Ile → Urea + 11 CO2

e12 Asp + Glu → Urea + 8 CO2

e 2 Phe → Urea + 17 CO
e17 2 Asp + Lys → 2 Urea + 8 CO2

e18 Lys + 2 Ile → 2 Urea + 12 CO2

hich glucose is depleted. The second transition starts at t = 123 h
nd finishes at t = 143h h, a time range where some kind of stress in
he culture medium triggers cellular apoptosis or programmed cell
eath. The time selection for the first model transition is derived
rom the fact that the last measurement points of the growth phase
ccurs at 72–74 h and the first measurement points of the tran-
ition phase are at 96–98 h. In the same way, the time selection
or the second transition comes from the last measurement points
f the transition phase and the first points of the death phase, at
20–122 h and 144–145 h, respectively. The simulation results are
resented in Figs. 4 and 5.

While the model reproduces quite well the evolution of cellular
ensity and main substrates and products, it fails to provide good
esults for all metabolites. Indeed, at the end of the growth phase,
he model stops predicting the consumption of certain amino acids
uch as arginine, asparagine, threonine, leucine, isoleucine, valine,
henylalanine and methionine. Hence, the transition phase model
tarts with wrong initial concentrations and is not able to catch up
ith the real data. To alleviate the problem of the erroneous model
rediction for certain amino acids, we search for those macroscopic
eactions where these amino acids participate. It appears that all
ine amino acids participate in almost exactly the same reactions.

n addition, in all these reactions glucose appears as a substrate. The
inetic expressions of the reaction rates r are modeled by Monod
inetics and thus, they depend on glucose concentration as a mul-
iplication factor. Consequently, the concentration of these amino
cids do not vary any longer, as the glucose concentration depletes.

Clearly, the early disappearance of glucose from the medium is
he cause of this problem. The exponential growth phase model
resented in Table 2 has been determined from the experimental
easurements collected between 0 and 80 h. Due to the reduced

umber of measurement points, the error in the determination of
he specific uptake rate of glucose (and all other species) might be
ignificant. Indeed, a smaller consumption rate of glucose would
aybe yield a macroscopic model capable of a better fit for the

mino acids in question. Thus, we selected from Table 1 a smaller
pecific uptake rate of glucose within the confidence interval of the
stimated value, so as to compute a new minimal set of EFMs, and
n turn, a new model for the exponential growth phase. The set
f macroscopic reactions obtained along with their corresponding

eaction rates wi are presented in Table 6.

The global model is constructed as before using linear functions
f time. Now, the first transition starts at t = 85 h until t = 100 h. In
his way, the overlapping of the exponential growth and transition
phase models occurs later, allowing the first to have an influence
on the global model for a longer time. The time span of the second
transition remains identical, starting at t = 123 h and finishing at
t = 143 h. The simulation results are presented in Figs. 6–8.

3.2.1. Physiological switching functions
Clearly, a model based on time weighting functions has no phys-

iological interpretation and thus, it is desirable to develop a model
capable of reproducing the shift from one culture phase to the
next based on the evolution of some metabolite concentrations.
For this purpose, a global model is now established using linear
functions of metabolic dependent variables. It is known that the
exponential growth phase ends once the glucose concentration
in the culture medium decreases below a critical level to allow
rapid cellular division. At this moment, the produced lactate is con-
sumed as the carbon source instead of glucose. Accordingly, the
first switching function has been selected in dependence of the
ratio between the glucose concentration (G) and the cellular den-
sity (X) at each time instant. Normally, in a batch culture this G/X
ratio will decrease as the glucose is consumed to produce biomass.
On the other hand, cellular death can be triggered by a num-
13 2

e14 Glu → NH+
4 + 5 CO2

e15 2 Ala → Urea + 5 CO2

e16 Tyr → NH+
4 + 9 CO2

e17 Ala → NH+
4 + 3 CO2
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Table 6
Macroscopic reactions for the exponential growth phase.

