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Dynamic metabolic modelling under the balanced growth condition
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Abstract

The issue of bioprocess dynamical modelling is addressed in the situation where measurements of extracellular species are the

only available data besides measurements of the biomass itself. This question is investigated under the assumption that a metabolic

network connecting the extracellular species is available. A metabolic flux analysis is first performed in order to test the consistency

of the metabolic network. The elementary flux modes are computed and translated into a set of macro-reactions connecting the

extracellular substrates and products. Then a dynamical model, compatible with the underlying metabolic network, is build on the

basis of these macro-reactions. The approach is illustrated with the example of CHO cells cultivated in stirred flasks on a serum-free

medium.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

We are concerned in this paper with the identification

of mathematical models of biological processes in the

very common situation where measurements of extra-

cellular species in the culture medium are the only

available data besides measurements of the biomass it-

self. The aim of this paper is to investigate this question

under a metabolic viewpoint. Therefore, as a starting
point for our analysis, we assume that a metabolic net-

work connecting the measured species is available. As a

matter of illustration to our discussion we shall consider

the example of Chinese Hamster Ovary (CHO) (see e.g.

[1]) cells cultivated in batch mode in stirred flasks. The

measured extracellular species are the two main sub-

strates (glucose and glutamine) and the three most sig-

nificantly released metabolites (lactate, ammonia,
alanine).

The issue of bioprocess modelling from extracellular

measurements has been considered for a long time in the

literature. In classical macroscopic models (see Fig. 1)

the cells are just viewed as a catalyst for the conversion of

substrates into products which is represented by a set of

chemical ‘‘macro-reactions’’ that directly connect extra-
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cellular substrates and products without paying much
attention to the intracellular behaviour. Dynamical mass

balance models are then established on the basis of these

macro-reactions by identifying appropriate kinetic

models from the experimental data. Such macroscopic

models rely on the category of so-called ‘‘unstruc-

tured models’’ in the standard terminology reported in

the important discussion paper of Bailey [2]. The goal of

macroscopic modelling is clearly to derive simple models
that have been proved of paramount importance in

bioengineering for the design of on-line algorithms for

process monitoring, control and optimization. However,

as noted above, a big drawback is that the macroscopic

models are often derived without really taking care of

what happens inside the cells. In this context, during the

last decade, a new trend in mathematical modelling has

emerged by focusing on the so-called ‘‘Metabolic Flux
Analysis’’ [3, Chapter 8], where intracellular fluxes are

computed from the measured extracellular fluxes by

using the stoichiometry of a metabolic network supposed

to govern the system. In some sense, Metabolic Flux

Analysis rather relies on structured modelling though it

essentially is a steady state analysis.

In this paper, our purpose will be to throw a bridge

between macroscopic dynamical modelling and meta-
bolic flux analysis.

A ‘‘full modelling’’ approach could be considered.

This means that we could try to find a global dynamical
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Fig. 2. A simple fictional metabolic network.

Fig. 1. Macroscopic representation of biochemical reactions (inspired

from Fig. 5.28 in [4]).
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model which describes the full metabolic network,

involving a separate state variable for each intracellular
species and a separate kinetic model for each intracel-

lular reaction. Such an approach, although conceivable,

is in some sense ‘‘ill-posed’’ because the intracellular

kinetics are in general not structurally identifiable

without intracellular measurements. We shall rather

follow a ‘‘reduced modelling’’ approach where the

model is based on a set of macro-reactions which are

compatible with the underlying metabolic network and
supported by a preliminary metabolic flux analysis.

The aim of this paper is to present the methodology

of the model development in a systematic and repro-

ducible way. In Sections 2 and 3, we give the necessary

basic concepts and definitions, namely the general dy-

namic mass balance model of metabolic systems and the

balanced growth condition. Then the model develop-

ment proceeds in three main steps which are successively
presented in Sections 4–6. A metabolic flux analysis is

first performed in order to check the consistency of the

assumed metabolic network with the experimental data.

