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Abstract

A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can
be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly
negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results
are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be
implemented as a feedback of the state only measured at the boundaries. The control design method is illustrated with an
hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence,
respectively through simulations and experimentations.
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1 Introduction

In this paper, we are concerned with two-by-two systems
of conservation laws that are described by hyperbolic
quasi-linear partial differential equations, with one in-
dependent time variable t ∈ [0,∞) and one independent
space variable on a finite interval x ∈ [0, L]. Such sys-
tems are used to model many physical situations and en-
gineering problems. A famous example is that of Saint-
Venant (or shallow water) equations which describe the
flow of water in irrigation channels and waterways. This
example will be presented in Section 4. Other typical
examples include gas and fluid transportation networks,

1 This paper presents research results of the Belgian Pro-
gramme on Interuniversity Attraction Poles, initiated by the
Belgian Federal Science Policy Office. The scientific respon-
sibility rests with its author(s).
2 This work has been performed when V. Dos Santos was
a Post-Doc fellow at CESAME, Université Catholique de
Louvain, Belgium)
3 This work has been partially supported by the ANR, con-
tract Nr ANR-06-BLAN-0052-01.

packed bed and plug-flow reactors, drawing processes in
glass and polymer industries, road traffic etc. For such
systems, the considered boundary control problem is
the problem of designing feedback control actions at the
boundaries (i.e. at x = 0 and x = L) in order to ensure
that the smooth solution of the Cauchy problem con-
verges to a desired steady-state.
This problem has been previously considered in the liter-
ature ([7] e.g.). Initial results of asymptotic stability were
presented by Greenberg and Li-Tatsien [5] and Slemrod
[9]. Later on they have been generalized and applied to
the control of networks of open channels in our previous
papers [1]-[3] and in Leugering and Schmitt [6].
The present paper is in the direct continuation of our
previous paper [2] where a static proportional feedback
control law was presented and the closed-loop stability
analyzed with an appropriate Lyapunov function. But
obviously, a static control law may be subject to steady-
state regulation errors in case of constant disturbances
or model inaccuracies. In the present paper we show how
additional integral actions can be introduced in the con-
trol law in order to cancel the static errors and how the
Lyapunov function can be modified in order to prove
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the asymptotic stability of the closed-loop system. The
statement of the control law and the Lyapunov stability
analysis are developed in Sections 2 and 3 for a generic
homogeneous system of two linear conservation laws. In
Section 4, we consider the practical application to open
channels described by Saint-Venant equations that form
a set of two nonhomogeneous and nonlinear conserva-
tion laws. We show that, in the case where the friction
effects and the channel slope are neglected, the approxi-
mate linearized system is in the linear homogeneous form
considered in the theoretical analysis. This clearly moti-
vates the use of a control with integral actions in order to
cope with steady state errors that come from modelling
uncertainties associated to small but unknown slope and
friction. Moreover, the connection with the classical PI
control (as implemented in finite dimensional system)
is emphasized. Finally in Section 5 we present simula-
tion results on a realistic example of a pool of the Sam-
bre river (length 11km, width 40m) and an experimen-
tal validation on a small laboratory plant (length 7m,
width 10cm). These results clearly show, not only the
wide range of potential hydraulic applications, but also
the control robustness when implemented on physical
systems with unmodelled nonlinearities.

2 Boundary Control of Hyperbolic Systems of
Conservation Laws

2.1 Statement of the Problem

An hyperbolic system of two linear conservation laws of
the following general form is considered:

∂th(t, x) + ∂xq(t, x) = 0, (1)

∂tq(t, x) + cd∂xh(t, x) + (c − d)∂xq(t, x) = 0, (2)

where:

∗ t and x are the two independent variables: a time
variable t ∈ [0,+∞) and a space variable x ∈ [0, L]
on a finite interval;

∗ (h, q); [0,+∞) × [0, L] → Ω ⊂ IR2 is the 2-vector of
the state variables h(t, x) and q(t, x) of the system;

∗ c and d are two real positive constants.

The first equation (1) can be interpreted as a mass con-
servation law with h the density and q the flux. The sec-
ond equation can then be interpreted as a momentum
conservation law.

