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A new explicit Lyapunov function allows to study the exponential stability for a class of physical ‘2 by
2’ hyperbolic systems with nonuniform steady states. In fluid dynamics, this class of systems involves
isentropic Euler equations and Saint-Venant equations. The proposed quadratic Lyapunov function allows
to analyze the local exponential stability of the system equilibria for suitable dissipative Dirichlet
boundary conditions without additional conditions on the system parameters.
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1. Introduction

Our purpose in this paper is to address the H2-stability of the
equilibria for a class of one-dimensional 2 × 2 hyperbolic systems.
In fluid dynamics, this class of systems involves, for instance,
isentropic Euler equations and Saint-Venant equations. These are
systems of two balance laws with the density and the velocity
of the considered fluid as state variables, and with source terms
representing friction effects.

In [1–3] we have introduced a generic H2-Lyapunov function,
expressed in Riemann coordinates, to analyze the H2-stability in
the frictionless case when the system takes the form of conser-
vation laws and has, therefore, a steady-state which is spatially
uniform.

The problem which is addressed in this paper is more difficult
because we consider the case where the friction is not negligible
and the system is represented by balance laws with nonuniform
steady-states. For that case, general implicit stability conditions
are given in [4, Chapter 6] by using a weighted form of the
H2-Lyapunov function with a weighting matrix Q (x) which is not
a-priori given and has to be found for each particular application.

The issue addressed in this paper was previously considered
in [5] (see also [6–8]) for the special case of isothermal Euler equa-
tions. In the paper [5], for a system with a non-uniform steady-
state, the authors use a matrix Q (x) which is related to the one
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proposed in [2] for conservation laws with uniform steady-state.
This choice allows to obtain stability for suitable boundary con-
ditions albeit with limitations depending on the values of some
system parameters.

In this paper, we shall show how a more physical choice of the
weighting matrix Q (x) allows to remove the previous limitations.
With this choice, we are able to prove the H2 local exponential
stability for suitable boundary conditions without any additional
conditions on the system parameters.

2. Hyperbolic density–velocity systems

We are concerned with hyperbolic systems of two partial dif-
ferential equations (PDEs) of the form

Ht + (HV )x = 0, (1a)

Vt +
c2(H)
H

Hx + VVx + f (H, V ) = 0, (1b)

where t ∈ [0, +∞), x ∈ [0, L], H : [0, +∞) × [0, L] → (0, +∞),
V : [0, +∞) × [0, L] → (0, +∞), c ∈ C2((0, +∞); (0, +∞)),
f ∈ C1((0, +∞)2;R).

In many applications, the model (1) represents the one-
dimensional propagation of some physical quantity, with density
H , propagation velocity V , flow density HV and friction f (H, V ).
The first equation is a mass conservation law and the second
equation is a momentum balance.

A very typical example is givenby the isentropic Euler equations
for the gas motion in pipelines where H is the gas density. In the
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particular case of a polytropic gas, the gas pressure is the following
function of the gas density:

p(H) = κHγ (2)

with κ > 0 and γ > 1 real constants. In that case the function c(H)
is the sound velocity defined as:

c(H) =

√
p′(H) =

√
γ κHγ−1. (3)

Another typical example is given by the Saint-Venant equations for
the water motion in open channels where H is the water level and
the function c(H) =

√
gH , with g > 0 the gravity acceleration

constant.
In Eq. (1b), the coefficient c2(H)/H is the second order deriva-

tive of the internal energy U(H) such that:

U ′′(H) =
c2(H)
H

(4)

with U ∈ C4((0, +∞);R). Multiplying the first equation (1a) by
U ′(H) and the second equation (1b) by HV , then summing up the
two resulting equations, we obtain the following energy balance
lawwhich is satisfied along the smooth solutions of the system (1):

E(H, V )t + F (H, V )x + (HV )f (H, V ) = 0, (5)

with

E(H, V ) =
1
2
HV 2

+ U(H), F (H, V ) = HV
(
U ′(H) +

1
2
V 2
)

.

(6)

The function E(H, V ) is the energy density: the first term HV 2/2
is the kinetic energy density and the second term U(H) is the
potential or internal energy density. Obviously, the total energy of
the system (1) at the time t is given by the integral of E over the
interval [0, L]:

E (t) =

∫ L

0
E(H(t, x), V (t, x))dx. (7)

In this paper, our purpose is to show how the energy E can be used
to define a Lyapunov function for the exponential stability analysis
of the steady-states of the system (1) when both the boundary
conditions and the source term f (H, V ) are dissipative.