In a second step, the elementary metabolic flux modes

are computed and translated into a set of elementary

macro-reactions connecting the extracellular substrates

and products. Finally, in a third step, a classical

dynamical model is established on the basis of the
macro-reactions. An interesting consequence of this

modelling approach is to allow the prediction of the time

evolution of end-products which are not measured. The

procedure will be presented through the case study of

CHO-320 cells cultivated in serum free medium.
2. The general dynamic metabolic model

For the clarity of the presentation, we shall consider a

simple fictional example of metabolic network repre-

sented in Fig. 2. The metabolic network involves two

groups of nodes: boundary nodes and internal nodes.
Boundary nodes can be further separated into initial and

terminal nodes. Initial nodes correspond to the external

substrates that are consumed but not produced. Ter-

minal nodes correspond either to extracellular products

released in the culture medium or intracellular products
which form the cellular material during the growth. In

the example of Fig. 2 there are

• two extracellular substrates: S1 and S2;
• five intracellular metabolites: C1, C2, C3, C4, C5;
• one terminal extracellular product P1;
• one terminal intracellular product P2.

The set of the cellular reactions involved in this net-

work can equivalently be written as

S1 ! C1

S2 ! C2

S2 ! C3

C1 ! C4 þ C5

C4 ! C5

C2 ! C5

C5 ! P1

C1 þ C3 ! P2

The cells are cultivated in a stirred tank reactor. With-

out loss of generality, we assume an unitary volume of
the culture medium (or equivalently that all the balance

equations are written ‘‘per unit of liquid reactor vol-

ume’’).

As usual, the cell density or concentration is denoted

X . The substrate concentrations in the reactor liquid

volume are denoted si and collected into a vector

s ¼ ðs1; s2; . . . ; snsÞ. The mass fractions of the intracellu-

lar metabolites inside the cells are denoted ci and col-
lected into the vector c ¼ ðc1; c2; . . . ; cncÞ. These fractions
are the ratio between the mass of each species and the

mass of the cells. Similarly we define the vector

p ¼ ðp1; p2; . . . ; pnpÞ of end-product concentrations where
pi denotes a concentration in the reactor liquid volume

for extracellular terminal products or a mass fraction

for intracellular terminal products.
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Assuming an exponential growth with a constant

specific growth rate l in batch mode, we have the fol-

lowing mass balance equations:

dX
dt

¼ lX

ds
dt

¼ �vsX
ð1Þ

dðcX Þ
dt

¼ NvX

dp
dt

¼ vpX
ð2Þ

The first equation dX
dt ¼ lX is the classical growth

equation.

The second equation ds
dt ¼ �vsX represents the uptake

of the substrates by the cells with vs the vector of the

specific uptake rates.

The third equation dðcX Þ
dt ¼ NvX represents the mass

balances around the intracellular metabolites with

v ¼ ðv1; v2; . . . ; vnvÞ the vector of the intracellular specific
reaction rates (called metabolic fluxes) and N the cor-

responding nc � nv stoichiometric matrix.

The fourth equation dp
dt ¼ vpX represents the forma-

tion of end products with vp the vector of the specific

accumulation rates for intracellular products or excre-

tion rates for extracellular products.

In order to make these definitions and notations fully

clear, the model equations corresponding to the network

of Fig. 2 is given as follows:

dX
dt

¼ lX

d

dt
s1
s2

� �
¼ � v1

v2 þ v3

� �
X ; vs ¼

v1
v2 þ v3

� �

d

dt

c1X
c2X
c3X
c4X
c5X

0
BBBB@

1
CCCCA ¼

1 0 0 �1 0 0 0 �1

0 1 0 0 0 �1 0 0

0 0 1 0 0 0 0 �1
0 0 0 1 �1 0 0 0

0 0 0 1 1 1 �1 0

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

v1
v2
v3
v4
v5
v6
v7
v8

0
BBBBBBBBBB@

1
CCCCCCCCCCA

|fflfflffl{zfflfflffl}
v

X

d

dt
p1
p2

� �
¼ v7

v8

� �
X ; vp ¼

v7
v8

� �
From this example, it appears clearly that vs and vp can
be written as vs ¼ Nsv and vp ¼ Npv with appropriate

matrices Ns and Np of dimensions ns � nv and np � nv
respectively:

