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Lecture 1

Dynamical Modelling of Infectious
Diseases

1.1 Introduction

The aim of this lecture is to give an elementary introduction to mathematical models
that are used to explain epidemiologic phenomena and to assess vaccination strategies.
We focus on infectious diseases, i.e. diseases where individuals are infected by pathogen
micro-organisms (like, for instance, viruses, bacteria, fungi or other microparasites). Some
well known examples of such infectious diseases are :

• Viral infectious diseases : AIDS, Chickenpox (Varicella), Common cold, Cytomegalo-
virus Infection, Dengue fever, Ebola hemorrhagic fever, Hepatitis, Influenza (Flu),
Measles, Mononucleosis, Mumps, Poliomyelitis, Rubella, SARS, Smallpox (Variola),
Viral meningitis, Viral pneumonia, West Nile disease, Yellow fever.

• Bacterial infectious diseases : Cholera, Diphtheria, Legionellosis, Leprosy, Lyme
disease, Pertussis (Whooping Cough), Plague, Pneumococcal pneumonia, Salmonel-
losis, Scarlet Fever, Syphilis, Tetanus, Tuberculosis, Typhus.

• Parasitic infectious diseases : Malaria, Taeniasis, Toxoplasmosis.

• Prion infectious diseases : Creutzfeldt-Jakob disease.

1.2 The basic SIR model

A first fundamental mathematical model for epidemic diseases was formulated by Ker-
mack and McKendrick in 1927 (see the fac-simile of their paper in Appendix). This model
applies for epidemics having a relatively short duration (compared to life duration) that
take the form of “a sudden outbreak of a disease that infects (and possibly kills) a sub-
stantial portion of the population in a region before it disappears” (Brauer, 2005). In this
model, the population is classified into three groups : (i) the group of individuals who are
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6 LECTURE 1. INFECTIOUS DISEASES

uninfected and susceptible (S) of catching the disease, (ii) the group of individuals who
are infected (I) by the concerned pathogen, (iii) the group of recovered (R) individuals
who have acquired a permanent immunity to the disease. The propagation of the disease
is represented by a compartmental diagram shown in Fig.1.1. The model is derived under

S I R

Figure 1.1: Compartmental diagram

three main assumptions : (i) a closed population (no births, no deaths, no migration), (ii)
spatial homogeneity, (iii) disease transmission by contact between susceptible and infected
individuals. The model is a system of three differential equations:

(1.1)
dS

dt
= −βIS,

(1.2)
dI

dt
= βIS − γI,

(1.3)
dR

dt
= γI.

In these equations, S denotes the number of susceptibles, I the number of infected indi-
viduals and R the number of immune individuals at time t. The total population

N = S + I +R.

is constant by assumption since we have

dN

dt
=
dS

dt
+
dI

dt
+
dR

dt
= 0

from the model equations.
In the first and second model equations (1.1)-(1.2), the term βIS represents the disease

transmission rate by contact between susceptible and infected individuals. This rate is
assumed to be proportional to the sizes of both groups with a proportionality coefficient
β. In the second and third equations (1.2)-(1.3), the parameter γ is the specific rate at
which infected individuals recover from the disease.

Let us consider an epidemic outbreak in a population where, at the initial time, only
a few individuals are infected. The initial conditions are

S(0) ≈ N, I(0) = N − S(0) ≈ 0, R(0) = 0.
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Figure 1.2: Epidemic trajectory

A typical trajectory of the system solution in the I-S phase plane is given in Fig.1.2.
From this curve, a fundamental observation is the existence of a Threshold Effect. The
maximum value of the curve occurs at S = γ/β. This means that an epidemic will start
and amplify only if S(0) ≈ N is larger than γ/β or equivalently if

R0 =
Nβ

γ
> 1.

Under this condition, the number of infectives will increase until the number of susceptibles
is reduced to γ/β and will decrease thereafter. Thus the number R0 represents a threshold
for an epidemic to occur. In the literature, this number is also called Basic Reproduction
Ratio because it represents the average number of susceptibles which are contaminated by
one infective.

Dividing equation (1.2) by equation (1.1), we obtain

dI

dS
=

(
γ

βS
− 1

)
.

Integrating this equation, we have

(1.4) I =
γ

β
logS − S + C with C ≈ N − γ

β
logN.

From this equation, we can compute the instantaneous maximum number of infectives
(see Fig.1.2) as

Imax = N

(
1− 1 + logR0

R0

)
Equation (1.4) also implies that I must vanish at some positive value of S. This means that
the trajectory terminates on the S-axis at a positive value as shown in Fig.1.2. Therefore,
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the epidemic terminates before all susceptibles have become infected and some individuals
escape the disease entirely. We can now determine how many susceptibles remain or
equivalently the final value R(∞) of the immune population size.

Dividing equation (1.2) by equation (1.3), we have

dS

dR
= −β

γ
S ⇒ S(R) = S(0)e

−β
γ
R ≈ Ne−

β
γ
R

Then

dR

dt
= γI = γ(N − S −R) = γ

(
N −Ne−

β
γ
R
)
.

Therefore

t→∞ =⇒ I → 0 =⇒ dR

dt
= 0

(1.5) =⇒ N
[
1− e−

β
γ
R(∞)

]
= R(∞)

Equation (1.5) has a unique solution R(∞) between 0 and N as long as R0 > 1. We
denote x = R(∞))/N the fraction the population that has contracted the disease before
the epidemic collapses. By solving (1.5), we have the following relation between R0 and
x:

R0 = − log(1− x)

x
.

An interesting application of the SIR model is reported in the book of Murray [1] on the
basis of influenza epidemic data in an English boarding school published in 1978 by The
British Medical Journal [2]. The epidemic lasted 22nd January to 4th February 1978. A
large fraction of the N = 763 boys in the school were infected and are represented by dots
in Fig.1.3. The curves in the figure represent solutions of the SIR model fitted to the data
using least squares. The estimated parameter values are

βN = 1.66 per day,
1

γ
= 2.2 days, R0 = 3.65.

1.3 Temporary immunity : the SIRS model for endemic
diseases

In this section, we describe how the basic Kermack-McKendrick model is modified in or-
der to describe how a disease in a population can persist when the immunity of recovered
individuals is temporary (and not permanent as we have assumed in the previous section).
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Figure 1.3: An influenza epidemic in an English boarding school in 1978 (reprinted from
[3], see also http://www.modelinginfectiousdiseases.org/)

S I R

Figure 1.4: SIRS compartmental diagram

This is illustrated with the SIRS compartmental diagram of Fig.1.4. An additional pa-
rameter δ is introduced in order to represent the specific rate of immunity loss. The SIRS
model is as follows.

