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Abstract. In this paper, we present two methods for determining the position

of a leak in an open water channel. The available measurements are the water
level and the gate position at the upstream and downstream end of a channel
reach. We assume that the size of the leak and the time it started are already
estimated by a leak-detection method. Both of the proposed methods make
use of a nonlinear Saint-Venant equation model of the channel where the leak
is modelled as a lateral outflow. The first method makes use of a bank of N

models corresponding to N possible positions of the leak along the channel.
The estimated position of the leak is determined by the model which minimizes
a quadratic cost function. The second method is based on the same principle
except that it uses observers instead of pure models. The methods are tested on
both real and simulated data from the Coleambally Channel 6 in Australia. It
is further shown that the determination of the position of a leak is an inherently
difficult problem.

1. Introduction. Water is becoming an increasingly scarce resource in many parts
of the world, and agriculture is one of the biggest consumers of water [13]. Water for
agricultural purposes is often conveyed via a network of open channels. Management
of such channels must take into account the required level of service that has to be
provided to the farmers and the need to conserve water and minimize potential
water losses. Implementation of automatic control systems for regulation of the
flows and water levels ([6], [8], [9], [10], [11], [12], [14], [16], [17]) can give significant
improvement in operational efficiency, ensuring that enough water is available to
farmers while minimizing losses due to oversupply which can cause spillage along
the channel and outflows at the end of the channel system.

In addition to losses caused by oversupply of water, there are also losses due
to leaks in the channels [4],[18]. Leaks can e.g. occur in the form of unscheduled
offtakes of water or be due to break downs and failures in the (often old) civil
engineering infrastructure. A typical example is a gate to an escape channel not
sealing properly and letting water through even when it is fully closed.
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Algorithms for leak detection based on simple lumped mass balance models were
derived in [18], and the algorithms showed good performance when tested on an
operational irrigation channel. In addition to detecting the presence of a leak, it is
also of interest to estimate the location of the leak. Reaches in irrigation channels
can be many kilometers long, and the time maintenance crew spend on localizing a
leak can be reduced if an estimate of the likely location is provided.

In this paper we present two methods for leak localization. We assume that the
leak has been detected and its size estimated, e.g. using methods from [18]. In view
of the experimental results in that paper this is a reasonable assumption. Unlike
algorithms for leak detection, methods for leak localization require a model involving
the spatial variable. The main idea behind the developed methods is quite simple.
We implement a bank of open loop models (Method 1) or observers (Method 2), and
compare the output of the models/observers to the real measured water levels. Each
model/observer corresponds to a particular leak location, and the leak location for
the model/observer which minimizes a quadratic cost function of the error between
the real water level and the water level computed by the model/observer is chosen
as the estimated leak location.

The methods work well under ideal conditions, and some uncertainty can also be
tolerated with only minor performance degradation. In any real world application
the sensors will have finite precision and there will be mismatch between the real
system and the models used for design, and under such conditions an analysis
shows that the localization of leaks based on measurements at the upstream and
downstream boundary of the channel reach is an inherently difficult problem.

The paper is organized as follows. In the next section we introduce the Saint-
Venant equation models of the irrigation channel. In Section 3 we introduce the
observer design and the methods for leak localization are described in Section 4.
Simulation results and experimental results are given in Section 5. Section 6 presents
an analysis of the inherent performance limitations before conclusions are given.

2. Model.

2.1. Channel description. Figure 1 shows a sketch of a reach of a typical (Aus-
tralian) irrigation channel of length L. The channel is automated with overshot
gates, and the stretch between two gates is referred to as a pool or a reach. The
water level is denoted by Y (t, x) where t is the time variable and x is the spatial vari-
able. We have measurements of the water levels at the upstream and downstream
end, i.e. Y (t, 0) and Y (t, L). The gate positions p0(t) and pL(t) can be imposed,
which means that we can impose the flows Q(t, 0) and Q(t, L) over the upstream
and downstream gates respectively, since they are (assuming free flow conditions)
given by [5]

Q(t, 0) = c0(Yups(t) − p0(t))
3/2 (1)

Q(t, L) = cL(Y (t, L) − pL(t))3/2 (2)

where Yups is the water level upstream of the upstream gate, and c0 and cL are
known proportionality constants.