We are concerned with the solutions of the Cauchy prob-
lem for the system (1)-(2) over [0,+∞)× [0, L] under an
initial condition:

h(0, x) = h0(x), q(0, x) = q0(x), x ∈ [0, L]

where h0(x) and q0(x) are two given functions, and two
boundary conditions of the form:

g0(h(t, 0), q(t, 0), u0(t)) = 0, t ∈ [0,+∞), (3)

gL(h(t, L), q(t, L), uL(t)) = 0, t ∈ [0,+∞), (4)

with g0, gL : Ω× IR → IR and where u0, uL : [0,+∞) →
IR are the control actions.

The boundary control problem is then the problem of
finding control actions u0(t) and uL(t) such that, for
any smooth enough initial condition (h0(x), q0(x)), the
Cauchy problem has a unique smooth solution converg-
ing towards 0 for all x in [0, L].

2.2 Riemann Coordinates

In order to solve this boundary control problem, the
Riemann coordinates (see e.g. [8] p. 79) defined by the
following change of coordinates are introduced:

a(t, x) = q(t, x) + dh(t, x), (5)

b(t, x) = q(t, x) − ch(t, x), (6)

With these coordinates, the system (1)-(2) is written
under the following diagonal form:

∂ta(t, x) + c∂xa(t, x) = 0, (7)

∂tb(t, x) − d∂xb(t, x) = 0, (8)

The change of coordinates (5)-(6) is inverted as follows:

h(t, x) =
a(t, x) − b(t, x)

c + d
, (9)

q(t, x) =
ca(t, x) + db(t, x)

c + d
. (10)

In the Riemann coordinates, the control problem can be
restated as the problem of determining the control ac-
tions in such a way that the solutions a(t, x), b(t, x) con-
verge towards zero.
In our previous paper [2], we have shown that this prob-
lem can be solved by selecting u0(t) and uL(t) such that
the Riemann coordinates a(t, x), b(t, x) satisfy linear
boundary conditions of the following form:

a(t, 0) + k0b(t, 0) = 0, (11)

b(t, L) + kLa(t, L) = 0, (12)

with k0 and kL real constants to be tuned. The Lyapunov
function

U(t) = U1(t) + U2(t) (13)
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where:

U1(t) =
A

c

∫ L

0

a2(t, x)e−(µ/c)xdx,

U2(t) =
B

d

∫ L

0

b2(t, x)e+(µ/d)xdx,

(A,B and µ are positive constant coefficients) then al-
lows to prove the exponential convergence of the system
trajectories towards 0 if |k0kL| < 1. Remark that sys-
tem (7)-(8) with boundary conditions (11)-(12) consist
of two delay lines connected in feedback, with gains k0

and kL, which makes the stability condition |k0kL| < 1
intuitive.

In the present paper, our contribution is to extend this
Lyapunov stability analysis to the case where integral
terms are introduced in the control law and to illustrate
the methodology with experimental results.

3 Integral Actions and Lyapunov Stability
Analysis

In order to cope with static errors, integral terms will
be added to the control laws defined by (11)-(12) and
the Lyapunov function (13) will be modified accordingly.
Moreover, in order to simplify the notations in the Lya-
punov stability analysis, the following notation is used
h0(t)=h(t, 0) and similar notations hL, q0, qL, a0, aL,
b0, bL for all variables at the two boundaries.

The boundary control laws u0(t) and uL(t) are defined
such that the boundary conditions (3)-(4) expressed in
the Riemann coordinates satisfy the linear relations (11)-
(12) augmented with appropriate integrals as follows:

a0(t) + k0b0(t) + m0y0(t) = 0, (14)

bL(t) + kLaL(t) + mLyL(t) = 0, (15)

where k0, kL and m0, mL are constant design parameters
that have to be tuned to guarantee the stability. The
integral y0 on the flow q at the boundary x = 0 and the
integral yL on the other state h at the boundary x = L
are defined as:

y0(t) =

∫ t

0

q0(s)ds =

∫ t

0

ca0(s) + db0(s)

c + d
ds,

yL(t) =

∫ t

0

hL(s)ds =

∫ t

0

aL(s) − bL(s)

c + d
ds.