(1.6)
dS

dt
= −βIS + δR,

(1.7)
dI

dt
= βIS − γI,

(1.8)
dR

dt
= γI − δR.

As above the total population N = S + I +R is constant (dN/dt = 0).
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This system has two equilibria which are the two possible constant solutions of equa-
tions (1.6)-(1.7)-(1.8). The first one is the disease free equilibrium :

S∗ = N, I∗ = 0, R∗ = 0.

The second one is the endemic equilibrium :

S∗ =
γ

β
, I∗ =

N −
(
γ

β

)
1 +

(γ
δ

) , R∗ =

N −
(
γ

β

)
1 +

(
δ

γ

) .

Obviously, the endemic equilibrium exists only if the numerators are strictly positive. This
implies that the following condition must hold :

R0 =
Nβ

γ
> 1.

Hence the condition for the existence of an endemic equilibrium in the SIRS model is in
agreement with the condition for an epidemic to occur in the SIR model.

In order to analyse the system trajectories and the equilibrium stability, we consider
the second order system obtained from equations (1.6)-(1.7) by substituting R = N−S−I:

dS

dt
= −βIS + δ(N − S − I),

dI

dt
= βIS − γI.

The Jacobian matrix of this system, evaluated at an equilibrium point (S∗, I∗) is

(1.9) J =

(
−(βI∗ + δ) −(βS∗ + δ)

βI∗ (βS∗ − γ)

)
.

An equilibrium is asymptotically stable if trace(J) < 0 and det(J) > 0. Otherwise it is
unstable.

For the disease free equilibrium (S∗ = N, I∗ = 0) we have

trace(J) = βN − γ − δ, det(J) = −δ(βN − γ)

Consequently

if R0 < 1, then trace(J) < 0, det(J) > 0 and the disease free equilibrium is stable,

if R0 > 1, then det(J) < 0 and the disease free equilibrium is unstable.

For the endemic equilibrium which exists only if R0 > 1, we have

trace(J) = −(βI∗ + δ) < 0, det(J) = βI∗(βS∗ + δ) = βI∗(γ + δ) > 0

Consequently the endemic equilibrium is necessarily stable when it exists.
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1.4 The SIR model with demography

We now reconsider the basic SIR model of Section 1.2 in the case where demographic effects
are taken into account. Therefore, as it is illustrated with the compartmental diagram of
Fig.1.5, births (or immigration) at the rate ν as well as deaths (or emigration) at the rate
µ are introduced in the model:

(1.10)
dS

dt
= νN − βIS − µS,

(1.11)
dI

dt
= βIS − γI − µI,

(1.12)
dR

dt
= γI − µR.

S I R

νN

µS µI µR

Figure 1.5: Compartmental diagram of the SIR model with birth (or immigration) and
mortality (or emigration).

In order to have a constant total population N = S + I + R (dN/dt = 0), we assume
that µ = ν. The system has two equilibria and we shall see that the analysis is quite
similar to the previous case. The first equilibrium is the disease free equilibrium :

S∗ = N, I∗ = 0, R∗ = 0.

The second equilibrium is the endemic equilibrium :

S∗ =
γ + µ

β
⇒ S∗

N
=
γ + µ

βN
=

1

R0
, I∗ =

µ(N − S∗)
βS∗

=
µ(R0 − 1)

β
.

Obviously, the endemic equilibrium exists only if S∗ < N and I∗ > 0 which means that,
as in the previous cases, the Basic Reproduction Ratio R0 must be greater than 1:

R0 =
Nβ

γ + µ
> 1.



12 LECTURE 1. INFECTIOUS DISEASES

The Jacobian matrix of the sub-system (1.10)-(1.11), evaluated at an equilibrium point
(S∗, I∗) is

(1.13) J =

(
−(βI∗ + µ) −βS∗

βI∗ βS∗ − γ − µ

)
.

It is readily checked that the disease free equilibrium (S∗ = N, I∗ = 0) is stable if R0 6 1
and unstable if R0 > 1.

For the endemic equilibrium which exists only if R0 > 1, we have

trace(J) = −(βI∗ + µ) = −µR0 < 0, det(J) = β2I∗S∗ = µ(γ + µ)(R0 − 1) > 0

Consequently the endemic equilibrium is necessarily stable when it exists. Moreover, the
endemic equilibrium is a focus if the following inequality holds:

4det(J) > (trace(J))2 ⇒ 4µ(γ + µ)(R0 − 1) > µ2R2
0.

and the trajectories exhibit oscillations as shown in Fig.

1.5 Variants and generalisations

1.5.1 SIR model with vaccination

In this section, we explore how the SIR model of the previous section can be modified in
order to explain how epidemic diseases can be eradicated by vaccination. A new parameter
σ is introduced in the model which represents the specific vaccination rate of the newborns.
The model is now written as follows.

(1.14)
dS

dt
= (µ− σ)N − βIS − µS,

(1.15)
dI

dt
= βIS − γI − µI,

(1.16)
dR

dt
= γI − µR.

The disease free equilibrium is:

S∗ = (1− σ

µ
)N = (1− p)N, I∗ = 0

where p = σ/µ is the fraction of the newborn population which is vaccinated. The endemic
equilibrium is

S∗ =
γ + µ

β
, I∗ =

µ(N − S∗)− σN
βS∗

.
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Table 1.1: Estimates of R0 and of the corresponding vaccinated fraction p of the population
to achieve eradication.

Estimate of Minimal p (%)
Disease Threshold R0 for eradication

Smallpox 4 75

Measles 13 92

Whooping cough 13 92

Chicken pox 10 90

Diphteria 5 80

Poliomyelitis 6 83

The disease is eradicated if the disease free equilibrium is the only possible stable equi-
librium and if the endemic equilibrium does not exist. This is achieved if the following
condition holds:

p =
σ

µ
> (1− 1

R0
).

It is remarkable that not everybody has to be vaccinated in order to prevent an endemic
disease. This is called herd immunity. Typical examples of R0 values and the correspond-
ing critical level of vaccination are given in Table 1.1. It can be seen that the critical
level of vaccination is about 80% only for severe diseases like smallpox and polyomelithis
which have been eradicated in developped countries, while it is much higher for childhood
diseases like measles and whooping cough (about 92%) which are fortunately much less
severe.

1.5.2 SEIR model with a latent period

A latent period is a phase of the disease where individuals are already infected by the
pathogens but not yet infectious (i.e. cannot yet transmit the disease to other people).
The compartmental diagram is extended with an additional E compartment representing
the ”exposed” fraction of the population during the latent period as shown in Fig.1.6. An
additionnal parameter η is introduced which represents the specific transfer rate from E
to I. The derivation of the model equations is left as an exercise. For this model, the
threshold parameter is

R0 =
βN

γ + µ

η

η + µ
.