Ns ¼
1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

� �

Np ¼
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

� �
Moreover, the mass balance equation for the intracel-

lular metabolites can be rewritten as
dðcX Þ
dt

¼ dc
dt

X þ c
dX
dt

¼ NvX ð3Þ

or upon division by X and using dX
dt ¼ lX :

dc
dt

¼ Nv� c
X

dX
dt

¼ Nv� lc ð4Þ

The general dynamic metabolic model is written as

dX
dt

¼ lX

ds
dt

¼ �NsvX

dc
dt

¼ Nv� lc

dp
dt

¼ NpvX

This model is valid for a batch reactor. Obviously, it
could be easily extended to fed-batch or continuous

reactors by inserting appropriate inflow, outflow and

dilution terms.
3. The balance growth paradigm

The so-called balanced growth condition is a funda-

mental assumption of metabolic engineering which is

widely discussed and motivated in the literature (see e.g.
[3]). The condition states that, during the growth of the

cells, the internal metabolites are supposed to be at

quasi-steady state. This is mathematically expressed by a

quasi-static approximation of the mass balance equation

of the internal metabolites:

dc
dt

’ 0 ) Nv� lc ¼ 0

In terms of singular perturbations, the fast dynamics of
the model are the expression of a fast turnover of the

intracellular metabolites (compared with the substrate

uptakes). While Nv� lc ¼ 0 is the slow manifold

attracting the trajectories of the model in the state-

space. The term ‘‘balanced growth’’ is used to explicit

the fact that the intracellular cell composition (repre-

sented by the vector c) remains almost invariant during

the growth phase.
It is furthermore documented in the literature (see e.g.

[4]) that the dilution term lc is small (by at least one

order of magnitude) with respect to the other fluxes

affecting the same metabolite. Therefore, the term lc can
be neglected and the equation reduces to

Nv ¼ 0

This simple linear steady state relation between the

intracellular fluxes around the intracellular metabolites

is the fundamental equation that underlies the metabolic

flux analysis.
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4. Metabolic flux analysis

Metabolic flux analysis (MFA) is the name given to

the exercise of calculating unknown intracellular fluxes
from measured extracellular fluxes by applying the

steady state mass balance equation Nv ¼ 0. Basically,

this equation is under-determined with the number nv of
unknowns vi larger than the number nc of equations. The
flux vector v can be determined only if additional con-

straints are introduced. As mentioned above, our con-

cern in this paper is modelling when measurements of

extracellular species in the culture medium are the only
available data. As we shall illustrate with an experi-

mental application hereafter, we can clearly assume that

the specific uptake and excretion rates vsi and vpi of those
measured extracellular species can be estimated from the

data and collected in a vector vm such that

Pv ¼ vm

for some appropriate dimðvmÞ � nv matrix P which is just

a sub-matrix of

Ns

Np

� �
For example, let us assume that the three extracellu-

lar species S1, S2, P1 of the hypothetical network of Fig. 2

are measurable. Then:

vm ¼
vs1
vs2
vp1

0
@

1
A ¼

v1
v2 þ v3

v7

0
@

1
A

and

P ¼
1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0
@

1
A

Let us now consider the linear system:

N
P

� �
v ¼ 0

vm

� �
and assume that

rank
N
P

� �
¼ nv

In such a case, the system becomes determined and a

solution

v ¼ N
P

� �T
N
P

� �" #�1

N
P

� �T
0

vm

� �

can be computed. In our example of Fig. 2, the solution

is

v1 ¼ vs1
v2 ¼ v6 ¼ 1

3
ðvp1 � 2vs1 þ 2vs2Þ
v3 ¼ v8 ¼ 1
3
ð2vs1 � vp1 þ vs2Þ

v4 ¼ v5 ¼ 1
3
ðvs1 þ vp1 � vs2Þ

v7 ¼ vp1

If rank
N
P

� �
is smaller than the number of unknowns,

then it is necessary to use additional constraints based

on the available prior knowledge on the metabolism.

