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a b s t r a c t

The concept of elementary flux vector is valuable in a number of applications of metabolic engineering.
For instance, in metabolic flux analysis, each admissible flux vector can be expressed as a non-negative
linear combination of a small number of elementary flux vectors. However a critical issue concerns the
total number of elementary flux vectors which may be huge because it combinatorially increases with
the size of the metabolic network. In this paper we present a fast algorithm that randomly computes
a decomposition of admissible flux vectors in a minimal number of elementary flux vectors without
explicitly enumerating all of them.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The intracellular metabolism of living cells is usually repre-
sented by a metabolic network under the form of a directed
hypergraph that encodes a set of biochemical reactions taking
place within the cell. In this hypergraph, the nodes represent the
metabolites and the edges represent the metabolic fluxes.

According to the quasi steady-state paradigm of metabolic flux
analysis (MFA) (e.g. Stephanopoulos, Nielsen, & Aristidou, 1998),
it is assumed that the fluxes are balanced at each internal node.
This means that the net sum of production and consumption
fluxes, weighted by their stoichiometric coefficients, is zero for
each internal metabolite of the network. This is expressed by the
algebraic relation:

Nv = 0 v ⩾ 0 (1)
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where v = (v1, v2, . . . , vm)T is the m-dimensional column vector
of fluxes and N = [nij] is the n × m stoichiometric matrix of the
metabolic network (m is the number of fluxes and n the number of
internal nodes of the network).More precisely, a flux vj denotes the
rate of reaction j and a non-zero nij is the stoichiometric coefficient
of the metabolite i in reaction j.

For a given metabolic network, the set S of possible flux dis-
tributions is the set of vectors v that satisfy the linear system (1).
This set S is the pointed polyhedral cone resulting from the inter-
section of the kernel of N with the non-negative orthant. By the
well-known Caratheodory’s theorem, this implies that there exists
a set of elementary flux vectors ei (Urbanczik, 2007) which are the
extreme rays of the polyhedral cone and such that any flux distri-
bution v can be expressed as a non-negative linear combination of
the vectors ei:
v = w1e1 + w2e2 + · · · + wqeq wi ⩾ 0. (2)

The m × q non-negative matrix E with column vectors ei
obviously satisfiesNE = 0 and (2) can bewritten inmatrix form as

v = Ew with w , (w1, w2, . . . , wq)
T . (3)

Thus, the elementary flux vectors are a way of representing the
set of possible flux distributions. A well-known issue related to
this representation is that typically, the number of such vectors
grows exponentiallywith the size of the problem. In our case-study
Jungers, Zamorano, Blondel, Wouwer, and Bastin (2009), we ap-
ply the methodology presented in this paper to a metabolic net-
work of CHO cells which involves 82 reactions and 53 metabolites.
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Though the dimension of this network is rather limited, META-
TOOL calculates 65329 elementary flux modes. Manipulating such
a number of elementary flux vectors is not an easy task. For cer-
tain specific applications (e.g., recombinant protein production,
media optimization, etc.) more detailed metabolic networks in-
volving several hundreds of reactions can be of major interest (for
instance Famili, Forster, Nielsen, & Palsson, 2003, deals with a net-
work having 1175 fluxes and 733 internal metabolites). However,
it is generally acknowledged that the enumeration of the elemen-
tary flux modes can already be out of reach for systems with more
than ≈100 reactions and metabolites (see e.g. Klamt, Gagneur, &
von Kamp, 2005; Terzer & Stelling, 2006).

In this paper, we address the issue of decomposing a flux dis-
tribution v in the convex basis of elementary flux vectors ei. In
general, this decomposition does not necessitate the whole enu-
meration of the convex basis but requires only the knowledge of
a few elementary vectors. The information needed for computing
these elementary vectors can be obtained directly from the stoi-
chiometric matrix Nwhich is much smaller than the matrix E.

Motivated by practical applications including the analysis of
metabolic pathways (Klamt & Stelling, 2003; Papin et al., 2004;
Price, Papin, & Palsson, 2002), the derivation of dynamic macro-
scopic models (Provost, 2006; Provost & Bastin, 2004) and the
characterization of metabolic phenotypes (Famili et al., 2003), our
objective in this paper will precisely be to determineminimal such
decompositions.

Well-known theoretical results exist, that give upper bounds
on the minimal number of vectors of the convex basis that are
necessary to decompose the flux distribution. Namely, this number
is m − n, which is typically very small in comparison with the
number of elementary flux modes. As an example, in the case
study presented in Jungers et al. (2009), the flux distribution can
be expressed with 22 elementary flux modes, while the convex
basis counts 65329 such vectors. We show how to compute
this decomposition without actually computing the whole convex
basis, thanks to convex programming techniques.