The gates are moved by electric motors, and power is supplied by solar panels.
Data communication takes place via a radio network, and at each gate there is a
micro-processor which can processes local information and information communi-
cated over the radio network.
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Figure 1. Schematic of a pool

2.2. Model. Assuming one-dimensional flow, the system can be modelled by the
Saint-Venant equations which are a two coupled quasilinear hyperbolic Partial Dif-
ferential Equations (PDE) representing a mass and a momentum balance. The
dependent variables are the flow Q and the cross-sectional area A, and the indepen-
dent variables are time t and the spatial variable x. For a channel with constant
geometry, the Saint-Venant equations are given by

∂t

(

A
Q

)

+ F (A, Q)∂x

(

A
Q

)

= H(A, Q, w) (3)

F (A, Q) =

(

0 1

gA∂AY − Q2

A2 2Q
A

)

H(A, Q, w) =

(

w

gA(S − Sf ) + kw
Q
A w

)

where ∂t, ∂x and ∂A denote the partial derivatives with respect to time, spatial
variable and cross-sectional area respectively. S is the bottom slope, g is the ac-

celeration of gravity, Sf = Q2n2

A2R(A)4/3 is the friction slope, where n is the Manning

coefficient and R(A) is the hydraulic radius. w is the lateral outflow per unit length,
and kw = 1 for outflows (w < 0) and kw = 0 for inflows (w > 0). In the rest of
the paper we will assume w ≤ 0 and hence kw = 1. We assume that the outflow is
uniform and limited to a small portion of the channel.

w(t, x) =

{

w(t) li ≤ x ≤ li+1

0 otherwise

We will refer to this as a leak at location xi = (li+1 + li)/2. The initial conditions
are given by

Q(0, x) = Q0(x), Y (0, x) = Y0(x)

and the boundary conditions are

Q(t, 0) = c0(Yups(t) − p0(t))
3/2, and Q(t, L) = cL(Y (t, L) − pL(t))3/2

A PDE of the form (3) is called hyperbolic if the matrix F has real eigenvalues.
For the Saint-Venant equations the eigenvalues are given by

λ± =
Q

A
±
√

gA∂AY
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which for irrigation channels in subcritical flow are real with opposite sign, i.e.
λ− < 0 < λ+.

3. Observer. The purpose of an observer is to reconstruct the state of a system
from measurements of the inputs and outputs of the system. In the following we
propose an observer to estimate the cross-sectional area A(t, x) and the flow Q(t, x)
using the input measurements (upstream flow Q(t, 0) computed from (1), down-
stream gate position pL(t)) and the output measurements (upstream and down-
stream water levels Y (t, 0) and Y (t, L)). The ideas behind the observer design are
as follows:

First, the estimation problem is formulated as a control problem. The control
objective is to regulate (A, Q) to an equilibrium (Ā, Q̄) using the boundary condition
Q(t, 0) and Q(t, L) as inputs. The estimation problem is considered as a control

problem where the objective is to regulate the estimation errors (A− Â, Q− Q̂) to

(0, 0) by adjusting the estimation errors on the boundary. Â and Q̂ are the cross-
sectional area and flow computed by the observer. In order to design the boundary
conditions we appeal to the following recent results in control of irrigation channels.

In [10], it was shown that imposing boundary control of the form

Q(t, 0)

A(t, 0)
=

Q̄(t, 0)

Ā(t, 0)
+

1 − k0

1 + k0
(ϕ(A(t, 0)) − ϕ(Ā(t, 0))) (4)

and

Q(t, L)

A(t, L)
=

Q̄(t, L)

Ā(t, L)
− 1 − kL

1 + kL
(ϕ(A(t, L)) − ϕ(Ā(t, L))) (5)

with 0 < k0 < 1 and 0 < kL < 1 and ϕ such that ∂Aϕ =
√

gA∂AY
A > 0 achieves the

control objective for a horizontal, rectangular channel without friction and in the
absence of offtakes (H(A, Q, w) = 0).

In [2], it was further shown based on stability analysis of the linearized Saint-
Venant equations in subcritical flow, that the boundary conditions of the form (4)
and (5) are sufficient to regulate a rectangular non-horizontal channel with friction
in the absence of offtakes.

The results were further extended in [15], where it was proved that the same
boundary conditions can control a horizontal channel with friction and in the pres-
ence of offtakes which do not affect the momentum conservation.

3.1. Proposed observer. The proposed observer is of the form

∂t

(

Â

Q̂

)

+ F (Â, Q̂)∂x

(

Â

Q̂

)

= H(Â, Q̂, ŵ) (6)

F (Â, Q̂) =

(

0 1

gÂ∂ÂŶ − Q̂2

Â2
2 Q̂

Â

)

H(Â, Q̂, ŵ) =

(

ŵ

gÂ(S − Ŝf ) + kw
Q̂

Â
ŵ

)

with the initial conditions

Q̂0(x), Â0(x)
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Ŝf is the estimate of the friction slope computed using Â and Q̂, and ŵ is an
estimate of the outflow. For this observer we impose boundary conditions of the
same form as in (4) and (5), i.e.