1.5.3 Age structured SIR model

A very relevant issue is obviously to extend the basic SIR model to heterogeneous popula-
tions. There are infectious diseases (e.g. sexually transmitted diseases) where considering
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µS µI µR

µN

µE

ES I R

Figure 1.6: Compartmental diagram of the SEIR model with a latent period.

all susceptible and infected individuals as a single homogeneous group cannot sufficiently
capture the dynamics of disease propagation. Individuals may differ in characteristics
that are epidemiologically relevant. Traits as age, sex or genetic composition can influ-
ence susceptibility and infectivity of individuals. In order to account for such individual
characteristics, it is useful to extend the dimension of the system, either by considering
higher order systems of ordinary differential equations, or, in a more radical way, systems
of partial differential equations (PDEs). As a matter of illustration, we present here the
example of a PDE model which is derived under the assumption that individuals aging
matters.

In this type of models, the dependent variables S, I and R are functions of both
time and age. More precisely, the variable S(t, a) represents the age distribution of the
population of susceptible individuals at time t. This means that∫ a2

a1

S(t, a)da

is the number of susceptible individuals with ages between a1 and a2. Similar definitions
are introduced for the age distributions I(t, a) of Infected individuals and R(t, a) of recov-
ered individuals. Then a natural extension of equation (1.10) is to describe the dynamics
of S(t, a) by the following hyperbolic partial differential equation:

∂S

∂t
= −∂S

∂a
− µ(a)S − φ(t, a)S

φ(t, a) =

∫ ∞
0

β(a, b)I(t, b)db

where β(a, b) denotes the transmission coefficient by contact between a susceptible having
age a and an infected having age b.

1.5.4 SIR model with time-varying parameters and periodic forcing

Various childhood diseases exhibit sustained periodic oscillations with pluriennal epidemic
cycles which are not explained by the models that we have presented so far. Typical
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examples are shown in Fig.1.7 for measles in Rekyavik (with a 4 year cycle) and chicken
pox in New York (with an annual cycle). During the last twenty years, numerous scientific

Figure 1.7: Observed notifications of measles in Rekyavik and chicken-pox in New-York
before the vaccination era (Reprinted from [6])

studies have demonstrated that seasonal variations in disease transmission rates appear
to be a major factor to explain sustained epidemic cycles. This effect of seasonality is
illustrated in Fig.1.8 with the trajectory of a simple SIRD model where the transmission
coefficient β is an annual sinusoidal forcing function

β(t) = β0
[
1 + β1 cos(2πt)

]
with the time t in years and β1 = 0.2, (i.e. a 20% seasonal variation). It can be seen,
in this example, that the annual forcing induces biennal epidemics. In fact, by changing
the value of the birth-mortality rate quadriennal epidemics that are reminiscent to the
observed data for Rekyavik in Fig.1.7 could be induced as well.

Now, if in addition to seasonal variations of transmission rate, time varying birth rates
µ(t) are introduced in the model according to the real-life demography, then very realistic
simulations are achieved as illustrated in Fig.1.9. After 1950, we see sustained biennal
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(a) (b)

Figure 1.8: Impact of seasonal forcing on the SIRD model. (a) time evolution. (b) phase
plane trajectory (the square dot is the unforced equilibrium) (reprinted from [5]).

Figure 1.9: Observed measles data in London (circles) and corresponding simulation of
an SIR model (solid line) with annual forcing of β(t) and time varying birth rate µ(t)
(reprinted from [4]).

cycles. In contrast, the baby boom in the period 1945-1950 increases the recruitment of
susceptibles and induces annual epidemics (see [4] for more details).
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1.5.5 Modelling of vector-borne diseases

Vector-borne diseases constitute another clas of diseases where it is relevant to extend the
basic SIR model. A typical example is mosquito-borne diseases such as malaria, yellow
fever, dengue or chikungunya. In such diseases, susceptible humans are infected by the
parasite when they are bitten by infectious mosquitoes while the susceptible mosquitoes
become themselves infected when they bite infectious humans. Furthermore, the immunity
of recovered humans is generally temporary. It is therefore natural to consider two coupled
SIR-type models for the humans and for the mosquitoes as shown in Fig.1.10 where the
dotted lines represent the reciprocal infections between humans and mosquitoes. The
derivation of the corresponding equations is left as an exercice (an interesting reference is
[5]).

S I R

νN

µS µI µR

S I

Humans

Mosquitoes
νN

µS µI

Figure 1.10: Compartmental diagram for mosquito-borne diseases.
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Lecture 2

Quantitative Modelling of
Metabolic Systems

2.1 Metabolic networks

The intracellular metabolism of living cells is usually represented by a metabolic network
under the form of a directed hypergraph1 that encodes a set of elementary biochemical
reactions taking place within the cell. In this hypergraph, the nodes represent the in-
volved metabolites and the edges represent the metabolic fluxes. A typical example of
metabolic network is shown in Fig.2.2. The metabolic network involves two groups of
nodes: boundary nodes and internal nodes. Boundary nodes have only either incoming or
outgoing edges, but not both together. Boundary nodes are further separated into input
(or initial) and output (or terminal) nodes. Input nodes correspond to substrates that
are only consumed but not produced. Output nodes correspond to final products that are
only produced but not consumed. In contrast, the internal (or intermediary) nodes are
the nodes that have necessarily both incoming and outgoing incident edges. They corre-
spond to intracellular metabolites that are produced by some of the metabolic reactions
and consumed by other reactions inside the cell.

It is assumed that the cells are cultivated in batch mode in a stirred tank reactor. The
dynamics of substrates and products in the bioreactor are represented by the following
basic differential equations:

ds(t)

dt
= −vs(t)X(t)

(2.1a)

dp(t)

dt
= vp(t)X(t)

(2.1b)

where X(t) is the biomass concentration in the culture medium, s(t) is the vector of
substrate concentrations, p(t) the vector of product concentrations, vs(t) the vector of

1A hypergraph is a generalization of a graph, where edges can connect any number of vertices.

19
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specific uptake rates and vp(t) the vector of specific production rates. (From now on, the
time index “t” will be omitted).

Obviously, the specific rates vs and vp are not independent. They are quantitatively
related through the intracellular metabolism represented by the metabolic network. In
order to explicit this relation, the quasi steady-state paradigm of metabolic flux analysis
(MFA) is adopted (e.g. [17]). This means that for each internal metabolite of the network,
it is assumed that the net sum of production and consumption fluxes, weighted by their
stoichiometric coefficients, is zero. This is expressed by the algebraic relation:

(2.2) Nv = 0 v > 0

where v = (v1, v2, . . . , vm)T is the m-dimensional vector of fluxes and N = [nij ] is the
n ×m stoichiometric matrix of the metabolic network (m is the number of fluxes and n
the number of internal nodes of the network). More precisely, a flux vj denotes the rate of
reaction j and a non-zero nij is the stoichiometric coefficient of metabolite i in reaction j.

