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ABSTRACT. This tutorial paper is concerned with the design of macroscopic bioreaction models on
the basis a quantitative analysis of the underlying cell metabolism. The paper starts with a review
of two fundamental algebraic techniques for the quantitative analysis of metabolic networks : (i) the
decomposition of complex metabolic networks into elementary pathways (or elementary modes), (ii)
the metabolic flux analysis which aims at computing the entire intracellular flux distribution from a
limited number of flux measurements. Then it is discussed how these two fundamental techniques can
be exploited to design minimal bioreaction models by using a systematic model reduction approach
that automatically produces a family of equivalent minimal models which are fully compatible with the
underlying metabolism and consistent with the available experimental data. The theory is illustrated
with an experimental case-study on CHO cells.

RÉSUMÉ. Cet article tutoriel traite de la conception de modèles de bioréactions macroscopiques sur
la base d’une analyse quantitative du métabolisme cellulaire sous-jacent. L’article commence par un
rappel de deux techniques algébriques fondamentales pour l’analyse quantitative des réseaux mé-
taboliques : (i) la décomposition des réseaux métaboliques complexes en chemins élémentaires (ou
modes élémentaires), (ii) l’analyse des flux métaboliques qui vise à calculer la totalité des flux méta-
boliques intracellulaires à partir d’un ensemble limité de mesures. On montre ensuite comment ces
deux techniques peuvent être exploitées pour concevoir des modèles minimaux de bioréactions en
utilisant une approche systématique de réduction de modèle qui produit automatiquement une famille
de modèles minimaux équivalents compatibles non seulement avec les données expérimentales mais
aussi avec le métabolisme sous-jacent. La théorie est illustrée avec une étude de cas expérimentale
sur des cellules CHO.
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1. Introduction

The issue of quantitative bioprocess modelling from extracellular measurements is a
central issue in bioengineering (e.g. [9]). In classical macroscopic models, the biomass
is viewed as a catalyst for the conversion of substrates into products. The process is
represented by a set of so-called bioreactions that directly connect the substrates to the
products, without making an explicit reference to the intracellular metabolism.

A more recent trend is to base the design of macroscopic bioreaction models on a
quantitative analysis of the underlying cell metabolism (e.g. [5], [12], [14], [20]). Our
concern in this paper is to give a brief tutorial presentation of the theory that underlies this
methodology. We start with a review of two fundamental techniques for the quantitative
analysis of metabolic networks : (i) the decomposition of complex metabolic networks
into elementary pathways (or elementary modes), (ii) the metabolic flux analysis which
aims at computing the entire intracellular flux distribution from a limited number of flux
measurements. Then we discuss how these two fundamental techniques can be exploited
to design minimal bioreaction models by using a systematic “model reduction” approach
that automatically produces a family of equivalent minimal models which are fully com-
patible with the underlying metabolism and consistent with the available experimental
data.

As a matter of illustration and motivation to the theory, we consider the example of
chinese hamster ovary (CHO) cells cultivated in batch mode in stirred flasks ([1]).

2. Metabolic networks

The intracellular metabolism of living cells is usually represented by a metabolic net-
work under the form of a directed hypergraph that encodes a set of elementary biochem-
ical reactions taking place within the cell. In this hypergraph, the nodes represent the
involved metabolites and the edges represent the metabolic fluxes. A typical example
of metabolic network is shown in Fig.2. The metabolic network involves two groups of
nodes: boundary nodes and internal nodes. Boundary nodes have only either incoming
or outgoing edges, but not both together. Boundary nodes are further separated into in-
put (or initial) and output (or terminal) nodes. Input nodes correspond to substrates that
are only consumed but not produced. Output nodes correspond to final products that are
only produced but not consumed. In contrast, the internal (or intermediary) nodes are
the nodes that have necessarily both incoming and outgoing incident edges. They corre-
spond to intracellular metabolites that are produced by some of the metabolic reactions
and consumed by other reactions inside the cell.