Q̂(t, 0)

Â(t, 0)
=

Q(t, 0)

A(t, 0)
+

1 − k0

1 + k0
(ϕ(A(t, 0)) − ϕ(Â(t, 0))) (7)

Q̂(t, L)

Â(t, 0)
=

Q(t, L)

A(t, L)
− 1 − kL

1 + kL
(ϕ(A(t, L)) − ϕ(Â(t, L))) (8)

0 < k0 < 1 and 0 < kL < 1 are the design parameters and ϕ is given by ∂Aϕ =√
gA∂AY

A > 0.

3.2. Stability analysis of the observer. The proposed observer is a hyperbolic
PDE. The main property of this class of PDE is the existence of the Riemann
coordinates which are useful for proving existence of solutions as well as analysis
and design of control methods [15].

3.2.1. Riemann coordinates. We first consider the model (3) of the irrigation chan-

nel. The Riemann coordinates are the change of coordinates ξ =

(

ξ+

ξ−

)

whose

Jacobian

P =

(

∂ξ+

∂A
∂ξ+

∂Q
∂ξ−
∂A

∂ξ−
∂Q

)

diagonalizes the matrix F of the PDE (3) such that

F = P−1ΛP where Λ =

(

λ+ 0
0 λ−

)

By definition we have

∂tξ = P∂t

(

A
Q

)

, ∂xξ = P∂x

(

A
Q

)

Then, left multiplying (3) by P , we obtain

P∂t

(

A
Q

)

+ PP−1Λ(ξ)P∂x

(

A
Q

)

= PH(A, Q, w) (9)

which can be expressed in the new coordinates by

∂tξ + Λ(ξ)∂xξ = h(ξ, w) (10)

where h(ξ, w) = PH(A, Q, w).
The matrix P which diagonalizes F is

P =

(

− Q
A2 +

√
gA∂AY

A
1
A

− Q
A2 −

√
gA∂AY

A
1
A

)

and the Riemann coordinates are
{

ξ+ = Q
A + ϕ(A)

ξ− = Q
A − ϕ(A)

where ϕ is given by

∂Aϕ =

√
gA∂AY

A
and thus
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h(ξ, w) =

(

g(S − Sf ) +
√

gA∂AY
A w

g(S − Sf ) −
√

gA∂AY
A w

)

Similarly to the Saint-Venant model (3), we define the Riemann coordinates

ξ̂ =

(

ξ̂+

ξ̂−

)

of the observer (6) as

{

ξ̂+ = Q̂

Â
+ ϕ(Â)

ξ̂− = Q̂

Â
− ϕ(Â)

with the Jacobian P̂ =





− Q̂

Â2
+

√
gÂ∂ÂŶ

Â
1
Â

− Q̂

Â2
−

√
gÂ∂ÂŶ

Â
1
Â



. In the new coordinates the

observer is represented by

∂tξ̂ + Λ(ξ̂)∂xξ̂ = h(ξ̂, w) (11)

3.2.2. Linearized observer. Assume w(t, x) = w̄(x). The steady-state solution of

the Saint-Venant equations is the pair (Ā,Q̄) which satisfies ∂t

(

Ā
Q̄

)

= 0. From

(3), it follows that

∂x

(

Ā
Q̄

)

= F−1(Ā, Q̄)H(Ā, Q̄, w̄) (12)

which gives

∂xQ̄ = w̄ (13)

∂xĀ = (gĀ∂ĀȲ − Q̄2

Ā2
)−1(gĀ(S − S̄f ) − (2 − kw)

Q̄

Ā
w̄) (14)

The steady-state solution (Ā, Q̄) corresponds to the pair (ξ̄+ = Q̄
Ā

+ ϕ(Ā), ξ̄− =
Q̄
Ā

− ϕ(Ā)) in the Riemann coordinates which is a steady-state solution of (10)

satisfying ∂tξ̄ = 0 and ∂xξ̄ = Λ−1(ξ̄)h(ξ̄).
To linearize a function g(ξ, w) around the steady-state (ξ̄, w̄) of (10), we use the

Taylor approximation

g(ξ, w) = g(ξ̄, w̄) +
∂g

∂ξ
|(ξ̄,w̄)(ξ − ξ̄) +

∂g

∂w
|(ξ̄,w̄)(w − w̄)