2.2 Elementary pathways and input-output bioreactions

For a given metabolic network, the set S of admissible flux distributions is the set of
vectors v that satisfy the finite set (2.2) of homogeneous linear equalities and inequalities.
Each admissible v must necessarily be non-negative and belong to the kernel of the matrix
N. Hence the set S is the pointed polyhedral cone which is the intersection of the kernel of
N and the nonnegative orthant. This implies that any flux distribution v can be expressed
as a non-negative linear combination of a set of vectors ei which are the edges (or extreme
rays) of the polyhedral cone and form therefore a unique convex basis (see e.g. [19]) of the
flux space:

(2.3) v = w1e1 + w2e2 + · · ·+ wpep wi > 0.

The m× p non-negative matrix E with column vectors ei obviously satisfies NE = 0 and
(2.3) is written in matrix form as

(2.4) v = Ew with w , (w1, w2, . . . , wp)
T .

From a metabolic viewpoint, the vectors ei of the convex basis encode the simplest
metabolic paths that connect the substrates (input nodes) to the products (output nodes).
More precisely, the non-zero entries of a basis vector ei enumerate the fluxes of a sequence
of biochemical reactions starting at one or several substrates and ending at one or several
products. These simple pathways between substrates and products are called extreme
pathways (ExPa) or elementary (flux) modes (EM) of the network ([16] and [9]). Since
the intermediary reactions are assumed to be at quasi steady-state, a single macroscopic
bioreaction is then readily defined from an elementary flux mode by considering only the
involved initial substrates and final products.

Let us now come back to the basic model (2.1) in order to elucidate the relation
between the specific consumption and production rates vs and vp induced by the metabolic
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network. Obviously vs and vp are linear combinations of some of the metabolic fluxes.
This is expressed by defining appropriate matrices Ns and Np such that

(2.5) vs = Nsv vp = Npv.

From (2.4) and (2.5), it follows that the model (2.1) is rewritten as:

(2.6)
d

dt

(
s
p

)
=

(
−Ns

Np

)
EwX = KewX

where

(2.7) Ke ,

(
−Ns

Np

)
E.

is the stoichiometric matrix of the set of bioreactions encoded by the EFMs. Equation (2.6)
can be regarded as the dynamic model of a bioprocess governed by the bioreactions with
stoichiometry Ke and specific reaction rates w. In other terms, each weighting coefficient
wi in (2.3) can equally be interpreted as the specific reaction rate of the bioreaction
encoded by the EFM ei : the flux vector v is thus a linear combination of EFMs whose
non-negative weights are the macroscopic bioreaction rates wi.

However an important issue concerns the number of distinct bioreactions that are
generated when computing the EFMs. It may become very large because it combinatorially
increases with the size of the underlying metabolic network 2. Furthermore, even when
the number of EFMs is rather limited, it appears that the resulting set of bioreactions
can be significantly redundant for the design of a dynamic model that fully explains the
available experimental data. There is therefore clearly a need for reducing the model size
as much as possible and trying to determine a minimal subset of bioreactions that are able
to fully describe the available experimental data.

2.3 Metabolic flux analysis

Metabolic flux analysis (MFA) is the exercise of calculating the admissible flux distribu-
tions v that satisfy the steady state balance equation Nv = 0 together with an additional
set of linear constraints added by using experimental measurements. Here we consider the
case where the measurements are collected in a vector vm which is a linear function of the
unknown flux distribution v and is expressed as

(2.8) vm = Nmv

2The Double Description (DD) method ([8]) is the simplest known algorithm for computing the convex
basis of the solution space (see [3] for a review). In the context of metabolic networks various refinements
have been proposed that differ from the original DD algorithm mainly by their initialization. A first specific
algorithm was presented by [15]. Recently, the implementation of the DD method for metabolic networks
has received various further improvements (e.g. [4] and [6]).
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with Nm being a known dim{vm} × n matrix. Then, from equations (2.2)-(2.8), we have
the following fundamental equation of metabolic flux analysis

(2.9) Σ

(
v
1

)
= 0 with Σ ,

(
N 0

Nm −vm

)
and v > 0.

For a given metabolic network and a given set of measurements, the solution of the
MFA problem is defined as the space F of admissible flux distributions. i.e. the set of
non-negative vectors v that satisfy the finite set (2.9) of homogeneous linear equalities and
inequalities. Each admissible v must be such that the non-negative vector (vT 1) belongs
to the kernel of the matrix Σ. Hence, as emphasized in [11, Chapter 4]-[13], the set F is
a polytope in the positive orthant Rm

+ . This means that any admissible flux distribution
v can be expressed as a convex combination of a set of q non-negative basis vectors fi
which are the edges (or extreme rays) of this polyhedral cone and form therefore a unique
convex basis of the flux space F . In other words, the solution of the MFA problem is the
admissible flux space F defined as

(2.10) F ,
{
v : v =

q∑
i=1

ωifi, ωi > 0,

q∑
i=1

ωi = 1
}
.

The smallest “hyper-rectangular” set that encloses F in Rm is called the flux spectrum
(e.g. [7]) and is defined as the set

Fo =
{
v : vmin

i 6 vi 6 vmax
i

}
where the bounds vmin

i and vmax
i are defined from the convex basis vectors as follows:

vmin
i , min

{
fki, k = 1, . . . , p

}
, vmax

i , max
{
fki, k = 1, . . . , p

}
,

where fki denotes the i-th element of the basis vector fk.

2.4 Case study: Application to CHO cells

As a matter of illustration and motivation to the methodology presented above, we consider
the example of chinese hamster ovary (CHO) cells cultivated in batch mode in stirred flasks
in a serum-free medium ([1]). During the growth phase, the cell metabolism is described
by the metabolic network presented in Fig.2.2. This network describes only the part of the
metabolism concerned with the utilisation of the two main energetic nutrients (glucose and
glutamine). The metabolism of the amino acids provided by the culture medium is not
considered. The network involves the Glycolysis pathway, the Pentose-Phosphate pathway
and the Krebs cycle. Moreover it is assumed that a part of the glutamine is used for the
making of nucleotides which are lumped into a single species with equal shares of purines
and pyrimidines (see [11] and [14] for further motivation and details).

In this network, there are

• two input substrates : Glucose and Glutamine;
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• five output products : Lactate, CO2, NH4, Alanine and Nucleotides;

• n = 18 internal metabolites : Glucose-6-phosphate, Fructose-6-Phosphate, Dihydroxy-
acetone-phosphate, Glyceraldehyde-3 phosphate, Pyruvate, Acetyl-coA, Citrate, α-
ketoglutarate, Fumarate, Malate, Oxaloacetate, Aspartate, Glutamate, CO2, Ribose-
5-Phosphate, Ribulose-5-Phosphate, Xylose-5-Phosphate, Erythrose-4-Phosphate;

• m = 24 metabolic fluxes denoted v1 to v24 in Fig. 2.2.