When the vector v is the solution of an underdetermined
metabolic flux analysis problem, the situation ismore complex and
it may be possible to find a decomposition with even less elemen-
tary flux modes. The problem is more complex because it is not
known a priori which vector, among all admissible flux distribu-
tions, is the one that can be decomposed in the minimal number
of elementary flux modes. For this more difficult problem, we also
provide a method that allows one to compute this distribution in
polynomial time, without computing the whole convex basis.

2. Metabolic flux analysis and decomposition in elementary
flux modes

2.1. Metabolic Flux Analysis

Metabolic flux analysis (MFA) is the exercise of calculating
the admissible flux distributions v that satisfy the steady state
balance equation Nv = 0 together with an additional set of linear
constraints added by using experimental measurements. Here we
consider the casewhere themeasurements are collected in a vector
vm which is a linear function of the unknown flux distribution v and
is expressed as

Pv = vm (4)

where P is a given p × m full-rank matrix. Then, from Eqs. (1)–
(4), we have the following fundamental equation of metabolic flux
analysis
N
P


v =


0
vm


v ⩾ 0. (5)

For a given metabolic network and a given set of measurements,
the solution of the MFA problem is defined as the set F of ad-
missible flux distributions, i.e. the set of non-negative vectors v
that satisfy the linear system (5). Hence, as emphasized in Provost
(2006, Chapter 4), Provost andBastin (2004) and Provost andBastin
(2006), the set F is a polytope in the positive orthant Rm

+
. This

means that any admissible flux distribution v can be expressed as a
non-negative linear combination of a set of non-negative basis vec-
tors fi which are the vertices of this polytope and form therefore a
unique convex basis of the flux space F . In other words, the solu-
tion of the MFA problem is the admissible flux space F defined as

F ,


v : v =

−
i

αifi, αi ⩾ 0


. (6)

2.2. Minimal decomposition in elementary vectors

For any admissible flux vector v in the polytope F satisfying
equation (5), it must be emphasized that the decomposition of v in
the convex basis {ei} is not unique. As mentioned above, our aim is
to determine such a decomposition in a minimal number of {ei}.

Using (3), system (5) is equivalent to the system:
NE
PE


w =


0
vm


w ⩾ 0. (7)

We observe that the first equation NEw = 0 is trivially satisfied
independently of w since by definition NE = 0. Hence, system (7)
may be reduced to the second equation:
PEw = vm w ⩾ 0. (8)
In this form, it is clear that the set of admissible weighting vectors
w that satisfy (8) again constitutes a convex polytope that we
denote H . Therefore there exists a set of appropriate edge vectors
hi such that any arbitrary convex combination of the form:

w =

−
i

βihi βi ⩾ 0
−

i

βi = 1 (9)

is necessarily an admissible w satisfying (8). The convex basis
vectors hi have a critical property: the number of non-zero entries
in these vectors is equal to the number of measurements p.

Theorem 1 (Fukuda & Prodon, 1996; Provost, 2006). Any admissible
flux distribution v ∈ F can be expressed as a convex combination of
m − n elementary flux vectors ei.

Moreover, if p < m− n, then, there is at least one vector v∗
∈ F ,

such that v∗ can be expressed as a convex combination of only p
elementary flux vectors.

From ametabolic viewpoint, each vector hi is a solutionw of (8)
corresponding to a particular admissible flux distribution v:
v = Ehi v ∈ F . (10)
An important issue concerns the number of distinct extreme rays
or vertices that are generated when computing the cone S or the
polytopes F and H . This number may become very large be-
cause it combinatorially increases with the size of the underlying
metabolic network. More precisely, if n is the number of metabo-
lites andm is the number of reactions, there is no polynomial func-
tion p(m, n) such that the number of elementary flux modes q
satisfies q ≤ p(m, n) for all metabolic networks (Grötschel, Lovász,
& Schrijver, 1988). It is also the case for the number of vectors hi
that are vertices of the polytope H .

In practical applications ofMFA, the enumeration of all extreme
rays is not necessarily a critical objective. In many applications
it is sufficient to know only one minimal decomposition of some
vectors v ∈ F in terms of elementary vectors ei. According to
Theorem 1, there necessarily exists an admissible v having a de-
composition that involves only p terms. Computing this decompo-
sition may be very expensive at first sight since the dimension of E
is not bounded by a polynomial in the sizes of N and P.
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Fig. 1. A situation where v can be decomposed in fewer vertices than the number
provided by Theorem 1. However this situation is clearly a singularity which is not
robust with respect to small perturbations.

Fig. 2. Decomposition of v in the convex basis {ei}.