We adopt the quasi steady-state paradigm of metabolic flux analysis (MFA) (e.g. [17]).
This means that for each internal metabolite of the network, it is assumed that the net sum
of production and consumption fluxes, weighted by their stoichiometric coefficients, is
zero. This is expressed by the algebraic relation:

Nv = 0 v � 0 (1)

where v = (v1, v2, . . . , vm)T is the m-dimensional vector of fluxes and N = [n ij ] is the
n × m stoichiometric matrix of the metabolic network (m is the number of fluxes and n
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the number of internal nodes of the network). More precisely, a flux v j denotes the rate of
reaction j and a non-zero nij is the stoichiometric coefficient of metabolite i in reaction
j.

We also introduce the following notations : vs for the vector of the specific uptake
rates of the initial substrates and vp for the vector of the specific production rates of the
final products. By definition vs and vp are linear combinations of some of the metabolic
fluxes. This is expressed by defining appropriate matrices Ns and Np such that

vs = Nsv vp = Npv. (2)

Obviously, the specific rates vs and vp are not independent since they are quantitatively
related through the intracellular metabolism represented by the metabolic network. A
significant outcome of the quantitative analysis is precisely to elucidate this relation more
deeply.

3. Elementary modes and input/output bioreactions

For a given metabolic network, the set S of possible flux distributions is the set of
vectors v that satisfy the set (1) of homogeneous linear equalities and inequalities. Each
possible v must necessarily be non-negative and belong to the kernel of the matrix N.
Hence the set S is the pointed polyhedral cone which is the intersection of the kernel of
N and the nonnegative orthant. This implies that any flux distribution v can be expressed
as a non-negative linear combination of a set of so-called elementary flux vectors e i ([18])
which are the edges (or extreme rays) of the polyhedral cone and form therefore a unique
convex basis (see e.g. [19]) of the flux space S:

v = w1e1 + w2e2 + · · · + wpep wi � 0. (3)

The m × p non-negative matrix E with column vectors e i obviously satisfies NE = 0
and (3) is written in matrix form as

v = Ew with w � (w1, w2, . . . , wp)T . (4)

>From a metabolic viewpoint, the vectors e i encode the simplest metabolic paths that
connect the initial substrates (input nodes) to the final products (output nodes). More
precisely, the non-zero entries of a basis vector e i enumerate the fluxes of a sequence
of biochemical reactions starting at one or several initial substrates and ending at one or
several final products. These simple pathways between initial substrates and final products
are called extreme pathways (ExPa) or elementary (flux) modes (EM) of the network
(e.g.[2], [9], [16]). Since the intermediate reactions are assumed to be at quasi steady-
state, a single macroscopic bioreaction is then readily defined from an elementary mode
by considering only the involved initial substrates and final products.

Let us now examine the relation between the specific consumption and production
rates vs and vp induced by the metabolic network. From (2) and (4) it follows that

( −vs

vp

)
=

( −Ns

Np

)
Ew = Kew (5)
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where

Ke �
( −Ns

Np

)
E

is the stoichiometric matrix of the set of input/output bioreactions encoded by the EMs.
Hence vs and vp can be regarded as the specific uptake and production rates of a biopro-
cess governed by the bioreactions with stoichiometry Ke and specific reaction rates w. In
other terms, each weighting coefficient wi in (3) can equally be interpreted as the specific
reaction rate of the bioreaction encoded by the EM e i : the flux vector v is thus a linear
combination of EMs whose non-negative weights are the macroscopic bioreaction rates
wi.

An important issue concerns the number of distinct EMs that are generated when
computing the EMs. It may become very large because it combinatorially increases with
the size of the underlying metabolic network1. Furthermore, even when the number of
EMs is rather limited, it appears that the resulting set of bioreactions can be significantly
redundant for the design of models that fully explain the available experimental data.
There is therefore clearly an interest for reducing the model size as much as possible
and trying to determine a minimal subset of bioreactions that is sufficient to build the
bioreaction model (5).