The goal of this Section is to prove the following theorem

Theorem 1 Let m0, mL and k0, kL be four constants

such that the six following inequalities hold:

m0 > 0, (16)

mL < 0, (17)
d

c
< 1, (18)

|k0| < 1, (19)

|kL| <
c

d
, (20)

|k0kL| < 1. (21)

Then there exist five positive constants A, B, µ, N0 and
NL such that, for every solution (a(t, x), b(t, x)), t ≥
0, x ∈ [0, L], of (7), (8), (14) and (15) the following
function:

U(t) =
A

c

∫ L

0

a2(t, x)e−µx/cdx +
B

d

∫ L

0

b2(t, x)eµx/ddx

+
c + d

2
N0y

2
0(t) +

c + d

2
NLy2

L(t)

satisfies:

U̇ ≤ −µU.

In particular, there exists C > 0, independent of a, b, y0

and yL, such that

ψ(t) ≤ Cψ(0) exp(−µt), ∀t ≥ 0

with

ψ(t)=̂

∫ L

0

(a2(t, x) + b2(t, x))dx + |y0(t)|2 + |yL(t)|2.

Remark 1 As it has been mentioned above, in our pre-
vious paper [2] the special case with m0 = mL = 0 in the
boundary conditions (14)- (15) and N0 = 0, NL = 0 has
been treated. We have shown that inequality |k0kL| < 1

is sufficient to have U̇ ≤ −µU for some µ > 0 along the
system trajectories and ensure the convergence of a(t, x)
and b(t, x) to zero.

Proof
The function U(t) is clearly definite positive. The time
derivative of U(t) along the trajectories of the linear
system (7)-(8) is

U̇ = −µU − A
(

e−µL/ca2
L − a2

0

)

− B
(

b2
0 − eµL/db2

L

)

+µ
c + d

2

[

N0y
2
0(t) + NLy2

L(t)
]

+N0y0(t)(ca0(t) + db0(t)) + NLyL(t)(aL(t) − bL(t)),
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or:

U̇ = −µU + U̇0 + U̇L,

U̇0 = Aa2
0 − Bb2

0 + N0y0(ca0 + db0) + µ
c + d

2
N0y

2
0(t),

U̇L = −Ãa2
L + B̃b2

L + NLyL(aL − bL) + µ
c + d

2
NLy2

L(t)

with Ã = Ae−µL/c, B̃ = BeµL/d.

The last two terms U̇0 and U̇L depend only on the Rie-
mann coordinates at the two boundaries, i.e. at x = 0
and at x = L.

The analysis of U̇0 gives (using (14)-(15)):

U̇0 = Aa2
0 − Bb2

0 + N0y0(ca0 + db0) + µN0y
2
0

=
[

Ak2
0 − B

]

b2
0 + [2Ak0m0 + N0(d − ck0)] b0y0

+

[

Am2
0 + µN0

c + d

2
− N0m0c

]

y2
0 .

Hence −U̇0 is a positive definite quadratic form of the
variables b0, y0 if:

(i) :
[

Ak2
0 − B

]

b2
0 + [2Ak0m0 + N0(d − ck0)] b0y0

+

[

Am2
0 + µN0

c + d

2
− N0m0c

]

y2
0 < 0,

which is equivalent to:

∗Ak2
0 − B < 0, (22)

∗ (ii) : ∆i = 4ABm2
0 + 4N0(Ak0d − cB)m0

+N2
0 (d − ck0)

2 + 4(B − Ak2
0)µN0

c + d

2
< 0, (23)

where ∆i is a polynomial in µ, m0 and N0. ∆i considered
as a polynomial of degree 2 in N0 takes negative values
only if its discriminant ∆ii,

∆ii = 16(Ak2
0 − B)

[

m2
0(Ad2 − Bc2)

− 2m0µ
c + d

2
(Ak0d − Bc) +

(

c + d

2

)2

µ2(Ak2
0 − B)

]

,

viewed as a polynomial of degree 2 in µ and m0, is pos-
itive which is equivalent to

(iii) :

[

m2
0(Ad2 − Bc2) − 2m0µ

c + d

2
(Ak0d − Bc)

+

(

c + d

2

)2

µ2(Ak2
0 − B)

]

< 0.

The discriminant of the quadratic form (iii) in µ and m0

is

∆iii = 4

(

c + d

2

)2
[

AB(ck0 − d)2
]

and therefore is always nonnegative. Hence the roots
of the left-hand side polynomial of (iii) are real and
expressed as:

µ0,1 =
m0(Ak0d − cB) + |m0|

√
AB|ck0 − d|

(Ak2
0 − B) c+d

2

,

µ0,2 =
m0(Ak0d − cB) − |m0|

√
AB|ck0 − d|

(Ak2
0 − B) c+d

2

.