A steady state (or equilibrium) of the system (1) is a time-
invariant solution (H∗, V ∗) : [0, L] → (0, +∞)2. It satisfies the
system of ordinary differential equations

V ∗

x =
V ∗f (H∗, V ∗)
c2(H∗) − V ∗2 , H∗

x = −
H∗f (H∗, V ∗)
c2(H∗) − V ∗2 . (8)

In this paper, we consider the standard physical case where

1. the steady-state density H∗(x) > 0 and velocity V ∗(x) > 0
are strictly positive for all x ∈ [0, L];

2. the steady state flow is subcritical, i.e. the denominators in
(8) are strictly positive:

c2(H∗) − V ∗2 > 0 ∀x ∈ [0, L]. (9)

In order to linearize the model, we define the deviations of the
statesH(t, x) and V (t, x) with respect to the steady statesH∗(x) and
V ∗(x) :

h(t, x) ≜ H(t, x) − H∗(x), v(t, x) ≜ V (t, x) − V ∗(x). (10)

The linearization of the system (1) about the steady state is then(
ht
vt

)
+

( V ∗ H∗

c2(H∗)
H∗

V ∗

)(
hx
vx

)

+

⎛⎝ V ∗

x H∗

x(
c2(H∗)
H∗

)
x
+ f ∗

H V ∗

x + f ∗

V

⎞⎠(h
v

)
= 0, (11)

with the notations

f ∗

H =
∂ f
∂H

(H∗, V ∗), f ∗

V =
∂ f
∂V

(H∗, V ∗). (12)

3. A physical quadratic Lyapunov function for the linearized
system

In this section, we are concerned with the exponential stability
of the L2-solutions of the linearized system (11) under local linear
boundary conditions of the form

v(t, 0) = −b0h(t, 0), v(t, L) = b1h(t, L), (13)

with constants b0 ∈ R, b1 ∈ R, and under an initial condition

h(0, x) = ho(x), v(0, x) = vo(x), (14)

such that

(ho, vo) ∈ L2((0, L);R2). (15)

The Cauchy problem (11), (13), (14) is well-posed (see [4, Ap-
pendix A]).

Definition 1. The system (11), (13) is exponentially stable (for the
L2-norm) if there exist ν > 0 and C > 0 such that, for every
initial condition (ho, vo) ∈ L2((0, L);R2), the solution to the Cauchy
problem (11), (13), (14) satisfies

∥(h(t, ·), v(t, ·))∥L2 ⩽ Ce−νt
∥(ho, vo)∥L2 . (16)

For this analysis, as a candidate Lyapunov function, we intro-
duce the following quadratic functional:

V =

∫ L

0

( c2(H∗)
H∗

h2
+ H∗v2

)
dx

=

∫ L

0

(
h v

)( c2(H∗)
H∗

0
0 H∗

)(
h
v

)
dx. (17)

With the notations

Y =

(
h
v

)
, A(x) =

( V ∗ H∗

c2(H∗)
H∗

V ∗

)
, (18)

B(x) =

⎛⎝ V ∗

x H∗

x(
c2(H∗)
H∗

)
x
+ f ∗

H V ∗

x + f ∗

V

⎞⎠ ,

D(x) =

(
c2(H∗)
H∗

0
0 H∗

)
, (19)

we compute the time derivative of V along the C1-solutions of the
system (11), (13):

dV
dt

=

∫ L

0

(
Y TD(x)Yt + Y T

t D(x)Y
)
dx

= −

∫ L

0

(
Y TD(x)

(
A(x)Yx + B(x)Y

)
+
(
Y T
x A

T (x) + Y TBT (x)
)
D(x)Y

)
dx. (20)

We observe that the matrixM(x) = D(x)A(x) is symmetric:

M(x) = D(x)A(x) = AT (x)D(x) =

⎛⎝( c2(H∗)
H∗

)
V ∗ c2(H∗)

c2(H∗) H∗V ∗

⎞⎠ . (21)
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Now, using (20), (21) and integration by parts, we have

dV
dt

= −

∫ L

0
(Y TM(x)Y )xdx

−

∫ L

0

[
Y T (

−M ′(x) + BT (x)D(x) + D(x)B(x)
)
Y
]
dx

= −
[
Y TM(x)Y

]L
0 −

∫ L

0

(
Y TN(x)Y

)
dx,

(22)

with, using (8),

N(x) = −M ′(x) + BT (x)D(x) + D(x)B(x) (23)