Let α = ξ − ξ̄ and w̄ = 0. The linearization of (10) gives

∂tα(t, x) + C(ξ̄)∂xα(t, x) = B(ξ̄)α(t, x) + W (ξ̄)w(t, x) (15)

where C(ξ̄) = Λ(ξ̄), B(ξ̄) = ∂ξh(ξ̄) and W (ξ̄) = limw→0− ∂wh(ξ̄). In the same way,
we linearize the observer around the same steady-state ξ̄ and we obtain

∂tα̂(t, x) + C(ξ̄)∂xα̂(t, x) = B(ξ̄)α̂(t, x) + W (ξ̄)ŵ(t, x) (16)

where α̂ = ξ̂ − ξ̄ and C(ξ̄), B(ξ̄) and W (ξ̄) are given above. In the original coordi-
nates α and α̂ are given by

α =

(

α+

α−

)

=

(

Q
A − Q̄

Ā
+ (ϕ(A) − ϕ(Ā))

Q
A − Q̄

Ā
− (ϕ(A) − ϕ(Ā))

)

(17)
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α̂ =

(

α̂+

α̂−

)

=

(

Q̂

Â
− Q̄

Ā
+ (ϕ(Â) − ϕ(Ā))

Q̂

Â
− Q̄

Ā
− (ϕ(Â) − ϕ(Ā))

)

(18)

3.2.3. Convergence of estimation error. Define the estimation error e in the Rie-
mann coordinates as

e(t, x) = α(t, x) − α̂(t, x)

Then

∂te(t, x) = ∂tα(t, x) − ∂tα̂(t, x)

and from (15) and (16) it follows that

∂te(t, x) + C(ξ̄)∂xe(t, x) = B(ξ̄)e(t, x) + W (ξ̄)ew(t, x) (19)

where ew(t, x) is given by ew(t, x) = w(t, x) − ŵ(t, x). We now observe that the
dynamics governing the estimation error are the same as in (15), and hence the
stability results based on an analysis of a linearized model summarized in Section
3 carry over to the observer.

4. Localization scheme. Here, we present the two methods for determination of
the position of the leak.

4.1. Method based on the models. In order to find the position of the leak, we
consider N equidistant possible positions xj of the leak along the channel. For each
position xj , we build a model of the type (3) where the leak is modelled as a lateral
outflow at position xj . We then form a bank of the N models as shown in Figure
2. The outputs Yj of the models are then compared to the system output Y , and a
quadratic cost function J is evaluated

J(xj) =

∫ t+T

t

(

[Y (σ, 0) − Yj(σ, 0, xj)]
2 + [Y (σ, L) − Yj(σ, L, xj)]

2
)

dσ, j = 1, . . . , N

(20)
where T represents the time horizon. It is a design parameter and its selection is
commented on the last section of the paper. Moreover, weights on the upstream and
downstream quadratic water level error can also be introduced as design parameters.
The estimated position of the leak is determined by the model which minimizes the
cost function, i.e.

x̂l = arg min
xj , j=1,...,N

J(xj)

4.2. Method based on the observers. The underlying principle for estimation
of the position of the leak is the same. However, here we use observers instead of
models. We design an observer of the form (6) for each position xj , j = 1, ..., N of
the leak and form a bank of N observers (Figure 3). Observers of this type have
also been used for leak localization in pipelines, see [1].

As in the previous method, the observer outputs Ŷj are compared to the system
outputs using the cost function J

J(xj) =

∫ t+T

t

(

[Y (σ, 0) − Ŷj(σ, 0, xj)]
2 + [Y (σ, L) − Ŷj(σ, L, xj)]

2
)

dσ

The estimated leak position is as before given by

x̂l = arg min
xj , j=1,...,N

J(xj)
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Figure 2. Bank of models

Figure 3 shows the bank of observers where f0 and fL denote the following boundary
conditions

Q̂(t, 0) = f0(Q(t, 0), A(t, 0), Â(t, 0))

= Â(t,0)
A(t,0)Q(t, 0) + 1−k0

1+k0
(ϕ(A(t, 0)) − ϕ(Â(t, 0)))

(21)

p̂L(t) = fL(pL(t), Y (t, L), Ŷ (t, L))

= Ŷ (t, L) − 1
cL

[ Â(t,L)
A(t,L)Q(t, L) − 1−kL

1+kL
(ϕ(A(t, L)) − ϕ(Â(t, L)))]3/2 (22)

These boundary conditions are the same as those in Section 3.1, but expressed in
terms of the upstream flow and the downstream gate position.

5. Application. In order to test the performance of the proposed methods on both
simulated and real data, we considered Pool 4 of the Coleambally 6 channel which
is an operational irrigation channel in Australia. The channel has a trapezoidal
cross-section and hence the cross-sectional area is given by A = (b + zY )Y where b
is the bottom width and z is the side slope. The channel data are summarized in
Table 1.