Without loss of generality, all the intermediate metabolites that are not located at
branch points are omitted from the network. The stoichiometric matrix N is given in
Table 2.2. The matrices Ns and Np are given in Tables 2.3 and 2.4 respectively.

This network has eleven elementary modes given in Table 2.6 (computed with META-
TOOL3) and from which the following set of input/output bioreactions can be derived:

(e1) Glucose → 2 Lactate

(e2) 2 Glucose + 3 Glutamine → Alanine + Nucleotide + 9 CO2

(e3) Glutamine → Lactate + 2 NH4 + 2 CO2

(e4) Glutamine → 2 NH4 + 5 CO2

(e5) Glutamine → Alanine + NH4 + 2 CO2

(e6) 2 Glucose + 3 Glutamine → Lactate + Alanine + Nucleotide + 6 CO2

(e7) 3 Glucose → 5 Lactate + 3 CO2

(e8) 2 Glucose + 3 Glutamine → 2 Lactate + Nucleotide + NH4 + 6CO2

(e9) Glucose → 6 CO2

(e10) Glucose → 6 CO2

(e11) 2 Glucose + 3 Glutamine → Nucleotide + NH4 + 12 CO2

We observe that the two bioreactions corresponding to elementary modes e9 and e10
are identical (Glucose → 6 CO2) although the two concerned elementary pathways are
different.

It can be checked that the stoichiometric matrix of this set of bioreactions is given by
the matrix product

Ke ,

(
−Ns

Np

)
E.

Moreover, there are five measured extra-cellular species : the two substrates (Glucose
and Glutamine) and three excreted products (Lactate, Ammonia, Alanine). The values of
the average specific uptake and excretion rates (vector vm), computed by linear regression
during the growth phase (see [12]), are given in Table 2.1. The corresponding matrix Nm

is given in Table 2.5. We observe that in this case:

the matrix Nm is a sub-matrix of

(
Ns

Np

)
.
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Figure 2.1: Metabolic network : rectangular boxes represent input/ouput nodes, elliptic
boxes represent internal nodes. (The numbers along some arrows indicate stoichiometric
coefficients).
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Glucose Glutamine Lactate NH4 Alanine

4.0546 1.1860 7.3949 0.9617 0.2686

Table 2.1: Specific uptake and excretion rates (mM/(d×109cells)).

The admissible flux space F is generated by a convex basis that includes p = 2 basis
vectors that are given in Table 2.7 (computed with METATOOL). Obviously the values
given in this Table are also the limiting values vmin

i and vmax
i of the flux spectrum. It is

remarkable that, although the MFA problem is here underdetermined, the values of the
fluxes v1, v6, v7, v14, v15, v16, v17, v18 and v19 are exactly given without uncertainty. This
is obviously normal for the three fluxes v1 (Glucose), v6 (Lactate), v7 (Alanine) that are
constrained to be equal to their measured values. But we observe that it is also the case
for other fluxes like for instance the production fluxes of Nucleotides v18 and CO2 v19
that are not measured at all, and also for some intracellular fluxes like for instance the
anaplerotic flux v14.

2.5 Minimal dynamical bioreaction models

Here we focus on the special case where the MFA system (2.9) is exactly determined and
and has a single well-defined solution which can obviously be decomposed in the convex
basis as expressed by (2.3). But even if the flux vector v satisfying equation (2.9) is
unique, it must be emphasized that the decomposition of v in the convex basis {ei} is not
unique which is the algebraic expression of the fact that the set of bioreactions used in the
dynamical model (2.6) is redundant. Using (2.4), system (2.9) is equivalent to the system:

(2.11)

(
NE

NmE

)
w =

(
0

vm

)
w > 0.

We observe that the first equation NEw = 0 is trivially satisfied independently of w since
NE = 0 by definition. Hence, system (2.11) may be reduced to the second equation:

NmEw = vm w > 0.

or equivalently:

(2.12)
(

NmE −vm

)( w
1

)
= 0 w > 0.

In this form, it is clear that the set of admissible reaction rate vectors w that satisfy (2.12)
also constitutes a convex polytope. Therefore there exists a set of appropriate edge vectors
hi such that any arbitrary convex combination of the form:

(2.13) w =
∑
i

zihi zi > 0
∑
i

zi = 1

3http://pinguin.biologie.uni-jena.de/bioinformatik/networks/ (see also [10]).
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Glucose-6-P 1 -1 0 0 0 0 0 0 0 0 0 0
Fructose-6-P 0 1 -1 0 0 0 0 0 0 0 0 0
Glyc-3-P 0 0 1 1 -1 0 0 0 0 0 0 0
Dihydroxy-A-P 0 0 1 -1 0 0 0 0 0 0 0 0
Pyruvate 0 0 0 0 1 -1 -1 -1 0 0 0 0
Acetyl-coA 0 0 0 0 0 0 0 1 -1 0 0 0
Citrate 0 0 0 0 0 0 0 0 1 -1 0 0
α-ketoglutarate 0 0 0 0 0 0 1 0 0 1 -1 0
Fumarate 0 0 0 0 0 0 0 0 0 0 1 -1
Malate 0 0 0 0 0 0 0 0 0 0 0 1
Oxaloacetate 0 0 0 0 0 0 0 0 -1 0 0 0
Glutamate 0 0 0 0 0 0 -1 0 0 0 0 0
Aspartate 0 0 0 0 0 0 0 0 0 0 0 0
Ribulose-5-P 0 0 0 0 0 0 0 0 0 0 0 0
Ribose-5-P 0 0 0 0 0 0 0 0 0 0 0 0
Xylose-5-P 0 0 0 0 0 0 0 0 0 0 0 0
Erythrose-4-P 0 0 0 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 1 0 1 1 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24
Glucose-6-P 0 0 0 0 0 0 0 -1 0 0 0 0
Fructose-6-P 0 0 0 0 0 0 0 0 0 0 1 1
Glyc-3-P 0 0 0 0 0 0 0 0 0 0 1 0
Dihydroxy-A-P 0 0 0 0 0 0 0 0 0 0 0 0
Pyruvate 0 1 0 0 0 0 0 0 0 0 0 0
Acetyl-coA 0 0 0 0 0 0 0 0 0 0 0 0
Citrate 0 0 0 0 0 0 0 0 0 0 0 0
α-ketoglutarate 0 0 1 1 0 0 0 0 0 0 0 0
Fumarate 0 0 0 0 0 1 0 0 0 0 0 0
Malate -1 -1 0 0 0 0 0 0 0 0 0 0
Oxaloacetate 1 0 -1 0 0 0 0 0 0 0 0 0
Glutamate 0 0 -1 -1 1 3 0 0 0 0 0 0
Aspartate 0 0 1 0 0 -2 0 0 0 0 0 0
Ribulose-5-P 0 0 0 0 0 0 0 1 -1 -1 0 0
Ribose-5-P 0 0 0 0 0 -2 0 0 1 0 0 -1
Xylose-5-P 0 0 0 0 0 0 0 0 0 1 -1 -1
Erythrose-4-P 0 0 0 0 0 0 0 0 0 0 -1 1
CO2 0 1 0 0 0 0 -1 1 0 0 0 0