In order to have 0 < µ0,1 < µ0,2, because of (22) and
since m0 > 0 (see (16)), we require that

Ak0d − cB < 0. (24)

In addition, since from (iii) we have µ0,1µ0,2 =
−m2

0(Ad2 − Bc2), we also require that

Ad2 − Bc2 < 0. (25)

From now on we thus assume that the parameters A
and B are chosen such that inequalities (22) and (25)
hold as (24) is deduced from (22), (25). This implies
that 0 < µ0,1 < µ0,2 and that inequality (iii) is satisfied
if µ ∈ (0, µ0,1).
Furthermore inequality (ii) is satisfied if N0 ∈
(N0,1, N0,2) with:

N0,1 =
−4

[

µ c+d
2 (B − Ak2

0) + (Ak0d − cB)m0

]

−
√

∆ii

2(d − ck0)2
,

N0,2 =
−4

[

µ c+d
2 (B − Ak2

0) + (Ak0d − cB)m0

]

+
√

∆ii

2(d − ck0)2
.

N0,2 is positive if

0 < µ < µ0,1 <
(Ak0d − cB)m0

c+d
2 (Ak2

0 − B)
.

Hence it exists N0 > 0 such that inequality (i) is satis-
fied.

The analysis of U̇L is performed in the same way:

U̇L =−Ãa2
L + B̃b2

L + NLyL(aL − bL) + µ
c + d

2
NLy2

L

=
[

B̃k2
L − Ã

]

a2
L +

[

2B̃kLmL + NL(1 + kL)
]

aLyL

+

[

B̃m2
L + NLmL + µ

c + d

2
NL

]

y2
L

and −U̇L is a positive definite quadratic form of the
variables aL, yL if:

(iv) :
[

B̃k2
L − Ã

]

a2
L +

[

2B̃kLmL + NL(1 + kL)
]

aLyL

+

[

B̃m2
L + NLmL + µ

c + d

2
NL

]

y2
L < 0.
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The same arguments as for U̇0 show that there exists
NL > 0 such that U̇L ≤ −µUL if

B̃k2
L − Ã < 0, (26)

B̃ − Ã < 0, (27)

and µ ∈ (0, µL,1) with

µL,1 =
−mL(A + kLB) − |mL|

√
AB|kL + 1|

(A − Bk2
L) c+d

2

.

Conditions (18)-(19) and (20)-(21) allow to choose the
positive constants A and B such that:

inf

(

c2

d2
,

1

k2
0

)

>
A

B
> max

(

1, k2
L

)

. (28)

Then µ can be chosen small enough (µ ∈ (0, µ0,1) ∩ (0, µL,1))
such that inequalities (22)-(25)-(24) and (26)-(27) are
satisfied simultaneously, i.e.:

inf

(

c2

d2
,

1

k2
0

)

>
A

B
>

1

σ
max

(

1, k2
L

)

, (29)

with σ = eµL( 1

c
+ 1

d ).

So, U̇(t) ≤ −µU(t) along the trajectories of the linear
system (7)-(8).

Remark 2 The converse is true, i.e. if there exist five
positive constants A, B, µ, N0 and NL such that, for ev-
ery solution (a(t, x), b(t, x)), t ≥ 0, x ∈ [0, L], of (7),
(8), (14) and (15) the following function is asymptoti-
cally stable:

U(t) =
A

c

∫ L

0

a2(t, x)e−µx/cdx +
B

d

∫ L

0

b2(t, x)eµx/ddx

+
c + d

2

(

N0y
2
0(t) + NLy2

L(t)
)

,

then the four constants m0, mL and k0, kL verify:

mL < 0, m0 > 0, (30)

|k0| < 1,
d

c
< 1, (31)

|kL| <
c

d
, |k0kL| < 1. (32)

Remark 3 Obviously, there is no difference in switching
h and q in the definitions of the integrals (14)-(15):

y0(t) =

∫ t

0

h0(s)ds =

∫ t

0

a0(s) − b0(s)

c + d
ds,

yL(t) =

∫ t

0

qL(s)ds =

∫ t

0

caL(s) + dbL(s)

c + d
ds.

In this case, one obtains the following conditions:

m0 < 0, mL > 0,
c

d
< 1, |kL| < 1,

|k0| <
d

c
, |k0kL| < 1.