EFM Macroscopic reaction Reaction rate w

e1 16.2 Glucose + 3.1 Gln + 1.9 Asn + 3.4 Asp + 2.2 Arg + 1.4 Tyr + 2.6 Thr 3.3637e−3

+15.4 Lys + 2.9 Val + 2.3 Ile + 4 Leu + 1.7 Phe + Met + 3.1 Pro + 0.6 Trp
+His + 0.3 Eth + 0.8 Cho → 47.1 Biomass + 14.9 Gly + 43.6 CO2

e2 Lysine → 2 NH+
4 + 6 CO2 1.2885e−3

e3 Val → Lactate + NH+
4 + 2 CO2 6.8944e−3

e4 Gln → Lactate + 2 NH+
4 + 2 CO2 5.8354e−2

e5 Glucose → 2 Lactate 8.9550e−1

e6 Ser + Arg → Ala + Glu + NH+
4 + Urea 2.6505e−4

e7 Gln → Ala + NH+
4 + 2 CO2 3.2234e−3

e8 Ile → Glu + CO2 3.3120e−5

e9 Glucose → 6 CO2 1.5911e−2

e10 Thr → Gly + 2 CO2 6.4803e−5

e11 Asn + Arg → 2 Ala + 2 Urea + 2 CO2 2.6428e−4

e12 Ser + 4 Arg + Met  → 6 Ala + 6 Urea + 7 CO2 2.1242e−5

e13 Tyr + Thr → Urea + 11 CO2 1.2274e−5

e14 Ser + 4 Leu + Met  → 2 Ala + 23 CO2 2.8599e−4

e15 Tyr → Ala + 6 CO2 6.1860e−5

e16 Ile → Ala + 3 CO2 1.3218e−4

e17 Gln → Urea + 4 CO2 1.4200e−2

e18 Phe → Ala + 6 CO2 1.2058e−4
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e19 Ser + 2 Phe + Met  → 2 Urea + 23 CO2

xtracellular measurements at hand, it could be assumed that the
ellular death is caused by the accumulation of a certain toxic or
nhibitory metabolite. Even though the concentration of ammo-
ia at the last stage of the culture is not high enough so as to
ecome toxic, the second switch has been selected as a function
f the ammonia concentration at each time instant. In this way, the
econd transition occurs once the ammonia concentration reaches

 critical level (selected as “toxic”), causing apoptosis.
To construct the global model, the first transition starts at

/X = 1.5 until G/X = 0.2 and the second starts when the ammonia
oncentration N reaches 4.25 mM and finishes when N = 4.35 mM.
he simulation results are presented in Figs. 9–11.

The global model using the selected switching functions is able
o reproduce quite well the experimental data, which suggests the
otential of these physiological variables to be used as switching
unctions in a piecewise model.

. Conclusions

Dynamic modeling of animal cell cultures is a delicate task that
as attracted considerable attention in the last decades, with mod-
ls ranging from low-dimensional macroscopic models to complex
odels mixing knowledge about the metabolic network and kinetic
odels (Ahn and Antoniewicz, 2011).
In this study, a procedure for the derivation of macroscopic

ynamic models from detailed metabolic networks is presented,
nd discussed based on an application example related to batch
ultures of CHO-320 cells. In particular, the relatively high complex-
ty of the metabolic network makes impossible the computation
f the complete set of elementary flux modes due to combina-
orial explosion. An alternative procedure is therefore applied,
here an admissible flux distribution is decomposed into a min-

mal set of elementary flux modes, whose number is equal to
he number of available extracellular measurements. Thus, the

inimal set can be computed directly, without enumerating the
ull collection of EFMs. Model reduction based on this minimal
ecomposition provides sets of macroscopic bioreactions in a con-
enient way, as well as estimates of the maximum reaction rates.

ynamic models with suitable properties can be obtained through

he introduction of classical Monod factors. Piecewise models for
he different cell culture phases can also be easily constructed,
sing linear weighting functions (to switch from one culture phase)
4.9886e−6

either in dependence on time, or on the evolution of extracellular
concentrations.

To improve the model fit, it was necessary to adjust the glucose
uptake rate within its confidence interval (as determined by a stan-
dard least-squares procedure). This might be due to a lack of data
(i.e. uncertainty in the glucose uptake rate) or a slower assimilation
of glucose (non steady-state effect).
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