This is illustrated in the following experimental appli-

cation.
4.1. Experimental application to CHO cells

In order to explain the MFA methodology with a real

life application, we consider the example of CHO cells
cultivated in batch mode in stirred flasks. In accordance

with the literature on mammalian cells, the central

metabolism of CHO cells (e.g. [10–12]) is represented by

the metabolic network depicted in Fig. 3. This metabolic

network describes only the part of the metabolism

concerned with the utilisation of the two main energetic

nutrients (glucose and glutamine). The metabolism of

the amino-acids provided by the culture medium is not
considered. This network is essentially made of four

fundamental pathways: the glycolysis pathway, the

glutaminolysis pathway, the TCA cycle and the nucle-

otides synthesis pathway (e.g. [13]).

Since the goal is a steady state flux analysis, all the

intermediate species which belong to the network but

are not located at branch points are omitted without loss

of generality.
In this network, there are

• two initial substrates: glucose and glutamine;

• four terminal extracellular products: lactate, alanine,

NH4 and CO2;

• two terminal intracellular metabolites: purine and

pyrimidine nucleotides;

• twelve internal metabolites: glucose 6-phosphate,
dihydroxy-acetone phosphate, glyceraldehyde 3-phos-

phate, ribose 5-phosphate, pyruvate, acetyl-coenzyme

A, citrate, a-ketoglutarate, malate, glutamate, oxa-

loacetate, aspartate.

The measured extra-cellular species are the two sub-

strates (glucose and glutamine) and the three most sig-

nificantly released metabolites (lactate, ammonia,
alanine). The experimental data of these substrates and

products as well as the cell density, collected during the

exponential growth phase, are available for three cultures

and are shown in Fig. 4.

In accordance with the quasi-steady state assump-

tion, constant specific uptake and excretion rates are

assumed during the exponential growth. By integrating



Fig. 3. Metabolic network of CHO cells.
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Fig. 4. Experimental data.
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Eqs. (1) and (2), the following linear regression equa-

tions are obtained:
sðtÞ ¼ �asX ðtÞ þ bs with as ¼
vs
l

and

bs ¼
X ð0Þvs

l
þ sð0Þ

pðtÞ ¼ apX ðtÞ þ bp with ap ¼
vp
l

and

bp ¼ �X ð0Þvp
l

þ pð0Þ
From the experimental data of Fig. 4, the specific uptake
and excretion rates (vs and vp) are computed by linear

regression during the growth phase (see Fig. 5) and

given in Table 1.

The cell density computed with an exponential

growth model is also shown in Fig. 5:

dX
dt

¼ lX with l ¼ 0:6912d�1

The steady state flux balance equations Nv ¼ 0 at the

internal nodes of the network are expressed as follows:
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Table 1

Specific uptake and excretion rates computed by linear regression

Glucose (mM/(d· 109
cells))

Glutamine (mM/(d· 109
cells))

Lactate (mM/(d

cells))

4.0546 1.1860 7.3949
Glucose 6-Phosphate : v1 � v2 � v3 ¼ 0

Dihydroxy-acetone Phosphate : v2 � v4 ¼ 0

Glyceraldehyde 3-Phosphate : v2 þ v4 � v5 ¼ 0

Ribose 5-Phosphate : v3 � v17 � v18 ¼ 0

Pyruvate : v5 þ v13 � v6 � v7 � v8 ¼ 0

Acetyl-coenzyme A : v8 � v9 ¼ 0

Citrate : v9 � v10 ¼ 0

a-Ketoglutarate : v10 þ v7 þ v15 þ v14 � v11 ¼ 0

Malate : v11 � v12 � v13 ¼ 0

Glutamate : v16 � v15 � v14 � v7 ¼ 0

Oxaloacetate : v12 � v9 � v14 ¼ 0

Aspartate : v14 � v17 � v18 ¼ 0

ð5Þ

Glucose, lactate and alanine specific rates are directly

given in Table 1:

v1 ¼ 4:0546 mM=ðd� 109 cellsÞ;
v6 ¼ 7:3949 mM=ðd� 109 cellsÞ ð6Þ

v7 ¼ 0:2686 mM=ðd� 109 cellsÞ ð7Þ

The NH4 specific excretion rate in Table 1 is the sum

of v15 and v16:
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on curves.