Note that the stability analysis of the observers in Section 3.2.3 does not cover
this case since the channel is trapezoidal and the lateral outflows will of course affect
both the mass and momentum balance. We have however chosen this example as
it corresponds to a real irrigation pool.
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Parameter Symbol Value Dimension
Length L 943 m

Bottom width b 1.68 m
Side slope z 2

Bottom slope S 3.45 · 10−4

Downstream gate width bu 1.91 m
Normal water depth yn 1.5 m
Manning coefficient n 0.02

Sampling time ∆t 60 s

Gate coefficient cL = (0.6bu
√

g) 3.58 m−1/2s−1

Table 1. Parameters for Pool 4

5.1. Implementation. To implement the methods, we use the numerical Preiss-
mann scheme. It is a finite difference method for solving the Saint-Venant equations.
The time t and the spatial variable x are discretized onto a grid on which the Saint-
Venant equations are solved using approximations of the partial derivatives. In the
Preissmann model, a variable f (in our case A, Q and w) and its derivatives are
approximated as follows [7]

f =
1

2
α(fk+1

i+1 + fk+1
i ) +

1

2
(1 − α)(fk

i+1 + fk
i )
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∂tf =
(fk+1

i + fk+1
i+1 ) − (fk

i + fk
i+1)

2∆t

∂xf =
α(fk+1

i+1 − fk+1
i ) + (1 − α)(fk

i+1 − fk
i )

∆x
where the subscript i = 0, ..., N denotes the spatial grid point and k = 1, 2, ...
denotes the time grid point. ∆x and ∆t are the grid intervals along the x-axis and
t-axis respectively.

The above equations are augmented with the upstream (i = 0, corresponding to
x = 0) and downstream boundary conditions (i = N , corresponding to x = L)

Qk+1
i=0 = Q((k + 1)∆t, 0)

Qk+1
i=N = cL(Y k+1

i=N − pL((k + 1)∆t))3/2

For the simulations, we used N = 50 which is also the number of possible leak
locations we considered along the channel. ∆x = L/N = 18.86m and ∆t = 60s.
Typical values of α are between 0.6 and 0.7 [7]. Here we used α = 0.6. In the
simulations, a leak is modelled as a uniform lateral outflow in section si = [li, li+1]
where li+1 = li + ∆x, i = 1, N − 1 with l1 = 0 and lN = L. The position xi of the

leak is by convention taken as the midpoint of the section, i.e. xi = li + li+1−li
2 .

5.2. Simulated data. In this section we present simulation results which show

1. The performance of the observer and the effect of the gains k0 and kL on the
speed of convergence

2. The performance of the leak localization methods in the ideal case (no model
uncertainty, no measurement noise etc.)

3. The performance limitation of the methods in a real world scenario (model
uncertainty, uncertainty in the size and start time of the leak etc.)

We consider the following scenario. The upstream flow and the downstream gate
position are constant at Q(t, 0) = Q̄ = 0.6m3/s and pL(t) = p̄L = 1.35m as shown
in Figure 4. A leak of size 0.2m3/s starts at time tw = 200 min in section number
35. The simulated upstream and downstream water levels are shown in Figure 5.
In the beginning there is a transient before steady-state conditions are reached, and
the water levels start decreasing at time 200 min when the leak occurred.

5.2.1. Observer performance: In order to illustrate the performance of the observer,
the estimation errors e(t, L) = Y (t, L) − Ŷ (t, L) are plotted in Figure 6 for the
observer gains k0 = kL = {−0.01,−0.05,−0.1,−0.2}.

As we can see, the observers work very well also in this case when the channel is
trapezoidal. The estimation error converges to zero, and the speed of convergence
depends on the values k0 and kL. The convergence speed increases as |k0|, |kL|
decreases. The gains k0 = kL = −0.01 corresponding to the fastest convergence are
used in the rest of the paper.