=

(
2c(H∗)c ′(H∗)V ∗

x H∗f ∗

H
H∗f ∗

H 2H∗(V ∗

x + f ∗

V )

)
. (24)

Hence, from Eq. (22), we see that dV/dt is a negative definite
function along the solutions of the system (11), (13) if the two
following conditions are satisfied:

(a) the boundary term is non negative (i.e.
[
Y TM(x)Y

]L
0 ⩾ 0)

for every Y (t, 0) ∈ R2 and every Y (t, L) ∈ R2 such that
v(t, 0) = −b0h(t, 0) and v(t, L) = b1h(t, L);

(b) the matrix N(x) is positive definite for all x in [0, L].

Since, for all x ∈ [0, L], thematrixN(x) is positive definite, there
exists a positive real number ν such that

Y TN(x)Y ⩾ 2νY TD(x)Y , ∀x ∈ [0, L], ∀Y ∈ R2. (25)

Then, it follows directly from the definition of V and from (22) that
dV
dt

⩽ −2νV (26)

along the C1-solutions of the system. However, since the C1-
solutions are dense in the set of L2-solutions, inequality (26) is
also satisfied in the sense of distributions for L2-solutions (see
[4, Section 2.1.3] for details). Consequently, V is an exponentially
decaying Lyapunov function for the L2-norm and there is a positive
constant C such that the solutions satisfy inequality (16) of Defini-
tion 1.

In the next proposition, we now give conditions on the coeffi-
cients b0 and b1 such that the boundary condition (a) is fulfilled.
For simplicity, we introduce the following notations:

h0(t) = h(t, 0), H∗

0 = H∗(0), V ∗

0 = V ∗(0), (27)

h1(t) = h(t, L), H∗

1 = H∗(L), V ∗

1 = V ∗(L). (28)

Proposition. Condition (a) is verified if and only if b0 and b1 satisfy
the following inequalities:

b0 ∈ [b−

0 , b+

0 ] with b±

0 =
c2(H∗

0 )
H∗

0

(
1
V ∗

0
±

√
1

V ∗2
0

−
1

c2(H∗

0 )

)
,

(29)

b1 ∈ R \ (b−

1 , b+

1 ) with b±

1 =
c2(H∗

1 )
H∗

1

(
−

1
V ∗

1
±

√
1

V ∗2
1

−
1

c2(H∗

1 )

)
.

(30)

Proof. We have[
Y TM(x)Y

]L
0 =

[
Y T (t, L)M(L)Y (t, L)

]
−
[
Y T (t, 0)M(0)Y (t, 0)

]
. (31)

Under the boundary condition (13), we have[
Y T (t, 0)M(0)Y (t, 0)

]
= (H∗

0V
∗

0 b
2
0 − 2c2(H∗

0 )b0 +
c2(H∗

0 )
H∗

0
V ∗

0 )  
P0

h2
0(t). (32)

P0 is a degree-2 polynomial in b0 with two positive real roots
b−

0 , b+

0 . Condition (29) holds for values of b0 located in the closed
interval [b−

0 , b+

0 ] such that P0 is nonpositive and, consequently,
that [Y T (t, 0)M(0)Y (t, 0)] ⩽ 0 for all t .

On the other hand, under the boundary condition (13), we have[
Y T (t, L)M(L)Y (t, L)

]
= (H∗

1V
∗

1 b
2
1 + 2c2(H∗

1 )b1 +
c2(H∗

1 )
H∗

1
V ∗

1 )  
P1

h2
1(t). (33)

P1 is a degree-2 polynomial in b1 with two negative real roots
b−

1 , b+

1 . Condition (30) holds for values of b1 located outside the
open interval (b−

1 , b+

1 ) such that P1 is non negative and, conse-
quently, that [Y T (t, L)M(L)Y (t, L)] ⩾ 0 for all t . This completes the
proof of the proposition. □

In the next two subsectionswe compute thematrixN(x) andwe
show that condition (b) is satisfied for the examples of isentropic
Euler equations and Saint-Venant equations.