4 Application to the Saint-Venant Linearized
System

4.1 Non Linear System

A prismatic open channel with a constant rectangular
section and a constant slope is considered. The flow dy-
namics are described by the Saint-Venant equations [10],
[4]:

∂tH + ∂x(Q/b̂) = 0, (33)

∂tQ + ∂x(
Q2

b̂H
+

1

2
gb̂H2) = gb̂H(I − J), (34)

where H(t, x) represents the water level and Q(t, x) the

water flow rate, b̂ the channel width and g the gravitation
constant. I is the bottom slope and J is the friction slope
expressed with the Manning-Strickler expression:

J(H,Q) =
n2

MQ2

[S(H)]2[R(H)]4/3
,

with nM the Manning coefficient while S(H) = b̂H is
the wet surface and R(H) is the hydraulic radius given
by:

R(H) =
S(H)

P (H)
, P (H) = b̂ + 2H:= wet perimeter.

4.2 Linearized system

An equilibrium (He, Qe) is a constant solution of equa-
tions (33)-(34), i.e. H(t, x) = He, Q(t, x) = Qe ∀t and
∀x which satisfies the relation:

J(He, Qe) = I. (35)

A linearized model is used to describe the variations
around this equilibrium. The following notations are in-
troduced:

h(t, x)=̂H(t, x) − He(x), q(t, x)=̂Q(t, x) − Qe(x).
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The linearized model around the equilibrium (He, Qe) is
then written as

∂tb̂h(t, x) + ∂xq(t, x) = 0, (36)

∂tq(t, x) + cd∂xb̂h(t, x) + (c − d)∂xq(t, x) =

−γh(t, x) − δq(t, x), (37)

with:

c =
√

gHe +
Qe

Heb̂
, d =

√

gHe −
Qe

Heb̂
,

γ = gb̂He
∂J

∂H
(He, Qe), δ = gb̂He

∂J

∂Q
(He, Qe).

In the special case where the channel is horizontal
(I = 0) and the friction slope is negligible (nM ≈ 0), we
observe that γ = δ = 0 and that this linearized system
is exactly in the form of the linear hyperbolic system
(1)-(2) that we have handled in Section 2. It is therefore
legitimate to apply the control with integral actions
that has been analyzed above to open channels having
small bottom and friction slopes.

4.3 Connection with classical PI control

We have seen above that the feedback control laws must
be defined in order that the boundary conditions (14)-
(15) hold. The derivation of an explicit expression of the
control laws obviously requires an explicit formulation
of the boundary conditions (3)-(4). In this Section, we
illustrate how the control laws can be derived and we
clarify the connection with classical PI control.
In Section 5, we shall present practical simulations and
experimental results for channels that are bounded by
either overflow spillways or underflow gates.

The gate characteristics of overflow gates are expressed
as:

Q(t, 0) = (c0b̂)
3 [2g(Hup − U0(t))]

(3/2)
, (38a)

Q(t, L) = (cLb̂)3 [2g(H(t, L) − UL(t))]
(3/2)

, (38b)

while for underflow gates, the gate characteristics are
expressed as:

Q(t, 0) = c0U0(t)b̂
√

2g(Hup − H(t, 0)), (39a)

Q(t, L) = cLUL(t)b̂
√

2g(H(t, L) − Hdo), (39b)

where c0 and cL are the gate water flow coefficients,
while U0 and UL denote the control signals at the up-
stream and downstream gates respectively. Hup is the
water level at the upstream of the upstream gate, Hdo

is the water level at the downstream of the downstream

gate.

In order to explicit the control laws, the gate characteris-
tics (39) are linearized about the steady-state (He, Qe):

q(t, 0) = K ′

0h(t, 0) + K0u0(t), (40a)

q(t, L) = K ′

Lh(t, L) + KLuL(t), (40b)

with, for the spillway gates

K0 = −3g(c0b̂)
2Q1/3

e , K ′

0 = 0, (41)

KL = −3g(cLb̂)2Q1/3
e , K ′

L = 3g(cLb̂)2Qe1/3, (42)

and for the underflow gates

K0 = c0b̂
√

2g(Hup − He), K ′

0 = − Qe

2(Hup − He)
,(43)

KL = cLb̂
√

2g(He − Hdo), K ′

L =
Qe

2(He − Hdo)
.(44)

Moreover, using the definition of the Riemann coor-
dinates (5)-(6), the boundary conditions (14)-(15) are
rewritten as

q(t, 0) + λ0h(t, 0) + µ0

∫ t

0

q(s, 0)ds = 0, (45a)

q(t, L) + λLh(t, L) + µL

∫ t

0

h(s, L)ds = 0, (45b)

with:

λ0 =
(d − k0c)

1 + k0
, λL =

(kLd − c)

1 + kL
,

µ0 =
m0

1 + k0
, µL =

mL

1 + kL
.