· 109 NH4 (mM/(d· 109
cells))

Alanine (mM/(d· 109
cells))

0.9617 0.2686



Table 2

Metabolic fluxes of CHO cells during the growth phase (mM/(d· 109 cells))

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

4.0546 3.7692 0.2854 3.7692 7.5383 7.3949 0.2686 0.3472 0.3472 0.3472 1.1051 0.6327 0.4724 0.2854 0.2038 0.7579 0.1427 0.1427
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v15 þ v16 ¼ 0:9617 mM=ðd� 109 cellsÞ ð8Þ

and the specific uptake of glutamine is

v16 þ v17 þ 2v18 ¼ 1:1860 mM=ðd� 109 cellsÞ ð9Þ
Since DNA and RNA are made up with equal shares of

purine nucleotides and pyrimidine nucleotides, it is a

natural assumption to consider that

v17 ¼ v18 ð10Þ
Remark that, as above, we are in the form of a well-
posed linear system:

N
P

� �
v ¼ 0

vm

� �
with system (5) for Nv ¼ 0 and Eqs. (6)–(10) for Pv ¼ vm.
By solving this system, we get a single well defined po-

sitive solution which is given in Table 2.

We see that we get plausible positive values for the

fluxes which are comparable to the values obtained in

metabolic flux analysis of other mammalian cells [11]

and therefore enhance the validity of the proposed net-

work.
Furthermore we are able to predict the specific pro-

duction rate of the end-metabolites which are not mea-

sured, namely CO2 and nucleotides:

vCO2
¼ v3 þ v8 þ v10 þ v11 þ v13

¼ 2:5574 mM=ðd� 109 cellsÞ

vnucl ¼ v17 þ v18 ¼ 0:2854 mM=ðd� 109 cellsÞ
This value of vnucl allows for a further quantitative val-

idation of the model. Indeed, assuming that the average

nucleotide molar mass is about 340 g/mol, the nucleotide

mass production rate is approximately 340 · 0.2854 ·
10�3 g/(d· 109 cells · lit). 0.1 g/(d· 109 cells · lit). We

get that the amount of nucleotides in one cell is about

100 pg/cell, which is totally comparable with the values
available in the literature (for instance in [12], the mass

of RNA+DNA in Hybridoma cells is estimated at 30–

40 pg/cell).

Table 3

The three convex basis vectors

e1 e2 e3

v1 1 0 1

v2 0 1 0

v3 1 0 0

v4 0 0 1

v5 0 0 1

v6 0 1 0

v7 0 1 2

v8 1 0 0
5. Elementary flux modes

The flux distributions v which satisfy the fundamental

steady state equation Nv ¼ 0 are necessarily non-nega-

tive vectors v that belong to the kernel of the matrix N .

Therefore the space of admissible solutions is the poly-

hedral cone which is the intersection of the kernel of N
and the positive orthant. This means that each solution v
can be expressed as a non-negative linear combination

of a set of vectors ei, called generating vectors, which

form the unique convex basis [6] of the polyhedral cone:

v ¼ k1e1 þ k2e2 þ � � � þ knen with kk P 0

for k ¼ 1; . . . ; n

In our prototype example of Fig. 2, the stoichiometric

matrix N is

1 0 0 �1 0 0 0 �1
0 1 0 0 0 �1 0 0

0 0 1 0 0 0 0 �1

0 0 0 1 �1 0 0 0

0 0 0 1 1 1 �1 0

0
BBBB@

1
CCCCA

The dimension of the kernel of N is

dimðkerNÞ ¼ nv � nc ¼ 8� 5 ¼ 3 ð11Þ
The convex basis involves three vectors which are

easily computed and are given in Table 3.
The vectors of the convex basis define the so-called

elementary flux modes (also called spanning pathways)

which are the simplest metabolic paths that are able to

connect the substrates with the end-products. The

determination of the convex basis vectors of metabolic

networks has been studied extensively in the literature.

Typical references are [5,7,8] among others. The three

elementary flux modes corresponding to Table 3 are
represented in Fig. 6.