4. Metabolic flux analysis

Metabolic flux analysis (MFA) is the exercise of calculating the admissible flux dis-
tributions v that satisfy the steady state balance equation Nv = 0 together with an ad-
ditional set of linear constraints added by using experimental measurements. Here we
consider the case where the measurements are collected in a vector vm which is a linear
function of the unknown flux distribution v and is expressed as

vm = Pv (6)

with P being a known dim{vm} × n matrix. In addition, it is assumed that Pei �= 0 ∀i
or, in other terms, that the elementary flux vectors e i do not belong to the kernel of the
matrix P. Then, from equations (1)-(6), we have the following fundamental equation of
metabolic flux analysis

Σ
(
v
1

)
= 0 with Σ �

(
N 0
P −vm

)
and v � 0. (7)

For a given metabolic network and a given set of measurements, the solution of the
MFA problem is defined as the space F of admissible flux distributions. i.e. the set of
non-negative vectors v that satisfy the finite set (7) of homogeneous linear equalities and
inequalities. Each admissible v must be such that the non-negative vector (v T 1) belongs

1. The Double Description (DD) method ([8]) is the simplest known algorithm for computing the con-
vex basis of the solution space (see [3] for a review). In the context of metabolic networks various
refinements have been proposed that differ from the original DD algorithm mainly by their initialization.
A first specific algorithm was presented by [15]. Recently, the implementation of the DD method for
metabolic networks has received various further improvements (e.g. [4] and [6]).
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Figure 1. Illustration of the flux spaces S and F .

to the kernel of the matrix Σ. Hence, as emphasized in [11, Chapter 4]-[13], the set F is
also a pointed polyhedral cone in the positive orthant R

m
+ . This means that any admissible

flux distribution v can be expressed as a convex combination of a set of q non-negative
basis vectors fi which are the edges (or extreme rays) of this polyhedral cone and form
therefore a unique convex basis of the flux space F . In other words, the solution of the
MFA problem is the admissible flux space F defined as

F �
{
v : v =

q∑
i=1

ωifi, ωi � 0,

q∑
i=1

ωi = 1
}
. (8)

The admissible flux space F is a subset of the possible flux space S generated by the
elementary modes. In geometric terms, the pointed cone F is a subcone of the pointed
cone S as illustrated in Fig.1. The smallest “hyper-rectangular" set that encloses F in R

m

is called the flux spectrum (e.g. [7]) and is defined as the set

Fo =
{
v : vmin

i � vi � vmax
i

}
where the bounds vmin

i and vmax
i are defined from the convex basis vectors as follows:

vmin
i � min

{
fki, k = 1, . . . , p

}
, vmax

i � max
{
fki, k = 1, . . . , p

}
,

where fki denotes the i-th element of the basis vector fk.

5. Minimal bioreaction models based on minimal sets of
elementary modes

For any admissible flux vector v in the cone F satisfying equation (7), it must be
emphasized that the decomposition of v in the convex basis {e i} is not unique. As we
shall see, this is the algebraic expression of the fact that the set of bioreactions that may be
used to compute v with equation (4) or vs and vp with equation (5) is redundant. Using
(4), system (7) is equivalent to the system:(

NE
PE

)
w =

(
0

vm

)
w � 0. (9)

We observe that the first equation NEw = 0 is trivially satisfied independently of w
since NE = 0 by definition. Hence, system (9) may be reduced to the second equation:

PEw = vm w � 0.
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or equivalently: (
PE −vm

) (
w
1

)
= 0 w � 0. (10)

In this form, it is clear that the set of admissible reaction rate vectors w that satisfy (10)
again constitutes a convex polyhedral cone. Therefore there exists a set of appropriate
edge vectors hi such that any arbitrary convex combination of the form:

w =
∑

i

zihi zi � 0
∑

i

zi = 1 (11)

is necessarily an admissible w satisfying (10). The convex basis vectors h i have an im-
portant and critical property : the number of non-zero entries is at most equal to the size
of the vector vm i.e. the number of measurements (see [3] and Section 3.5 in [11]). From
a metabolic viewpoint, each vector hi is a particular solution w of (10), or equivalently a
particular way (among an infinity) of computing an admissible flux distribution v i:

vi = Ehi vi ∈ F (12)

Of course in this expression, the non-zero entries of the vector h i are interpreted as the
weights of the respective contributions of the corresponding EMs in the computation of
the flux distribution vi. But, at the same time, they can also be interpreted as being the
specific rates of the bioreactions that are encoded by the EMs and are involved in the
bioreaction model (5).