Then, by eliminating h(t, 0) between (40a) and (45a),
we get the following PI control law for u0:

u0(t) = Kpoq(t, 0) + Kio

∫ t

0

q(s, 0)ds

with

Kpo =
λ0 + K ′

0

λ0K0
, Kio =

µ0K
′

0

λ0K0
.

Similarly, by eliminating q(t, L) between (40b) and
(45b), we get the following PI control law for uL:

uL(t) = −KpLh(t, L) − KiL

∫ t

0

h(s, L)ds

with

KpL =
λL + K ′

L

KL
, KiL =

µL

KL
.
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Hence the control law u0 is a PI dynamic feedback of
the flow rate q(t, 0) = Q(t, 0) − Qe and the control
law uL is a PI dynamic feedback of the water depth
h(t, L) = (H(t, L) − He). These control laws are imple-
mented with direct on-line measurements of the water
levels Hup, Hdo, H(t, 0), H(t, L).

5 Simulations and experimental results

5.1 Simulations

Various simulations have been carried out with the data
of the Sambre river located in Belgium.
Two simulation results are described here, the first one
showing the impact of the integral terms m0 and mL,
the second one the efficiency against constant perturba-
tions.
A pool of the Sambre river is considered, it is bounded
by two mobile spillway gates as illustrated in Fig. (1).
The characteristic parameters of the pool are given in
Table (1).
The angular positions of the two mobile gates are the
control actions (see (38)). More precisely, these two con-
trols aim at regulating the upstream flow rate at a pre-
scribed set point Qe and the downstream water level at
a prescribed level He.

Fig. 1. A mobile spillway gate on the Sambre river

parameters b̂ L slope n−1

M

(m) (m) (m.m−1) (m1/3.s−1)

values 40 11239 7.92.10−5 33

Table 1
Parameters of one reach of the Sambre river

The set points are:

Qe = 12m3.s−1, He(L) = 4.7m.

The initial condition is assumed to be another steady
state with the following values:

Q(0, x) = 10m3.s−1, H(0, L) = 4.65m.

The simulation results are presented in Fig. (2) and (3).
The control parameters are k0 = −0.0837, and kL =
−0.0384 while the values m0, mL are given in the figure

captions. In Fig. (2), a first simulation is done without
integral actions (m0 = mL = 0). In this case the closed
loop is stable (since |k0kL| < 1) but, as expected, there
is a significant static error resulting from the bottom and
the frictions slopes. A second simulation with integral
actions (m0 = −mL = 0.002) gives a fully satisfactory
result since the closed loop is stable and the static errors
of the two regulated variables are cancelled.
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Fig. 2. Water flows at upstream (a) and water levels at down-
stream(b) for different values of the integral terms

The simulations presented in Fig. (3) allow to assess the
efficiency of the control against a constant unknown dis-
turbance. The disturbance is a constant positive side
flow rate of 1.12m3.s−1 uniformly distributed along the
pool (i.e. a disturbance of about 10% of the flow rate).
There is also a simulation without integral actions given
in order to have an idea of the effect of the disturbance.
A controller with integral actions (m0 = −mL = 0.005)
totally compensates the unknown constant disturbance.
Remark that this latter simulation is done with greater
integral gains than in Fig. (2). However, it should be
mentioned that other simulation experiments, that are
not shown here, have indicated that the closed loop be-
comes unstable when the integral gains reach a value of
the order of 0.008.