5.2.2. Performance of the leak localization methods. Here we demonstrate the abil-
ity of the two proposed methods to find the position of the leak. To this end we
assume that Y (t, 0) and Y (t, L) in Figure 5 are the actual measurements and that
the size of the leak and the time it starts are known and equal to the true values
of 0.2m3/s and 200 min. We consider 50 possible positions of the leak, each corre-
sponding to an 18.86 meter section of the channel as used in the discretization of
the models. We construct a bank of 50 models/observers, each one corresponding
to a particular position(section) of the leak. The upper and lower integration limits
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in the cost function J (equation 20) are 190 and 230 min respectively. The cost
function is shown in Figure 7 for each one of the models/observers in the bank. We
see that the cost functions for both methods attain their minima when the leak is
correctly modelled as being in section no. 35, and hence the leak localization meth-
ods work under ideal condition. In practice however, the data are noisy, and the
model is imperfect. Next we show the influence of uncertainty in the model param-
eter and uncertainty in the time the leak starts on the leak localization methods.
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5.2.3. Limitations of the localization methods. In practice, it is not required to pin-
point the position of the leak in the channel exactly and an error of ±100 meters
is often acceptable since the time it takes to physically locate the leak in the field
will still be reduced. In the following we demonstrate the range of uncertainty that
can be tolerated before the localization error becomes large. We first consider the
presence of model uncertainty. Here, a range of Manning coefficient n in the interval
[0, 0.025] is used in the models/observers. Such change is realistic since there can
be a difference in the friction at the beginning of the irrigation season when the
channel is ”clean” and at the end when it can be full of weeds. The cost functions
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obtained for n = 0 and n = 0.025 are shown in Figure 8. For both methods, the
obtained position of the leak is between section no. 30 and section no. 37. The
true location of the leak is in section no. 35, and hence for the considered range
of Manning coefficient, the error is between −94 meters and 37 meters since the
sections are 18.8 meters long.
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Figure 8. Cost functions J for the leak localization methods with
model uncertainty

Next, we consider uncertainty in the start time of the leak tw. In this simulation,
the leak starts at different times than what is assumed i.e. tw = 198, 199, 201, 202
minutes. The results in Figure 9 show that for tw = 198, 199 and 201 the minima
of the cost functions for both methods occur when the leak is modelled between
section no. 30 and 40 which corresponds to errors between −94 meters and 94
meters. However, when the start time is 202 minutes, the leak location is given at
section no. 25 (in the middle of the channel) which corresponds to 188 meters of
error. Hence a small uncertainty of two minutes in the start time of the leak can
lead to a relatively large error in the position. We will discuss this further in Section
6.

5.3. Experimental data. The data set shown in Figure 10 is from the Coleambally
no. 6 channel. There is an offtake point to a farm just upstream of the downstream
gate in Pool 4, and a water withdrawal started at that location at time 70 min.
The CUSUM algorithm developed in [18] was applied to this data set, and the leak
was detected at time 70 min which means that the algorithm provided an accurate
estimate of the start time of the water withdrawal (see [18]). The estimated size of
the leak ŵ is shown in Figure 11 together with the measured value. This estimate
will be used in the localization methods.

5.3.1. Calibrated model. In order to use a more accurate model and to reduce the
effect of model uncertainties on the leak localization schemes, we first calibrated
the parameters of the model to the real data. The calibrated parameters are the
Manning coefficient n = 0.05 and the gate coefficient cL = 4. Upstream and
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downstream water levels generated with the calibrated model are shown together
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Figure 11. Measurement of the offtake and its estimated value

with the real data in Figure 12. As we can see, the model follows the real water
levels well.

5.3.2. Results with the leak localization methods. From Figure 13, we see that both
methods give a minimum of the cost function for section no. 33, i.e. they fail to
find the right location of the leak which is in section 50.

From the obtained results it seems that the proposed localization methods are
only performing well when there is limited uncertainty. Realistic uncertainties signif-
icantly affect the performance of the methods. In the next section, we will illustrate
using a simple case study and the characteristic method for solutions of hyperbolic
PDEs the difficulty of the leak localization problem.

6. Discussion. In this section, we consider the Saint-Venant model (3) expressed
in the Riemann coordinates

∂t

(

ξ+

ξ−

)

+

(

λ+(ξ) 0
0 λ−(ξ)

)

∂x

(

ξ+

ξ−

)

=

(

h+(ξ)
h−(ξ)

)

+

(

hw+
(ξ, w)

hw−
(ξ, w)

)

(23)

where λ+ = Q
A +

√
gA∂AY , λ− = Q

A −
√

gA∂AY , h+ = h− = g(S − Sf ), hw+
=

−hw−
=

√
gA∂AY

A w. The available measurements are the upstream and downstream
water levels and gate positions from which the Riemann coordinates ξ(t, 0) and
ξ(t, L) can be computed.