Hence each convex basis vector hi brings two different pieces of information. First
it tells which EMs and consequently which input/output bioreactions are sufficient to
compute internal flux distributions that are consistent with the measurements vm. These
EMs are designated by the position of the non-zero entries of h i. Secondly, the value of
each non-zero entry of hi is the value of the reaction rate of the corresponding bioreaction.

For each basis vector hi, we can then define a selection matrix Si that encodes the
corresponding selection of bioreactions. Then equation (5) is reduced to a minimal form:

( −vs

vp

)
= Kiri (13)

where Ki � KeSi and ri � (Si)T hi respectively denote the stoichiometric matrix and
the vector of the specific reaction rates of the selected minimal set of bioreactions.

Therefore, we see that the computation of the convex basis vectors h i provides the tool
for determining all the minimal input/output bioreaction models that are both consistent
with the intracellular metabolism and the experimental measurements.

6. Case-study

As a matter of illustration and motivation to the methodology presented above, we
consider the example of chinese hamster ovary (CHO) cells cultivated in batch mode in
stirred flasks in a serum-free medium ([1]). During the growth phase, the cell metabolism
is described by the metabolic network presented in Fig.2. This network describes only
the part of the metabolism concerned with the utilisation of the two main energetic nu-
trients (glucose and glutamine). The metabolism of the amino acids provided by the
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culture medium is not considered. The network involves the Glycolysis pathway, the
Pentose-Phosphate pathway and the Krebs cycle. Moreover it is assumed that a part of
the glutamine is used for the making of nucleotides which are lumped into a single species
with equal shares of purines and pyrimidines (see [11] and [14] for further motivation and
details).

In this network, there are

• two input substrates : Glucose and Glutamine;

• five output products : Lactate, CO2, NH4, Alanine and Nucleotides;

• n = 18 internal metabolites : Glucose-6-phosphate, Fructose-6-Phosphate,
Dihydroxy-acetone-phosphate, Glyceraldehyde-3 phosphate, Pyruvate, Acetyl-coA,
Citrate, α-ketoglutarate, Fumarate, Malate, Oxaloacetate, Aspartate, Glutamate,
CO2, Ribose-5-Phosphate, Ribulose-5-Phosphate, Xylose-5-Phosphate, Erythrose-4-
Phosphate;

• m = 24 metabolic fluxes denoted v1 to v24 in Fig. 2.

Without loss of generality, all the intermediate metabolites that are not located at
branch points have been omitted from the network. The stoichiometric matrix N is given
in Table 1. The matrices Ns and Np are given in Tables 2 and 3 respectively.

The network has eleven elementary modes given in Table 6 (computed with META-
TOOL2) and from which the following set of input/output bioreactions can be derived:

(e1) Glucose → 2 Lactate

(e2) 2 Glucose + 3 Glutamine → Alanine + Nucleotide + 9 CO2

(e3) Glutamine → Lactate + 2 NH4 + 2 CO2

(e4) Glutamine → 2 NH4 + 5 CO2

(e5) Glutamine → Alanine + NH4 + 2 CO2

(e6) 2 Glucose + 3 Glutamine → Lactate + Alanine + Nucleotide + 6 CO2

(e7) 3 Glucose → 5 Lactate + 3 CO2

(e8) 2 Glucose + 3 Glutamine → 2 Lactate + Nucleotide + NH4 + 6CO2

(e9) Glucose → 6 CO2

(e10) Glucose → 6 CO2

(e11) 2 Glucose + 3 Glutamine → Nucleotide + NH4 + 12 CO2

We observe that the two bioreactions corresponding to elementary modes e 9 and e10

are identical (Glucose → 6 CO2) although the two concerned elementary pathways are
different.