Under steady state conditions, these elementary flux

modes can be simplified by eliminating the internal

metabolites, giving a set of macro-reactions that connect

the extra-cellular substrates and the end-products:

e1 : S1 þ S2 ! P2
e2 : S2 ! P1

e3 : S1 ! 2P1

In the case of complex metabolic networks, the com-

putation of the convex basis is less trivial and requires

the use of efficient automatic algorithms. Furthermore,



Fig. 6. The three elementary flux modes e1, e2, and e3.
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it commonly arises that the dimension of the convex

basis is larger than the kernel dimension. These issues

are illustrated with our application to CHO cells.

5.1. Application to CHO cells

For the metabolic network of CHO cells (Fig. 3), the

stoichiometric matrix N is as follows:
N ¼

1 �1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 �1 �1

0 0 0 0 1 �1 �1 �1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 �1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 �1 �1 0 0 0 0 0

0 0 0 0 0 0 �1 0 0 0 0 0 0 �1 �1 1 0 0

0 0 0 0 0 0 0 0 �1 0 0 1 0 �1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 �1 �1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
Here the elementary flux modes are computed with the

C-program Metatool available at the following URL:
http://www.bioinf.mdc-berlin.de/projects/metabolic/

metatool which description is available on the same

URL.

Although the dimension of kerðNÞ is 6, the convex

basis involves seven vectors listed in Table 4.

The seven corresponding elementary flux modes of

CHO cells are expressed as follows:

e1. Glucose fi Glucose6P

Glucose6P fi DihydroxyacetoneP + Glycer-

aldehyde3P

DihydroxyacetoneP fi Glyceraldehyde3P

2 Glyceraldehyde3P fi 2 Pyruvate

2 Pyruvate fi 2 Lactate

e2. Glucose fi Glucose6P
Glucose6PfiDihydroxyacetoneP+Glyceraldehyde3P
DihydroxyacetoneP fi Glyceraldehyde3P

2 Glyceraldehyde3P fi 2 Pyruvate

2 Pyruvate fi 2 AcetylcoenzymeA + 2 CO2

2 Oxaloacetate + 2 AcetylcoenzymeA fi 2 Citrate

2 Citrate fi 2 a-Ketoglutarate + 2 CO2

2 a-Ketoglutarate fi 2 Malate + 2 CO2

2 Malate fi 2 Oxaloacetate
e3. Pyruvate + Glutamatefi Alanine + a-Ketoglutarate

a-Ketoglutarate fi Malate + CO2

Malate fi Pyruvate + CO2

Glutamine fi Glutamate + NH4

e4. Pyruvate fi Lactate

a-Ketoglutarate fi Malate + CO2

Malate fi Pyruvate + CO2

Glutamate fi a-Ketoglutarate + NH4

Q fi Glutamate + NH4

e5. Pyruvate fi AcetylcoenzymeA + CO2

AcetylcoenzymeA + Oxaloacetate fi Citrate

Citrate fi a-Ketoglutarate + CO2

2 a-Ketoglutarate fi 2 Malate + 2 CO2

Malate fi Oxaloacetate

Malate fi Pyruvate + CO2

Glutamate fi a-Ketoglutarate + NH4

Glutamine fi Glutamate + NH4

http://www.bioinf.mdc-berlin.de/projects/metabolic/metatool
http://www.bioinf.mdc-berlin.de/projects/metabolic/metatool


Table 4

The seven convex basis vectors

e1 e2 e3 e4 e5 e6 e7

v1 1 1 0 0 0 1 1

v2 1 1 0 0 0 0 0

v3 0 0 0 0 0 1 1

v4 1 1 0 0 0 0 0

v5 2 2 0 0 0 0 0

v6 2 0 0 1 0 0 0

v7 0 0 1 0 0 0 0

v8 0 2 0 0 1 0 0

v9 0 2 0 0 1 0 0

v10 0 2 0 0 1 0 0

v11 0 2 1 1 2 1 1

v12 0 2 0 0 1 1 1

v13 0 0 1 1 1 0 0

v14 0 0 0 0 0 1 1

v15 0 0 0 1 1 0 0

v16 0 0 1 1 1 1 1

v17 0 0 0 0 0 1 0

v18 0 0 0 0 0 0 1
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e6. Glucose fi Glucose6P