Table 2.2: Stoichiometric Matrix N
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Glucose 1 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 0 0 0 0 0 0 0 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24
Glucose 0 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 1 3 0 0 0 0 0 0

Table 2.3: Matrix Ns

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Lactate 0 0 0 0 0 1 0 0 0 0 0 0
NH4 0 0 0 0 0 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 1 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0 0 0 0
Nucleotides 0 0 0 0 0 0 0 0 0 0 0 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24
Lactate 0 0 0 0 0 0 0 0 0 0 0 0
NH4 0 0 0 1 1 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 0 0 0 0 0 0
CO2ext 0 0 0 0 0 0 1 0 0 0 0 0
Nucleotides 0 0 0 0 0 1 0 0 0 0 0 0

Table 2.4: Matrix Np

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Glucose 1 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 0 0 0 0 0 0 0 0
Lactate 0 0 0 0 0 1 0 0 0 0 0 0
NH4 0 0 0 0 0 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 1 0 0 0 0 0

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24
Glucose 0 0 0 0 0 0 0 0 0 0 0 0
Glutamine 0 0 0 0 1 3 0 0 0 0 0 0
Lactate 0 0 0 0 0 0 0 0 0 0 0 0
NH4 0 0 0 1 1 0 0 0 0 0 0 0
Alanine 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.5: Measurement matrix Nm
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11
v1 1 2 0 0 0 2 3 2 1 3 2
v2 1 0 0 0 0 0 0 0 1 0 0
v3 1 0 0 0 0 0 2 0 1 2 0
v4 1 0 0 0 0 0 2 0 1 2 0
v5 2 0 0 0 0 0 5 0 2 5 0
v6 2 0 1 0 0 1 5 2 0 0 0
v7 0 1 0 0 1 1 0 0 0 0 0
v8 0 1 0 1 0 0 0 0 2 5 2
v9 0 1 0 1 0 0 0 0 2 5 2
v10 0 1 0 1 0 0 0 0 2 5 2
v11 0 4 1 2 1 3 0 3 2 5 5
v12 0 5 1 2 1 4 0 4 2 5 6
v13 0 3 0 1 0 2 0 2 2 5 4
v14 0 2 1 1 1 2 0 2 0 0 2
v15 0 2 0 0 0 2 0 2 0 0 2
v16 0 0 1 1 0 0 0 1 0 0 1
v17 0 0 1 1 1 0 0 0 0 0 0
v18 0 1 0 0 0 1 0 1 0 0 1
v19 0 9 2 5 2 6 3 6 6 18 12
v20 0 2 0 0 0 2 3 2 0 3 2
v21 0 2 0 0 0 2 1 2 0 1 2
v22 0 0 0 0 0 0 2 0 0 2 0
v23 0 0 0 0 0 0 1 0 0 1 0
v24 0 0 0 0 0 0 1 0 0 1 0

Table 2.6: Matrix E of elementary modes.

is necessarily an admissible w satisfying (2.12). The convex basis vectors hi have an
important and critical property : the number of non-zero entries is at most equal to the
number of measured uptake and excretion rate i.e. the size of the vector vm (see [3] and
Section 3.5 in [11]). From a metabolic viewpoint, each vector hi is a particular solution
w of (2.12), or equivalently a particular way (among an infinity) of computing the flux
distribution v that satisfies (2.11):

(2.14) v = Ehi ∀i.

Of course in this expression, the non-zero entries of the vector hi are interpreted as the
weights of the respective contributions of the corresponding EFMs in the computation of
the flux distribution v. But, at the same time, they can also be interpreted as being the
specific rates of the bioreactions that are encoded by the EFMs and are involved in the
dynamic model (2.6).

Hence each convex basis vector hi brings two different pieces of information. First
it tells which EFMs and consequently which bioreactions are sufficient to explain the
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f1 f2
v1 4.0546 4.0546
v2 3.5979 2.1279
v3 3.5979 3.1079
v4 3.5979 3.1079
v5 7.1958 6.7058
v6 7.3949 7.3949
v7 0.2686 0.2686
v8 0.4900 0.0
v9 0.4900 0.0
v10 0.4900 0.0
v11 1.6760 1.1860
v12 1.9043 1.4143
v13 0.9467 0.4567
v14 0.9577 0.9577
v15 0.4567 0.4567
v16 0.4607 0.4607
v17 0.5010 0.5010
v18 0.2283 0.2283
v19 3.8420 3.8420
v20 0.4567 1.9267
v21 0.4567 0.9467
v22 0.0 0.9800
v23 0.0 0.4900
v24 0.0 0.4900

Table 2.7: Convex basis of the flux space (mM/(d×109cells))

measured uptake and excretion rates vm. These EFMs are designated by the position of
the non-zero entries of hi. Secondly, the value of each non-zero entry of hi is the value of
the reaction rate of the corresponding bioreaction.

For each basis vector hi, we can then define a selection matrix Si that encodes the
corresponding selection of bioreactions. Then the dynamical model (2.6) is reduced to a
minimal form:

(2.15)
d

dt

(
s
p

)
= KiriX

where Ki , KeSi and ri , (Si)
Thi respectively denote the stoichiometric matrix and the

vector of the specific reaction rates of the selected minimal set of bioreactions.