It can be checked that the stoichiometric matrix of this set of bioreactions is given by
the matrix product

Ke �
( −Ns

Np

)
E.

2. http://pinguin.biologie.uni-jena.de/bioinformatik/networks/ (see also [10]).
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Figure 2. Metabolic network : rectangular boxes represent input/ouput nodes, elliptic
boxes represent internal nodes. (The numbers along some arrows indicate stoichiometric
coefficients).
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Moreover, there are five measured extra-cellular species : the two substrates (Glucose
and Glutamine) and three excreted products (Lactate, Ammonia, Alanine). The values of
the average specific uptake and excretion rates (vector vm), computed by linear regression
during the growth phase (see [12]), are given in Table 4. The corresponding matrix P is
given in Table 5. We observe that in this case:

the matrix P is a sub-matrix of

(
Ns

Np

)
.

The admissible flux space F is generated by a convex basis that includes p = 2 basis
vectors that are given in Table 7 (computed with METATOOL). Obviously the values
given in this Table are also the limiting values vmin

i and vmax
i of the flux spectrum. It is

remarkable that, although the MFA problem is here underdetermined, the values of the
fluxes v1, v6, v7, v14, v15, v16, v17, v18 and v19 are exactly given without uncertainty.
This is obviously normal for the three fluxes v1 (Glucose), v6 (Lactate), v7 (Alanine) that
are constrained to be equal to their measured values. But we observe that it is also the
case for other fluxes like for instance the production fluxes of Nucleotides v 18 and CO2

v19 that are not measured at all, and also for some intracellular fluxes like for instance the
anaplerotic flux v14.

We then compute the set of vectors hi and the result is shown in Table 8. We observe
that there are 24 different vectors h i in this Table. They all produce an admissible flux
distribution vi ∈ F when premultiplied by the matrix E as expected according to (12).
Furthermore, as predicted by the theory, we also observe that there are exactly 5 non-
zero entries in each vector hi. From these observations, we can conclude that there are
24 different equivalent minimal bioreaction models of the form (13) for the considered
process. For each of these models, Table 8 tells us which 5 bioreactions (among the
eleven) are used and the value of their reaction rates. As it can be concluded from Table
7, all these minimal models are equivalent because they all provide exactly the same
values of vs and vp, not only for the measured species but also for the species that are not
measured.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Glucose-6-P 1 -1 0 0 0 0 0 0 0 0 0 0
Fructose-6-P 0 1 -1 0 0 0 0 0 0 0 0 0
Glyc-3-P 0 0 1 1 -1 0 0 0 0 0 0 0
Dihydroxy-A-P 0 0 1 -1 0 0 0 0 0 0 0 0
Pyruvate 0 0 0 0 1 -1 -1 -1 0 0 0 0
Acetyl-coA 0 0 0 0 0 0 0 1 -1 0 0 0
Citrate 0 0 0 0 0 0 0 0 1 -1 0 0
α-ketoglutarate 0 0 0 0 0 0 1 0 0 1 -1 0
Fumarate 0 0 0 0 0 0 0 0 0 0 1 -1
Malate 0 0 0 0 0 0 0 0 0 0 0 1
Oxaloacetate 0 0 0 0 0 0 0 0 -1 0 0 0
Glutamate 0 0 0 0 0 0 -1 0 0 0 0 0
Aspartate 0 0 0 0 0 0 0 0 0 0 0 0
Ribulose-5-P 0 0 0 0 0 0 0 0 0 0 0 0
Ribose-5-P 0 0 0 0 0 0 0 0 0 0 0 0
Xylose-5-P 0 0 0 0 0 0 0 0 0 0 0 0
Erythrose-4-P 0 0 0 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 1 0 1 1 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24