3. The algorithm

In this sectionwepresent efficientmethods to decompose a flux
distribution in a minimal number of elementary flux modes. We
first comment on the term ‘‘minimal’’. We are interested here in
finding a decomposition of the point v in m − n elementary flux
modes, or, if p < m − n, in p elementary flux modes. That is, we
are interested in matching the theoretical bounds of Theorem 1.
This does not preclude the possibility that v could be expressed
with even less elementary flux modes. This can be seen in Fig. 1,
where the point v is ‘‘by chance’’ exactly on a line passing through
two vertices of the polytope. In this situation, while the theoretical
bound tells us that v can be decomposed as a convex combination
of 3 vertices, it actually appears that such a decomposition exists
with 2 vertices. However, we are not interested in finding such
decompositions for mainly two reasons:

First,we are looking for a robust decomposition,while, as can be
seen in Fig. 1, a decomposition in less than 3 vertices is not robust:
a slight perturbation ϵ of v can move it out of the line e1e2, so that
the previous decomposition is not possible anymore. Since vm is a
vector of measurements (typically retrieved from a regression), it
does notmake sense to look for a decompositionwhich is sensitive
to very small perturbations.

Second, this kind of minimal decomposition in even fewer
vertices than theoretically foreseen is NP-hard to find, so that one
cannot hope to develop a polynomial time algorithm to obtain such
a decomposition (Donoho & Tanner, 2005).

3.1. Decomposing a vector in a convex basis

Let us first consider the following simpler problem, which will
be solved as a subroutine of our method: We are given a vector v
that belongs to a cone S, andwewould like to express this vector as
a linear combination of a few extreme rays of S. The cone S is given
via its definingmatrixM (in our case, thiswill be the stoichiometric
matrix N).

The geometric intuition behind the algorithm can be under-
stood in Fig. 2. Similar algorithms can be found in the literature
Grötschel et al. (1988, Thm. 6.5.11). All the optimization problems
we have to solve in order to do that can be cast as linear programs
and can then be solved in polynomial timewith classical linear pro-
gramming methods (e.g. Boyd & Vandenberghe, 2004).

We now present the algorithm with its technical details. Let
us denote a = 1Tv the sum of the entries in v (1 denotes the
vector whose all entries are equal to one). In the following we will
consider without loss of generality the slightly different problem
where we are looking for extreme rays ei such that 1Tei = a.
Geometrically speaking, we cut the cone with a plane passing
through v such that the intersection is a bounded polytope whose
vertices correspond to extreme rays of the initial cone S. We are
thus given a (bounded) polytope P , and a vector v in this polytope
and we want to express this vector v as a convex combination of
vertices of the polytope.

We first pick up (at random) a vertex of the polytope P . The
problem of finding a vertex of the polytope defined by the equa-
tions

Mx = 0, 1Tx = a, x ⩾ 0
can be solved in time polynomial in the number of constraints and
the dimension. Indeed, consider the following linear program:

min dTx
s.t.
Mx = 0, (11)
x ⩾ 0,
1Tx = a.

If d is not parallel with a constraint of the program (11), then, the
solution is a vertex of the corresponding polytope. So in practice, if
d is a random direction, the probability that the solution is not an
extreme ray is zero.

We will proceed iteratively, by projecting v on faces Pi of the
polytopeP described by the constraints of the program (11). Since
the dimension of the face Pi strictly decreases at each step, the
algorithm will provably take at most k − 1 steps, where k is the
dimension of the polytope P .

Take any vertex e1 of P (for instance by solving the linear
program (11)); then the vector v can be written as the convex
combination of e1 and of a vector v1, which belongs to a face P1
of P : v = γ1e1 + (1 − γ1)v1 (see Fig. 2). These quantities vi, γi are
easy to compute, as v1 is the solution x∗ of the linear program

maxµ

s.t.
Mx = 0, (12)
x ⩾ 0,
1Tx = a,
v + µ(v − e1) = x.
The geometricmeaning of this linear program is as follows: starting
from the vector v one tries to find a point x which is diametrically
opposite to e1 and as far as possible from v, and µ represents the
distance from v to x. Clearly this point will be on a face P1 of the
polytope.

Now, at each step i = 1, . . . , k′, Pi is a new polytope, and, since
vi ∈ Pi, we still can express vi as a convex combination of a vertex
ofPi (which is also a vertex ofP ) and a point vi+1 that belongs to a
face Pi+1 of Pi (which is also a face of P , but of dimension strictly
smaller than dimPi). Thus, after k′

≤ k steps, the dimension of Pk′

is equal to 0, which means that vk′ is actually a vertex of P which
we denote ek′+1. Thus, vk′−1 = γk′ek′ + (1 − γk′)ek′+1. Finally, by
successively decomposing vk′ we can write:

v =

k′+1−
1

wiei,
−

wi = 1.