Therefore, we see that the computation of the convex basis vectors hi provides the
tool for determining all the minimal dynamical models that are both compatible with the
metabolic network and the available measurements. Furthermore, it is worth to clearly
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e1 e2 e3 e4 e5 e6 e7 e8 e9
v1 1 1 0 0 0 2 2 2 2
v2 1 1 0 0 0 0 0 0 0
v3 0 0 0 0 0 2 2 2 2
v4 1 1 0 0 0 0 0 0 0
v5 2 2 0 0 0 0 0 0 0
v6 2 0 0 1 0 2 1 0 0
v7 0 0 1 0 0 0 1 1 0
v8 0 2 0 0 1 0 0 1 2
v9 0 2 0 0 1 0 0 1 2
v10 0 2 0 0 1 0 0 1 2
v11 0 2 1 1 2 3 3 4 5
v12 0 2 1 1 2 4 4 5 6
v13 0 2 0 0 1 2 2 3 4
v14 0 0 1 1 1 2 2 2 2
v15 0 0 0 0 0 2 2 2 2
v16 0 0 0 1 1 1 0 0 1
v17 0 0 1 1 1 0 0 0 0
v18 0 0 0 0 0 1 1 1 1
v19 0 6 2 2 5 6 6 9 12

Table 2.8: Matrix E of elementary flux modes.

understand that all of these minimal models are totally equivalent because they all
provide exactly the same internal flux distribution and the same dynamical
simulation results.

2.5.1 Illustration with the case-study of CHO cells

In this example, we consider a slightly simplified metabolic network where the PPE path-
way is neglected. The network is shown in Fig. 2.2. It has nine EFMs that are collected
in matrix E (see Table 2.8) and from which the following set of input/output bioreactions
is readily derived:

(b1) Glc → 2 Lac
(b2) Glc → 6 CO2

(b3) Gln → Ala + NH4 + 2 CO2

(b4) Gln → Lac + 2 NH4 + 2 CO2

(b5) Gln → 2 NH4 + 5 CO2

(b6) 2 Glc + 3 Gln → 2 Lac + Nucl + NH4 + 6CO2

(b7) 2 Glc + 3 Gln → Lac + Ala + Nucl + 6 CO2

(b8) 2 Glc + 3 Gln → Ala + Nucl + 9 CO2
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Figure 2.2: Metabolic network for the special case where the PPE pathway is neglected.
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(b9) 2 Glc + 3 Gln → Nucl + NH4 + 12 CO2

In this special case, the system (2.9) is a system of 19 equations with 19 unknowns
which is uniquely determined. The solution is given in Table 2.9 and corresponds to the
first column of Table 2.7. We are then in a position to compute the set of vectors hi and
the result is shown in Table 2.10. We first observe that there are 12 different vectors hi

in this Table. They all produce exactly the same value of the flux distribution v of Table
2.9 when premultiplied by the matrix E as expected according to (2.14). Furthermore, as

v1 v2 v3 v4 v5
4.0546 3.5979 0.4567 3.5979 7.1958

v6 v7 v8 v9 v10
7.3949 0.2686 0.4900 0.4900 0.4900

v11 v12 v13 v14 v15
1.6760 1.9043 0.9467 0.9577 0.4567

v16 v17 v18 v19
0.4607 0.5010 0.2283 3.8420

Table 2.9: Metabolic fluxes.

predicted by the theory, we also observe that there are exactly 5 non-zero entries in each
vector hi. From these observations, we can conclude that there are 12 different equivalent
minimal dynamical models of the form (2.15) for the considered process. For each of these
models, Table 2.10 tells us which 5 bioreactions (among the set (b1)-(b9)) are used and
the value of their reaction rates.

The design of a particular dynamic bioreaction model is finally completed by chos-
ing arbitrarily any vector hi in Table 2.10 and assuming that the selected bioreactions
have Michaelis-Menten kinetics with maximum specific rates µi given by the non-zero en-
tries of hi. This automatically gives by construction a model which necessarily produces
simulations that fit the experimental data with a high accuracy as shown in Fig. 2.3.
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h1 h2 h3 h4 h5 h6

(b1) 3.5833 3.4671 3.3529 3.5979 3.4691 3.5979
(b2) 0.0146 0.1308 0.2450 0.0 0.1288 0.0
(b3) 0.0403 0.0403 0.0403 0.0403 0.2686 0.2686
(b4) 0.0 0.4607 0.4607 0.0 0.0 0.0
(b5) 0.4607 0.0 0.0 0.4607 0.2324 0.2324
(b6) 0.0 0.0 0.0 0.0 0.2283 0.0995
(b7) 0.2283 0.0 0.2283 0.1991 0.0 0.0
(b8) 0.0 0.2283 0.0 0.0293 0.0 0.0
(b9) 0.0 0.0 0.0 0.0 0.0 0.1288

h7 h8 h9 h10 h11 h12

(b1) 3.5979 3.5979 3.3529 3.5979 3.5813 3.5979
(b2) 0.0 0.0 0.2450 0.0 0.0167 0.0
(b3) 0.1398 0.0403 0.2686 0.0695 0.2686 0.2686
(b4) 0.0 0.1991 0.2324 0.0 0.2324 0.1991
(b5) 0.3612 0.2617 0.0 0.4314 0.0 0.0333
(b6) 0.0995 0.0 0.2283 0.0 0.0 0.0
(b7) 0.0 0.0 0.0 0.1991 0.0 0.0
(b8) 0.1288 0.2283 0.0 0.0 0.0 0.0
(b9) 0.0 0.0 0.0 0.0293 0.2283 0.2283

Table 2.10: Specific reaction rates for the 12 equivalent minimal dynamic models (mM/(d
×109cells)
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Figure 2.3: Simulation results with a minimal dynamical model. The black dots are the
experimental data. The solid lines are the solutions of the simulation
.
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Engineering, Université catholique de Louvain, November 2006.

[12] A. Provost and G. Bastin. Dynamical metabolic modelling under the balanced growth
condition. Journal of Process Control, 14(7):717-728, 2004.

[13] A. Provost and G. Bastin. Metabolic flux analysis: an approach for solving non-
stationary underdetermined systems. In CD-Rom Proceedings 5th MATHMOD Con-
ference, Paper 207 in Session SP33, Vienna, Austria, 2006.

[14] A. Provost, G. Bastin, S.N. Agathos, and Y-J. Schneider. Metabolic design of macro-
scopic bioreaction models : Application to Chinese hamster ovary cells. Bioprocess
and Biosystems Engineering, 29(5-6):349-366, 2006.

[15] R. Schuster and S. Schuster. Refined algorithm and computer program for calculating
all non-negative fluxes admissible in steady states of biochemical reaction systems
with or without some flux rates fixed. Computer Applications in the Biosciences,
9(1):79-85, February 1993.

[16] S. Schuster, D.A. Fell, and T. Dandekar. Detection of elementary flux modes in bio-
chemical networks : a promising tool for pathway analysis and metabolic engineering.
Trends in Biotechnology, 17(2):53-60, February 1999.

[17] G. Stephanopoulos, J. Nielsen, and A. Aristidou. Metabolic Engineering : Principles
and Methodologies. Academic Press, San Diego, 1998.

[18] R. Urbanczik. Enumerating constrained elementary flux vectors of metabolic net-
works. IET Systems Biology, 1(5):274-279, 2007.