5.2 Experimentations

An experimental validation has been performed on the
Valence micro-channel, Fig. (1) & (6), Tab.2. This pilot
channel is located at ESISAR 4 /INPG 5 engineering

4 École Supérieure d’Ingénieurs en Systèmes industriels
Avancés Rhône-Alpes
5 Institut National Polytechnique de Grenoble
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Fig. 3. Water flows at upstream (a) and water levels at down-
stream (b) for different values of the integral terms

school in Valence (France). It is operated under the re-
sponsibility of the LCIS 6 laboratory. This experimen-
tal channel (total length=8 meters) has an adjustable
slope and a rectangular cross-section (width=0.1 meter).
The channel is ended at downstream by a variable over-
flow spillway and furnished with three underflow control
gates (Fig. (4) and Fig. (6)). Ultrasound sensors provide
water level measurements at different locations of the
channel (Fig. (5)).

Fig. 4. Pilot channel of Valence

parameters b̂(m) L (m) K (m1/3.s−1)

values 0.1 7 97

parameters c0 cL slope (m.m−1)

values 0.6 0.73 1.60/00
Table 2
Parameters of the channel of Valence

For the experimentation reported here, the middle gate
is completely open and we have a single pool (length=7

6 Laboratoire de Conception et d’Intégration des Systèmes

Fig. 5. Pilot channel of Valence: gate and ultrasound sensors

Fig. 6. Pilot channel of Valence

meters) bounded by two underflow gates. The flow rate
at the gate is not directly measured but calculated from
the gate characteristics (39).

The water levels Hup at the upstream of the upstream
gate and Hdo at the downstream of the downstream gate
are controlled on-line to stand at the following values:

Hup = 1.72dm,Hdo = 0.85dm.

In order to satisfy the stability condition (29), parame-
ters k0 and kL are set to:

k0 = −0.213, kL = −1.157, k0kL = 0.247.

Fig. (7) illustrate the efficiency of the control. Three ex-
periments are shown with increasing values of the inte-
gral gains m0 and mL indicated in the figure captions.
In the experiment, the system is initially in open loop at
a steady state:

Q(0, x) ≈ 2.35dm3.s−1, H(0, L) ≈ 1.25dm.

The loop is closed at time t = 50sec with a new set point
given by:

Qe(0) = 2dm3.s−1, He(L) = 1.43dm.
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Fig. 7. Water flows at upstream (a) and levels at downstream
(b)

Without integral action (m0 = mL = 0), there is clearly
an offset of about 4cm on the level H(t, L). But this static
error is efficiently cancelled by the integral actions (m0 =
0.002, mL = −0.001). The experiments also illustrate
the sensitivity of the transient behavior with respect to
the choice of the gain values. For the largest tested values
(m0 = 0.005, mL = −0.001), the closed loop system
starts to oscillate (Fig. 7) and becomes unstable for still
larger values of m0.

6 Conclusion

This paper was concerned with the boundary control of
hyperbolic systems of conservation laws. We have shown
how integral actions can be added to the static control
law previously proposed in [2] in order to cope with con-
stant disturbances. The main contribution of the paper
is a Lyapunov stability analysis of the proposed feed-
back control system. In Theorem 1, we have given suf-
ficient conditions on the values of the control parame-
ters to guarantee the exponential convergence for linear
homogeneous systems. Although it is not a trivial task,
the Lyapunov analysis can be extended to the linearized
nonhomogeneous system (36)-(37) and even, following
the method of [2] to nonlinear two-by-two systems of
quasi linear hyperbolic equations. The efficiency of the
approach has been illustrated with simulations on a re-
alistic waterway model and experimental validations on

a small laboratory pilot canal.
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Paris, 2002.

[5] J-M. Greenberg and T-t. Li, “The effect of boundary damping
for the quasilinear wave equations”, Journal of Differential

Equations, 52, pp. 66-75, 1984.

[6] G. Leugering and J-P. G. Schmidt, “On the modelling and
stabilisation of flows in networks of open canals”, SIAM

Journal of Control and Optimization, 41(1), pp. 164 - 180,
2002.

[7] X. Litrico, V. Fromion, J.-P. Baume, C. Arranja, M.
Rijo, “Experimental Validation of a methodology to control
irrigation canals based on Saint-Venant equations”, Control
Engineering Practice 13, pp 1425-1437, 2005.

[8] M. Renardy and R.C. Rogers, “An Introduction to Partial
Differential Equations”, Springer Verlag, 1993.

[9] M. Slemrod, “Boundary feedback stabilization for a quasilinear
wave equation”, Control Theory for Distributed Parameter
Systems, Springer Verlag, Lecture Notes in Control and
Information Sciences Vol. 54, pp. 221-237, 1983.
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