Thus, since the dimension of the cone S is equal to k + 1 =

m − n, we obtain at most m − n extreme vectors ei. We have thus
found the decomposition in polynomial time, which is a dramatic
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improvement compared to the naive brute force approach that
requires the enumeration of all vectors ei.

3.2. Finding the minimal decomposition if p < m − n

We now suppose that p < m − n, which implies that there
are several vectors v that satisfy Eq. (5) (the system is underde-
termined). By Theorem 1, we know that at least one of them can
be expressed as a convex combination of only p vertices of S.1In
other words, there are admissible vectors w (the extreme rays of
H), that only contain at most p nonzero values. However, if one
does not want to compute the matrix E of extreme rays of S, this
is not an easy task a priori to find such a minimal representation.
Indeed, the dimension of w is exponential in the size of the prob-
lem. Thus, we are facing a more complex problem, since we want
to decompose a point as a convex combination of vertices of the
cone, but we even do not know a priori which is this point, among
the whole set of points that satisfy Eq. (5).

In order to compute such a ‘‘good’’ vector v and its correspond-
ing decomposition, we introduce yet another cone K ⊂ Rp. This
cone is the projection of S by the matrix P : K = {y = Pv : v ⩾
0,Nv = 0}.

The idea of the algorithm is as follows: We know that the
vector vm is in K (see Eq. (5)). So, it can be expressed as a convex
combination of p extreme rays of K (because K has dimension p).
Now, the extreme rays of K are the projections of extreme rays ei
ofS under thematrixP. This implies that the corresponding convex
combination of the ei gives us the required v. We start from an
extreme ray e1 of the cone S, for instance by applying the linear
program (11) (if Pe1 = 0, one can for instance add a constraint
of the type (Pe1)j ≥ ϵ to prevent this from happening). The ray
vm = y0 can be written as the convex combination of Pe1 and a ray
y1, which belongs to a face P1 of K : vm = α1Pe1 + (1 − α1)y1.
This vector y1 is easy to find with a line search in the cone K as in
Program (12). Now, at each step, find an extreme ray ei of S which
is mapped to the face Pi−1 of K . Then yi−1 can be expressed as a
convex combination of Pei and a vector yi that belongs to a face Pi
of Pi−1. Since the dimension of Pi strictly decreases at each step,
after t ≤ p − 1 steps the point yt is actually an extreme ray of K ,
and is thus the projection of an extreme ray e(t+1) of S. Finally we
have the relations:

vm =

t+1−
1

λiPei = P


t+1−
1

λiei


, (13)

and the vector between the parentheses above is a convex
combination of at most p extreme vectors of S that satisfies (5).

4. Case-study

In Ref. Jungers et al. (2009), the interested reader will find an
application of the algorithm presented in Section 4 to a metabolic
network of CHO cells cultivated in batch mode in stirred flasks
in a serum-free medium. The network involves the Glycolysis
pathway, the Pentose–Phosphate pathway, the Krebs cycle, the
amino-acid metabolism, the urea cycle as well as the nucleotide,
protein and lipid synthesis (see Zamorano, Wouwer, & Bastin,
2009, for furthermotivation and details). For this networkwe have
m = 82 fluxes and n = 53 internal metabolites (i.e. m − n =

29), and there are 65329 elementary flux vectors (calculated with

1 To see this, consider the expression (8) of the polytope H , which describes
the set of admissible values of w. It can be defined by only p equalities, so that
dim(w) − p inequality constraints can be activated to define an extreme ray hi of
H .

METATOOL). Moreover, there are p = 22 extra-cellular species
whose degradation or accumulation rates in the culture medium
are measured and collected in the vector vm.

The algorithmof Section 4 is then implementedwith these data.
In Jungers et al. (2009), we present a successful trial where the
selected flux distribution is indeed expressed with a minimal set
of 22 elementary flux vectors only, without actually computing
the whole convex basis. Obviously the obtained flux distribution
is just one possible solution among many others with a minimal
decomposition. If the algorithm is re-runwith the same initial data,
one may find other solutions with a minimal decomposition by
making use of other searching directions.

5. Conclusion

The goal of this paper was to show that even though the
enumeration of the convex basis can be prohibitive, this does not
preclude processing this convex basis in some implicit way, so that
much important information about the system may be retrieved
without explicitly and extensively computing the convex basis.We
exemplify this in the present paper with the decomposition of the
flux distribution in a minimal number of elementary flux modes,
and it can be expected that many more issues on elementary flux
modes will be addressed in the future by processing the convex
basis in an implicit way rather than by giving an exhaustive list of
its components.

Linear programming techniques may provide efficient ways
to analyze bioreaction and metabolic networks. In this paper we
have used only a small part of the power of these techniques. For
instance, the choice of the elementary flux modes in our algorithm
is done at each step at random, while one could imagine adding an
objective function to optimize the decomposition with regard to a
certain objective.
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