6.1. Characteristic method. The principle of the characteristic method is to
transform the PDE (23) into an equivalent set of ordinary differential equations
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Figure 12. Calibrated model outputs and the measurements

(ODE). From the total derivatives dξ+ = ∂ξ+

∂t dt + ∂ξ+

∂x dx and dξ− = ∂ξ−
∂t dt + ∂ξ−

∂x dx
it follows that

dξ+

dt
=

∂ξ+

∂t
+

∂ξ+

∂x

dx

dt
(24)

dξ−
dt

=
∂ξ−
∂t

+
∂ξ−
∂x

dx

dt
(25)

By imposing dξ+

dt = h+(ξ) + hw+
(ξ, w) and dx

dt = λ+(ξ) in (24) and dξ−
dt = h−(ξ) +

hw−
(ξ, w) and dx

dt = λ−(ξ) in (25), the system (24)-(25) is equivalent to (23) and
solving the PDE consists in solving the system of ODE

{

dξ+

dt = h+(ξ) + hw+
(ξ, w)

dx
dt = λ+(ξ)

(26)

{ dξ−
dt = h−(ξ) + hw−

(ξ, w)
dx
dt = λ−(ξ)

(27)

The solutions to the equations which only involve the independent variables are
called the characteristic curves and the solutions to the equations involving the
dependent variables are called the solution of the PDE along the characteristic. To
illustrate the method, consider the case where h+ = h− = 0, hw+

= hw−
= 0 and

λ+(ξ) = λ̄+, λ−(ξ) = λ̄− constant. The system of ODE is reduced to
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Figure 13. Cost function J with experimental data

{

dξ+

dt = 0
dx
dt = λ̄+

(28)

{ dξ−
dt = 0

dx
dt = λ̄−

(29)

In this case, the characteristics are lines of slope λ̄+ > 0 corresponding to the
positive characteristic C+ and λ̄− < 0 corresponding to the negative characteristic
C−. Moreover, the solutions ξ+ and ξ− are constant along the characteristics C+

and C− respectively.
Figure 14 illustrates the solution in the (x, t) plane. There are two types of lines

in the figure

• The solid lines corresponding to characteristics with initial values (t = 0, x =
x0) on the initial condition axis. These lines are defined by

C+ : x(t) = λ̄+t + x0, 0 ≤ t ≤ L − x0

λ̄+

C− : x(t) = λ̄−t + x0, 0 ≤ t ≤ x0

|λ̄−|
The solutions along these lines are constant and equal to the initial condi-

tion ξ+(t, x) = ξ+(0, x0) along C+ and ξ−(t, x) = ξ−(0, x0) along C−.
• The dashed lines correspond to characteristics with initial values (tc, x(tc) = 0)

and (tc, x(tc) = L) on the boundary condition axes (x = 0 and x = L). These
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characteristics are defined by the equations

C+ : x(t) = λ̄+(t − tc), tc ≤ t ≤ tc +
L

λ̄+

C− : x(t) = λ̄−(t − tc) + L, tc ≤ t ≤ tc +
L

|λ̄−|
The solutions along these lines are constant and equal to the boundary con-
ditions ξ+(t, x) = ξ+(tc, 0) along C+ and ξ−(t, x) = ξ−(tc, L) along C−.

To summarize, along a characteristic, the solution is determined either by the initial
conditions or by the boundary conditions. The solution ξ(t, x) is determined by the
boundary condition for all t ≥ L

min(λ+,|λ−|) .

6.2. Physical interpretation. In subcritical flow, the solution to the Saint-Venant
equations represents two coupled waves, one travelling downstream and one travel-
ling upstream. The characteristic curves C+ and C− show how a wave originating
at the point (t, x) propagates upstream and downstream. The eigenvalues λ̄+ > 0
and λ̄− < 0 are the velocities of the waves. Assume now that a constant leak of
size w starts at time t = t1 in position x1, i.e. hw+

(ξ(x1, t), w(x1, t)) 6= 0 and
hw−

(ξ(x1, t), w(x1, t)) 6= 0 for t ≥ t1. The system of ODE becomes
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dξ+

dt
=

√
gA∂AY

A
w(t, x) (30)

dx

dt
= λ+(ξ) (31)

and

dξ−
dt

= −
√

gA∂AY

A
w(t, x) (32)

dx

dt
= λ−(ξ) (33)

where λ+ = Q
A +

√
gA∂AY and λ− = Q

A −
√

gA∂AY .
It is clear from (31) and (33) that the presence of a leak w affects the solution ξ

and therefore also the characteristics. The solution ξ and the velocities λ+ and λ−
are no longer constant. Next we will heuristically argue that the leak localization
problem is an inherently difficult problem, and in the process reveal the reasons for
the difficulties. We make the following observations

1. The velocities λ+(ξ) and λ−(ξ) remain close to the constant values λ+ and λ−.

The eigenvalues λ± are given by λ± = Q
A ±√

gA∂AY = V ± C where V = Q
A

is the average velocity of the water flow due to the kinetic energy and C =√
gA∂AY is the celerity of waves due to the potential energy. In subcritical

flows as typically seen in irrigation channels, C completely dominates V so
λ+ ≈ −λ−. (For the data in Figure 5, C is about 40 times the value of V .)
That is the waves travel upstream and downstream with approximately the
same speed. Moreover, for the changes in water levels and flows due to leaks
as e.g. shown in Figure 5 and 12, the change in the value of C is less than 2
per cent and hence even with a leak the characteristic curves remain close to
straight lines.