Isentropic Euler equations

The isentropic Euler equations are typically used to describe the
gas propagation in ducts, with a pressure p(H) = κHγ (where
γ > 1 is the adiabatic index) and a friction proportional to the
square of the velocity:

f (H, V ) = kV 2, k > 0. (34)

In this case, for all x ∈ [0, L], we have:

c2(H∗) = κγH∗(γ−1) > 0,
2c(H∗)c ′(H∗) = κγ (γ − 1)H∗(γ−2) > 0, (35)

f (H∗, V ∗) > 0, f ∗

H = 0, f ∗

V = 2kV ∗ > 0, (36)

Under the subcritical flow condition (9), it follows directly that
V ∗
x > 0 and N(x) is positive definite for all x ∈ [0, L].

Saint-Venant equations

For a horizontal channel with a rectangular cross section and
a unit width, the water propagation may be described by Saint-
Venant equations that are a special case of the model (1) with

c2(H) = gH and f (H, V ) = k
V 2

H
, k > 0. (37)

In this case, for all x ∈ [0, L], we have

2c(H∗)c ′(H∗) = g, f ∗

H = −
kV ∗2

H∗2 , f ∗

V =
2kV ∗

H∗
. (38)

Then, using (8), the matrix N(x) is

N(x) =

⎛⎜⎜⎝
gkV ∗3

H∗(gH∗ − V ∗2)
−

kV ∗2

H∗

−
kV ∗2

H∗

2kV ∗3

(gH∗ − V ∗2)
+ 4kV ∗

⎞⎟⎟⎠ . (39)

Here the subcritical flow condition (9) implies that gH∗
−V ∗2 > 0.

It follows that

det[N(x)] =

(
kV ∗2

H∗

)2 ( 2gH∗V ∗2

(gH∗ − V ∗2)2
+

4gH∗

(gH∗ − V ∗2)
− 1

)
> 0, (40)

and therefore that the matrix N(x) is positive definite for all x ∈

[0, L].
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Remark 1 (Comment on the Choice of the Lyapunov Function). Let
us expand the energy function (7) in a neighborhood of the steady-
state H∗, V ∗ for the Saint-Venant equations. We obtain:

E =
1
2

∫ L

0

(
(H∗

+ h)(V ∗
+ v)2 + g(H∗

+ h)2
)
dx

= E ∗
+ E1 + E2 + E3, (41)

with

E ∗
=

1
2

∫ L

0

(
H∗V ∗2

+ gH∗2) dx, (42)

E1 =

∫ L

0

[(
V ∗2

2
+ gH∗

)
h + (H∗V ∗)v

]
dx, (43)

E2 =
1
2

∫ L

0
(gh2

+ 2V ∗hv + H∗v2)dx, (44)

E3 =
1
2

∫ L

0
(hv2)dx. (45)

We could believe that the quadratic term E2 should be a natural
candidate for a Lyapunov function for this system. Let us therefore
compute the time derivative of E2 along the solutions of (11):

dE2

dt
=

∫ L

0
[(gh + V ∗v)∂th + (V ∗h + H∗v)∂tv]dx

= −

∫ L

0

[
(gh + V ∗v)

(
V ∗∂xh + H∗∂xv + V ∗

x h + H∗

x v

)
+ (V ∗h + H∗v)

(
g∂xh + V ∗∂xv −

kV ∗2

H∗2 h

+

(
V ∗

x +
2kV ∗

H∗

)
v

)]
dx

= −

∫ L

0

[
gV ∗∂x(h2) + (V ∗2

+ gH∗)∂x(hv) + H∗V ∗∂x(v2)

+

(
gV ∗

x −
kV ∗3

H∗2

)
h2

+ 2kV ∗v2

+

(
gH∗

x + 2V ∗V ∗

x +
kV ∗2

H∗

)
hv

]
dx. (46)

Integrating by parts and using the equilibrium conditions (8) we
get:

dE2

dt
= B +

∫ L

0

[
kV ∗3

H∗
h
(

h
H∗

−
v

V ∗

)
− 2kV ∗v2

]
dx (47)

with

B = −

[
gV ∗h2

+ (V ∗2
+ gH∗)hv + H∗V ∗v2

]L
0
. (48)

In this case, we observe that the integral term can be positive
(just take h > 0 and v = 0) and consequently that E2 may not
be a Lyapunov function for our system. Here the interesting point
is that, by ignoring the cross-term 2V ∗hv in E2, we get a valid
candidate for the Lyapunov function as we have shown above.