Glucose-6-P 0 0 0 0 0 0 0 -1 0 0 0 0
Fructose-6-P 0 0 0 0 0 0 0 0 0 0 1 1
Glyc-3-P 0 0 0 0 0 0 0 0 0 0 1 0
Dihydroxy-A-P 0 0 0 0 0 0 0 0 0 0 0 0
Pyruvate 0 1 0 0 0 0 0 0 0 0 0 0
Acetyl-coA 0 0 0 0 0 0 0 0 0 0 0 0
Citrate 0 0 0 0 0 0 0 0 0 0 0 0
α-ketoglutarate 0 0 1 1 0 0 0 0 0 0 0 0
Fumarate 0 0 0 0 0 1 0 0 0 0 0 0
Malate -1 -1 0 0 0 0 0 0 0 0 0 0
Oxaloacetate 1 0 -1 0 0 0 0 0 0 0 0 0
Glutamate 0 0 -1 -1 1 3 0 0 0 0 0 0
Aspartate 0 0 1 0 0 -2 0 0 0 0 0 0
Ribulose-5-P 0 0 0 0 0 0 0 1 -1 -1 0 0
Ribose-5-P 0 0 0 0 0 -2 0 0 1 0 0 -1
Xylose-5-P 0 0 0 0 0 0 0 0 0 1 -1 -1
Erythrose-4-P 0 0 0 0 0 0 0 0 0 0 -1 1
CO2 0 1 0 0 0 0 -1 1 0 0 0 0

Table 1. Stoichiometric Matrix N
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Glucose 1 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 0 0 0 0 0 0 0 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24

Glucose 0 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 1 3 0 0 0 0 0 0

Table 2. Matrix Ns

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Lactate 0 0 0 0 0 1 0 0 0 0 0 0
NH4 0 0 0 0 0 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 1 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0 0 0 0
Nucleotides 0 0 0 0 0 0 0 0 0 0 0 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24

Lactate 0 0 0 0 0 0 0 0 0 0 0 0
NH4 0 0 0 1 1 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 0 0 0 0 0 0
CO2ext 0 0 0 0 0 0 1 0 0 0 0 0
Nucleotides 0 0 0 0 0 1 0 0 0 0 0 0

Table 3. Matrix Np

Glucose Glutamine Lactate NH4 Alanine
vm 4.0546 1.1860 7.3949 0.9617 0.2686

Table 4. Specific uptake and excretion rates (mM/(d×109cells)).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Glucose 1 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 0 0 0 0 0 0 0 0
Lactate 0 0 0 0 0 1 0 0 0 0 0 0
NH4 0 0 0 0 0 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 1 0 0 0 0 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24

Glucose 0 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 1 3 0 0 0 0 0 0
Lactate 0 0 0 0 0 0 0 0 0 0 0 0
NH4 0 0 0 1 1 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. Measurement matrix P
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

v1 1 2 0 0 0 2 3 2 1 3 2
v2 1 0 0 0 0 0 0 0 1 0 0
v3 1 0 0 0 0 0 2 0 1 2 0
v4 1 0 0 0 0 0 2 0 1 2 0
v5 2 0 0 0 0 0 5 0 2 5 0
v6 2 0 1 0 0 1 5 2 0 0 0
v7 0 1 0 0 1 1 0 0 0 0 0
v8 0 1 0 1 0 0 0 0 2 5 2
v9 0 1 0 1 0 0 0 0 2 5 2
v10 0 1 0 1 0 0 0 0 2 5 2
v11 0 4 1 2 1 3 0 3 2 5 5
v12 0 5 1 2 1 4 0 4 2 5 6
v13 0 3 0 1 0 2 0 2 2 5 4
v14 0 2 1 1 1 2 0 2 0 0 2
v15 0 2 0 0 0 2 0 2 0 0 2
v16 0 0 1 1 0 0 0 1 0 0 1
v17 0 0 1 1 1 0 0 0 0 0 0
v18 0 1 0 0 0 1 0 1 0 0 1
v19 0 9 2 5 2 6 3 6 6 18 12
v20 0 2 0 0 0 2 3 2 0 3 2
v21 0 2 0 0 0 2 1 2 0 1 2
v22 0 0 0 0 0 0 2 0 0 2 0
v23 0 0 0 0 0 0 1 0 0 1 0
v24 0 0 0 0 0 0 1 0 0 1 0