2. Leaks originating at different locations can have very similar effect at the
downstream end. Assume that we have two leaks originating at (t′, x′) and
(t′′, x′′) such that the effect reaches the downstream end at the same time
tL (see Figure 14). (From the above discussion it follows that both (t′, x′)
and (t′′, x′′) are close to one of the straight lines (C

′

+) with slope λ+.) The
difference in ξ+(t, L) will be very small in any realistic scenario. The reason is
that the change in ξ+ comes from when (30) is integrated along the part of the
characteristic where w(t, x) is non-zero, and a translation of w(t, x) along the
characteristic only leads to a small change to the solution on the boundary.
Hence it will be very difficult to distinguish a leak starting in position x′ and
time t′ from a leak in position x′′ starting at time t′′. However, the effects will
reach the upstream end at different times (t

′

0 and t
′′

0 ) since (t′, x′) and (t′′, x′′)
will be on different characteristics C

′

− and C
′′

−. As the velocities λ+ and λ− are
typically in the order of several meters per second (around 3m/s for the data
in Figure 5 and 12), the above observations indicates that leak localization is
an inherently difficult problem since essentially only data observed in a narrow
time frame at the upstream end and downstream end allows us to discriminate
between leak locations.



208 NADIA BEDJAOUI, ERIK WEYER AND GEORGES BASTIN

As an example, consider the same scenario as in Section 5.2.2 with data
given in Figure 4 and 5. Assume now that the leak started two minutes earlier
at time 198 minutes, but in section no. 22, i.e. about 250 meters upstream
of the original location. The differences in upstream and downstream water
level are shown in Figure 15. The difference in the downstream water level is
hardly above 0.005 m and there is never more than a difference of 0.009 m in
the upstream level. Compared to the natural variations in the water levels as
seen in Figure 12 these differences are small.
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Figure 15. Difference in water level for leaks at different locations

The above considerations show that having a good estimate of the start time
of a leak can be crucial for successful location of the leak. Also note that data
observed after a certain time after the leak occurred carries relatively little infor-
mation about the location of the leak since the effects are then very similar at the
boundaries. Hence, the integration time T should be chosen such that it covers the
period when there are relatively large differences but not any longer time period.
Moreover the boundary conditions are often at least partially given by a control
system which objective is to maintain the water levels at constant setpoints, and
this will further mask any difference between leak locations. Due to the uncertainty
in the starting time of a leak, the bank of model/observers could be extended to
include models/observers where the leak starts at different times.

Furthermore, the above discussion also points to an alternative approach to the
leak localization problem. As the velocities λ+ and λ− are approximately equal,
the time difference between the effect of a leak is seen at the upstream end and the
downstream end can be used to estimate the position of the leak. Let τ = L/λ+,
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the time it takes to travel the length of the pool. Let δt be the time difference
between the effect is seen at the upstream end and the downstream end. If δt is
zero we expect the leak to be in the middle, if it is close to ±τ we expect it to be
at the upstream/downstream end and more generally

x̂l = (1/2 − δt/(2τ)) · L
Note that this approach does not rely on having an estimate of the time the leak

started as it is solely based on the time difference between the effects can be seen
at the upstream and downstream end.

However, it can still be difficult to apply this approach to real data. As an
example, Figure 16 shows the upstream and downstream water level in Pool 4 of
the Coleambally 6 channel at the time the offtake started. It is not clear when
the water levels start decreasing. Taking into account the values of λ+ and λ−, an
uncertainty of 1 minute in when the effect is seen corresponds to an uncertainty of
about 200 m in the position of the leak illustrating the difficulty of the problem.
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Figure 16. Upstream and downstream water level at the time
when the leak started

7. Conclusion. In this paper, we proposed two methods to estimate the position
of a leak in an open-water channel. Both methods work well under ideal conditions
and within a range of uncertainties. A heuristic analysis has been presented which
shows that the leak localization problem is an inherently difficult problem, and
based on the analysis a simplified approach using the time difference between the
effects of a leak are seen at the upstream end and the downstream end has been
suggested.
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