Remark 2 (The Special Case of Isothermal Euler Equations). The
special case of an isothermal gas flow is sometimes considered
for modeling pipeline dynamics and control (e.g. [5–8]). In that
case the Euler equations are said to be isothermal, the pressure is
proportional to the density p(H) = κH and the sound velocity is
constant c =

√
κ . It then follows that c ′

= 0 and therefore that
the matrix N(x) is not positive definite. In that case, the Lyapunov
function introduced in this paper is not applicable and the use
of Lyapunov functions expressed in Riemann coordinates with
exponential weights as in [5–8] is not redundant.

4. Exponential stability of the steady-state of the nonlinear
system

In this section, we shall now show that conditions (a) and (b)
are also sufficient to guarantee the exponential stability in H2 of
the steady state H∗(x), V ∗(x) of the nonlinear system (1). For this
purpose it is first useful to transform the linearized system (11)
into Riemann coordinates. Under the subcritical condition (9), the
matrix A(x) has two real distinct eigenvalues:

λ+(x) = V ∗
+ c(H∗) > 0, λ−(x) = V ∗

− c(H∗) < 0. (49)

Therefore, A(x) is diagonalizable with the invertible matrix S(x)
defined as

S(x) =
1
2

⎛⎝ H∗(x)
c(H∗(x))

−
H∗(x)

c(H∗(x))
1 1

⎞⎠ (50)

such that

Λ(x) = S−1(x)A(x)S(x) with Λ(x) =

(
λ+(x) 0
0 λ−(x)

)
. (51)

Then the vector of Riemann coordinates

R =

(
R+

R−

)
(52)

is defined as

R(t, x) = S−1(x)Y (t, x) (53)

so that

R+
= v + h

c(H∗)
H∗

, R−
= v − h

c(H∗)
H∗

. (54)

In these coordinates, the linearized system (11) is written

Rt + Λ(x)Rx + C(x)R = 0 (55)

with

C(x) = S−1(x)
[
A(x)Sx(x) + B(x)S(x)

]
=

(
γ1(x) δ1(x)
γ2(x) δ2(x)

)
. (56)

Moreover, the boundary conditions (13) are written as follows in
the Riemann coordinates (54):(
R+(t, 0)
R−(t, L)

)
=

(
0 k0
k1 0

)(
R+(t, L)
R−(t, 0)

)
(57)

with k0 =
b0H∗

0 − c(H∗

0 )
b0H∗

0 + c(H∗

0 )
, k1 =

b1H∗

1 − c(H∗

1 )
b1H∗

1 + c(H∗

1 )
. (58)

The linear system (55), (57) is the linearization, around a steady-
state H∗(x), V ∗(x) of our initial nonlinear system (1)

Ht + (HV )x = 0, (59a)

Vt +
c2(H)
H

Hx + VVx + f (H, V ) = 0, (59b)

with nonlinear boundary conditions

V (t, 0) = B0(H(t, 0)), V (t, L) = B1(H(t, L))
s.t. b0 = −B′

0(H
∗(0)), b1 = B′

1(H
∗(L)). (60)

Sufficient conditions for the exponential stability of the steady-
state of the nonlinear system (59), (60) are then given in the
following Theorem (Dn denotes the set of n × n real diagonal
matrices with strictly positive diagonal elements).

Theorem 1. The steady state H∗(x), V ∗(x) of the system (59), (60) is
exponentially stable for the H2-norm if
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(i) there exists a map Q ∈ C1([0, L];Dn) such that the matrix

−
(
Q (x)Λ(x)

)
x + Q (x)C(x) + CT (x)Q (x)

is positive definite for all x ∈ [0, L],
(ii) the following inequalities are satisfied:

k20 ⩽
|λ−(0)|
λ+(0)

and k21 ⩽
λ+(L)
|λ−(L)|

. (61)

Proof. This theorem is a special case of Theorems 6.6 and 6.10
in [4]. □

Now, in the next two lemmas, we shall show that conditions (i)
and (ii) are fulfilled with the matrix

Q (x) = ST (x)D(x)S(x) =
1
2

(
H∗(x) 0
0 H∗(x)

)
(62)

if thematrixN(x) is positive definite and if the linearized boundary
conditions (60) satisfy inequalities (29), (30).