Glucose6P fi CO2 + Ribose5P

a-Ketoglutarate fi Malate + CO2

Malate fi Oxaloacetate

Oxaloacetate + Glutamate fi Aspartate + a-Keto-

glutarate

Glutamine fi Glutamate + NH4

Ribose5P + 2 Glutamine + Aspartate fi Purine

e7. Glucose fi Glucose6P

Glucose6P fi CO2 + Ribose5P

a-Ketoglutarate fi Malate + CO2

Malate fi Oxaloacetate

Oxaloacetate + Glutamate fi Aspartate + a-Keto-

glutarate
Glutamine fi Glutamate + NH4

Ribose5P + Glutamine + Aspartate fi Pyrimidine

By eliminating the internal metabolites between the

reactions, the following set of fundamental macro-reac-

tions that connect the extracellular substrates and the

end-products is obtained:

e1: Glucose fi 2 Lactate

e2: Glucose fi 6 CO2

e3: Glutamine fi Alanine + 2 CO2 + NH4

e4: Glutamine fi Lactate + 2 CO2 + 2 NH4

e5: Glutamine fi 5 CO2 + 2 NH4

e6: Glucose + 3 Glutamine fi Purine + 2 CO2 + NH4

e7: Glucose + 2 Glutamine fi Pyrimidine + 2 CO2

+ NH4
6. Dynamical macroscopic model

On the basis of this set of macro-reactions, a classical

dynamical model of biological reactors [9] can be

established as
dnðtÞ
dt

¼ KrðtÞ þ uðtÞ ð12Þ

This model expresses the mass balance of the extracel-

lular species inside the reactor with nT ¼ ðn1; . . . ; nnÞ the
vector of the species concentrations in the reactor liquid

volume; rTðtÞ ¼ ðr1ðtÞ; . . . ; rmðtÞÞ the vector of the mac-

ro-reaction rates; K the stoichiometric matrix of the

macro-reaction network; uðtÞ the net exchange of the
species with the outside.

The stoichiometric matrix K is easily computed as

K ¼ �Ns

Np

� �
E

where E denotes the matrix made up of the vectors of
the convex basis of the underlying metabolic network.

For our example of batch cultures of CHO cells in

flasks, we have

n ¼

Glucose ðGÞ
Glutamine ðQÞ
Lactate ðLÞ

Ammonia ðNH4Þ
Alanine ðAÞ

CO2

Nucleotides ðNuclÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

K ¼

�1 �1 0 0 0 �1 �1

0 0 �1 �1 �1 �3 �2

2 0 0 1 0 0 0

0 0 1 2 2 1 1

0 0 1 0 0 0 0

0 6 2 2 5 2 2

0 0 0 0 0 1 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð13Þ
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while uiðtÞ ¼ 0 for all species except for CO2 where it

represents the CO2 gaseous outflow rate. We assume

that the reaction rates riðtÞ of the seven reactions satisfy

simple Micha€elis–Menten kinetics. This means that the
rates are expressed as

ri ¼ ai
GX

kGi þ G
for reactions e1–e2

ri ¼ ai
QX

kQi þ Q
for reactions e3–e5

ri ¼ ai
GQX

ðkGi þ GÞðkQi þ QÞ for reactions e6–e7

where ai are the maximum specific reaction rates, kGi, kQi
are the Micha€elis (or half-saturation) constants. The

mass balance state space model for the measured

extracellular species is thus written as

dGðtÞ
dt

¼ � a1
GX

kG1 þ G
� a2

GX
kG2 þ G

� a6
GQX

ðkG6 þ GÞðkQ6 þ QÞ

� a7
GQX

ðkG7 þ GÞðkQ7 þ QÞ
dQðtÞ
dt

¼ � a3
QX

kQ3 þ Q
� a4

QX
kQ4 þ Q

� a5
QX

kQ5 þ Q

� 3a6
GQX

ðkG6 þ GÞðkQ6 þ QÞ

� 2a7
GQX

ðkG7 þ GÞðkQ7 þ QÞ
dLðtÞ
dt

¼ 2a1
GX

kG1 þ G
þ a4

QX
kQ4 þ Q

dNðtÞ
dt

¼ a3
QX

kQ3 þ Q
þ 2a4

QX
kQ4 þ Q

þ 2a5
QX

kQ5 þ Q

þ a6
GQX

ðkG6 þ GÞðkQ6 þ QÞ

þ a7
GQX

ðkG7 þ GÞðkQ7 þ QÞ
dAðtÞ
dt

¼ a3
QX

kQ3 þ Q

ð14Þ

In order to complete the model, it remains to select

numerical values for the 16 parameters ai, kGi and kQi
from the experimental data. In view of the small amount