Table 6. Matrix E of elementary modes.
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f1 f2
v1 4.0546 4.0546
v2 3.5979 2.1279
v3 3.5979 3.1079
v4 3.5979 3.1079
v5 7.1958 6.7058
v6 7.3949 7.3949
v7 0.2686 0.2686
v8 0.4900 0.0
v9 0.4900 0.0
v10 0.4900 0.0
v11 1.6760 1.1860
v12 1.9043 1.4143
v13 0.9467 0.4567
v14 0.9577 0.9577
v15 0.4567 0.4567
v16 0.4607 0.4607
v17 0.5010 0.5010
v18 0.2283 0.2283
v19 3.8420 3.8420
v20 0.4567 1.9267
v21 0.4567 0.9467
v22 0.0 0.9800
v23 0.0 0.4900
v24 0.0 0.4900

Table 7. Convex basis of the flux space (mM/(d×109cells))
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h1 h2 h3 h4 h5 h6 h7 h8

e1 3.5833 3.4671 3.5833 3.5813 3.4671 3.5101 3.5979 3.5813
e2 0 0.2283 0 0 0.2280 0 0.2283 0
e3 0 0.4607 0 0.2324 0.4607 0 0.1991 0.2324
e4 0.4607 0 0.4607 0 0 0.4607 0.2617 0
e5 0.0403 0.0403 0.0403 0.2686 0.0403 0.0403 0.0403 0.2686
e6 0.2283 0 0.2283 0 0 0.2283 0 0
e7 0 0 0 0 0 0.0293 0 0
e8 0 0 0 0 0 0 0 0
e9 0 0 0.0146 0 0.1308 0 0 0.0167
e10 0.0049 0.0436 0 0.0056 0 0 0 0
e11 0 0 0 0.2283 0 0 0 0.2283

h9 h10 h11 h12 h13 h14 h15 h16

e1 3.3529 3.3529 3.3529 2.8129 3.4980 2.1279 3.3529 2.1279
e2 0 0 0 0.2283 0 0 0 0
e3 0.2324 0.2324 0.4607 0.4607 0.2324 0.2324 0.4607 0.4607
e4 0 0 0 0 0 0 0 0
e5 0.2686 0.2686 0.0403 0.0403 0.2686 0.2686 0.0403 0.0403
e6 0 0 0.2283 0 0 0 0.2283 0.2283
e7 0 0 0 0.2617 0.0333 0.4900 0 0.4900
e8 0.2283 0.2283 0 0 0 0.2283 0 0
e9 0 0.2450 0.2450 0 0 0 0 0
e10 0.0817 0 0 0 0 0 0.0817 0
e11 0 0 0 0 0.2283 0 0 0

h17 h18 h19 h20 h21 h22 h23 h24

e1 3.5979 3.5979 3.5979 3.5979 3.5979 2.8251 3.4691 3.4691
e2 0.1288 0 0 0 0.0293 0 0 0
e3 0 0 0.1991 0 0 0 0 0
e4 0.3612 0.2324 0.0333 0.4314 0.4607 0.2324 0.2324 0.2324
e5 0.1398 0.2686 0.2686 0.0695 0.0403 0.2686 0.2686 0.2686
e6 0 0 0 0.1991 0.1991 0 0 0
e7 0 0 0 0 0 0.2576 0 0
e8 0.0995 0.0995 0 0 0 0.2283 0.2283 0.2283
e9 0 0 0 0 0 0 0.1288 0
e10 0 0 0 0 0 0 0 0.0429
e11 0 0.1288 0.2283 0.0293 0 0 0 0

Table 8. The set of basis vectors hi (mM/(d×109cells))
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