Lemma 1. If the matrix N(x) is positive definite for all x ∈ [0, L], then
the matrix

− (Q (x)Λ(x))x + Q (x)C(x) + CT (x)Q (x)

is positive definite for all x ∈ [0, L].

Proof. We omit the argument x for notational simplicity. Using
the definition (62) of Q , the definition (56) of C , the equality (51)
SΛ = AS, the equality (21) M = DA = ATD and the definition (23)
of N , we have:

− (QΛ)x + QC + CTQ = − (STDSΛ)x + STD(ASx + BS)

+ (STBT
+ STx A

T )DS

= − (STDAS)x + STD(ASx + BS)

+ (STBT
+ STx A

T )DS

= − STx DAS − STDxAS − STDAxS − STDASx
+ STDASx + STDBS + STBTDS + STx A

TDS

= − STDxAS − STDAxS + STDBS + STBTDS

= ST
(
−M ′(x) + DB + BTD

)
S

= STNS.

Hence, since S is invertible, the positive definiteness of N implies
the positive definiteness of −(QΛ)x + QC + CTQ . □

Moreover Lemma 2 states that conditions (29), (30) on b0 and
b1 are equivalent to conditions (61) on k0 and k1.

Lemma 2. The real numbers b0 and b1 satisfy inequalities (29), (30)
if and only if the real numbers k0 and k1 satisfy inequalities (61).

Proof. Let us denote c0 = c(H∗

0 ). Then we have

k20 ⩽
|λ−(0)|
λ+(0)
⇐⇒ (b0H∗

0 − c0)2(c0 + V ∗

0 ) ⩽ (b0H∗

0 + c0)2(c0 − V ∗

0 )
by (49) and (58)

⇐⇒ ((b0H∗

0 )
2
− 2b0c0H∗

0 + c20 )(c0 + V ∗

0 )

⩽ ((b0H∗

0 )
2
+ 2b0c0H∗

0 + c20 )(c0 − V ∗

0 )

⇐⇒ b20H
∗2
0 V ∗

0 − 2b0c20H
∗

0 + c20V
∗

0  
=H∗

0P0

⩽ 0

⇐⇒ b0 ∈ [b−

0 , b+

0 ].

The proof is similar for b1. □

Remark 3. A numerical approach for characterizing necessary and
sufficient conditions for the existence of a basic quadratic control
Lyapunov function of the form

V =

∫ L

0

(
q1(x)

(
R+(t, x)

)2
+ q2(x)

(
R−(t, x)

)2)dx (63)

is given in the paper [9]. The quadratic Lyapunov function (17) of
the present paper is the particular case where q1(x) = q2(x) =

H∗(x). In the paper [9] it is shown that the existence of such a basic
quadratic control Lyapunov function is equivalent to the following
property (P).

(P). The solution η(x) of the ordinary differential equation

η′(x) =

⏐⏐⏐⏐ϕ(x)δ1(x)λ+(x)
−

γ2(x)
ϕ(x)λ−(x)

η2(x)
⏐⏐⏐⏐ , η(0) = |k0|, (64)

with

ϕ(x) = exp
[∫ x

0

(
γ1(s)
λ+(s)

−
δ2(s)
λ−(s)

)
ds
]

, (65)

exists for all x in the interval [0, L] and satisfies

|kL|η(L) < ϕ2(L). (66)

(Note that the functions γi(x) and δi(x), i = 1, 2, in (64) and (65)
are the entries of the matrix C(x) defined by Eq. (56)).

In the book [4, Section 5.3], we give a numerical simulation for
a practical example of Saint Venant equations, in the case where
k0 = 0 and we observe that, as predicted in the present paper, the
solution η exists for the interval [0, L] with L the maximal length
of the pool for which the flow remains subcritical. Let us mention
that there is a mistake in this numerical example in the paper
[9, Section 4] which is corrected in the book [4, Section 5.3].

5. Conclusions

In this paper, our main contribution was to exhibit an ex-
plicit Lyapunov function which allows to study the exponential
stability of a class of Euler-type 2 × 2 hyperbolic equations
with nonuniform steady-states. Surprisingly enough, as seen in
Remark 1, the quadratic term E2 in the expansion of the energy
function is not a control Lyapunov function for this kind of physical
system. However, it is rather remarkable that, by ignoring the
cross-term 2V ∗hv in E2, we get a valid control Lyapunov function.
An interesting question is then to examine how this phenomenon
can be extended tomore general n×n physical hyperbolic systems.
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