of available data, it is obvious that the model is widely

over-parameterized. But under the balanced growth

condition, it clearly makes sense to assume that the
macro-reactions proceed almost at their maximal rate

during the exponential growth phase. The half-satura-

tion constants kGi and kQi are therefore selected small

enough to be ineffective during the growth phase but

large enough to avoid stiffness difficulties in the

numerical simulation of the model. Here we have set the

half-saturation constants at
kGi ¼ kQi ¼ 0:1 mM 8i

Thus, as long as G � 0:1 mM and Q � 0:1 mM, we

have the following linear relation between the measured

specific uptake/excretion rates and the macro-reaction

rates ai:

4:0546
1:1860
7:3949
0:9617
0:2686

0
BBBB@

1
CCCCA ¼

�1 �1 0 0 0 �1 �1

0 0 �1 �1 �1 �3 �2

2 0 0 1 0 0 0

0 0 1 2 2 1 1

0 0 1 0 0 0 0

0
BBBB@

1
CCCCA

a1
a2
a3
a4
a5
a6
a7

0
BBBBBBBB@

1
CCCCCCCCA

ð15Þ
In addition, in accordance with equality (10), we have
the natural constraint

a6 ¼ a7 ð16Þ
The parameters ai must be computed as a non-negative

solution of the following system:

4:0546
1:1860
7:3949
0:9617
0:2686

0

0
BBBBBB@

1
CCCCCCA ¼

�1 �1 0 0 0 �1 �1

0 0 �1 �1 �1 �3 �2

2 0 0 1 0 0 0

0 0 1 2 2 1 1

0 0 1 0 0 0 0

0 0 0 0 0 1 �1

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K 0

a1
a2
a3
a4
a5
a6
a7

0
BBBBBBBB@

1
CCCCCCCCA

ð17Þ
System (17) is underdetermined. The particular non-

negative and minimal norm solution of (17) is

The simulation results with these parameter values

are shown in Fig. 7. Remark that the fifth reaction

Glutamine fi 5 CO2 + 2 NH4 is inactive.
The general solution of (17) is written as

ai ¼ a0i þ aki; i ¼ 1; . . . ; 7; a 2 R ð18Þ
where the vector k is an arbitrary basis vector of kerðK 0Þ
which is one-dimensional. A possible choice of k is

k ¼

�0:5
0:5
0
1

�1

0

0

0
BBBBBBBB@

1
CCCCCCCCA

ð19Þ

The general solution of (17) is thus written:

a1 ¼ 3:5956� 0:5a

a2 ¼ 0:1736þ 0:5a

a01 a02 a03 a04 a05 a06 a07
3.5956 0.1736 0.2686 0.2038 0 0.1427 0.1427
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Fig. 7. Experimental data and simulation results.
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a3 ¼ 0:2686

a4 ¼ 0:2038þ a

a5 ¼ �a

a6 ¼ 0:1427

a7 ¼ 0:1427

In order to keep a non-negative solution, we clearly have
to constrain the parameter a in the interval:

0P aP � 0:2038

7. Conclusion

The identification of mathematical models for bio-
processes from macro-reactions has been investigated

under a metabolic viewpoint. The proposed approach

has been illustrated with the example of CHO cell

metabolism.

Such models provide a firm basis for the design of on-

line monitoring and optimization of cell culture pro-

cesses. In particular, the underlying metabolic basis of

the model should be helpful in determining how to alter
the culture environment so as to achieve robust control

and maintain optimal conditions.

Nevertheless, it must be mentioned that the model

developed in this paper is clearly valid only during the

growth phase and should be carefully extrapolated to

other culture phases. This will be the subject of further

investigation.
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