[19] H. Weyl. The elementary theory of convex polyhedra. In Contributions to the Theory
of Games Vol. I, Annals of Mathematical Studies, pages 3-18, Princeton, New Jersey,
1950. Princeton University Press.

[20] F. Zhou, J-X. Bi, A-P. Zeng, and J-Q. Yuan. A macrokinetic and regulator model for
myeloma cell culture based on metabolic balance of pathways. Process Biochemistry,
41:2207-2217, 2006.



Lecture 3

Mathematical Models in
Population Genetics

3.1 Introduction

This lecture gives an elementary introduction to mathematical models of population genet-
ics. “Population genetics is the science of genotypic variation in interbreeding populations.
It is a quantitative theory which is based on models that translate precise assumptions
about mating patterns and the action of selection into mathematical equations for the
evolution of genotype frequencies1”.

3.2 Mendelian genetics

In living organisms, reproduction involves the passing of a genetic code from generation
to generation. The code is carried on chromosomes. Many animal and plant cells are
diploid : they have chromosomes arranged in matched pairs, each member of the pair
being a version of the same chromosome (with the possible exception of the chromosome
determining sex). Genes are segments of chromosomes that code for specific heritable
characters (like the texture and the colour of the peas in Mendel’s experiments). The genes
may appear in variant forms that are called alleles (thus the gene for pea color has yellow
and green alleles). In sexual reproduction, the two chromosomes of each pair are inherited
from the two parents (one from each parent). In monoceious populations, individuals
house both male and female organs, and any individual can mate with any other or even
with itself: plants with flowers that both contain an ovum and produce pollen provide a
common example. In dioceious populations, such as humans, individuals are either male
or female, but not both.

Here we consider the case of a monoceious diploid population and we denote two
possible alleles of a certain gene as A and B. The genotype of an individual with respect
to this gene is the set of the two alleles it carries. There are thus three possible genotypes:

1From [1], Chapter 1, Introduction
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AA, AB, BB (note that AB and BA are indistinguishable). Assuming perfect random
mating in an infinite population, one can determine the probability of a given match to
give an offspring with a given genotype. The result is given in Table 3.1.

Offspring
Parents AA AB BB

AA x AA 1 0 0
AA x AB 1/2 1/2 0
AA x BB 0 1 0
AB x AB 1/4 1/2 1/4
AB x BB 0 1/2 1/2
BB x BB 0 0 1

Table 3.1: Probabilities of offspring of a given genotype resulting from the mating of two
given parent genotypes. For example, the mating of an AA with an AB will give, on the
average, 50% of AA and 50% of AB.

3.3 Hardy-Weinberg equilibrium

Our concern is now to describe the change, in a population, of the genotype frequencies
from generation to generation. In order to avoid useless complications, we assume no
overlapping of the generations (as it is the case, for example, with annual plants) : mat-
ings occur only between individuals of the same generation. We introduce the following
notations:

X = frequency of genotype AA,

2Y = frequency of genotype AB,

Z = frequency of genotype BB.

Obviously we have X + 2Y + Z = 1.

Let Xn, 2Yn and Zn denote these frequencies at the n-th generation. Then, using the
Mendelian probabilities of Table 3.1, we have at the n+ 1-th generation:

Xn+1 = X2
n +

1

2
(4XnYn) +

1

4
(4Y 2

n ) = (Xn + Yn)2

2Yn+1 =
1

2
(4XnYn) + 2XnZn +

1

2
(4Y 2

n ) +
1

2
(4YnZn) = 2(Xn + Yn)(Yn + Zn)

Zn+1 = Z2
n +

1

2
(4ZnYn) +

1

4
(4Y 2

n ) = (Zn + Yn)2.
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Then at the next n+ 2-th generation, we have:

Xn+2 =
[
Xn+1 + Yn+1

]2
=
[
(Xn + Yn)2 + (Xn + Yn)(Yn + Zn)

]2
=
[
(Xn + Yn)2 + (Xn + Yn)(Yn + 1−Xn − 2Yn)

]2
= (Xn + Yn)2

= Xn+1

Zn+2 = Zn+1 by symmetry.

Yn+2 = Yn+1 because X + 2Y + Z = 1

We conclude readily that, starting from any initial condition, an equilibrium is reached in
exactly one generation and remain equal for all further generations. This is the so-called
Hardy-Weinberg equilibrium which satisfies the following two relations:

(3.1)

Hardy-Weinberg equilibrim

Y 2 = XZ
X + 2Y + Z = 1

This result is obviously of great importance for the Darwinian theory since it explains why
random mating may indeed preserve the genetic diversity in a population. We remark also
that since the two equations (3.1) hold together, only one frequency is independent and
must be known (e.g. from experimental observations) in order to fully charaterize the
proportions of the three genotypes in the population.

The Hardy-Weinberg equilibrium can be generalized in various ways:

(1) to the case of more than two alleles of a given gene (like in the ABO blood system)
where the frequencies at the equilibrium satisfy the relations f2ij = 4fiifjj ;

(2) to the case of one gene with two alleles in a diocieous population where it can be
shown that the HW equilibrium is achieved in two generations (instead of one);

(3) to the case of overlapping generations where it can be shown that the HW equilibrium
is achieved asymptotically (not in finite time) though with a rather fast convergence.

3.4 Evolution dynamics

Evolution occurs when some of the underlying assumptions of the Hardy-Weinberg anal-
ysis are violated, for instance under selection, mutations or population migrations. Our
purpose, in this paragraph, is to analyse the evolution of the genotype frequencies in case
of selective fecondation, i.e. when the genotypes have different reproductive fitness. We
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introduce the following notations for the allele frequencies in the population.

p = X + Y = frequency of alleles A in the population,
q = 1− p = Y + Z = frequency of alleles B in the population.

It follows that the HW genotype frequencies can be expressed as well as follows:

X = p2 2Y = 2pq = 2p(1− p) Z = q2 = (1− p)2.

Let us compute the recurrence of p from generation to generation. We have

pn+1 = (Xn + Yn)2 + (Xn + Yn)(Yn + Zn),

= p2n + pnqn,

qn+1 = q2n + pnqn.

It follows that

pn+1 + qn+1 = p2n + 2pnqn + q2n = (pn + qn)2 = 1.

Now, let us assume that the genotypes have different reproductive fitness. Then the total
gene pool at the next generation is proportional to

(3.2) (1 + ρ)p2n + 2(1 + σ)pnqn + (1 + τ)q2n.

where the small parameters ρ, σ, τ represent the deviation with respect to the ideal sit-
uation (i.e. in case of selective fecondation when reproductive fitness differs between
genotypes). Similarly, the pool of alleles A is proportional to

(3.3) (1 + ρ)p2n + (1 + σ)pnqn.

Hence, we can compute the freqency pn+1 at the next generation under selective feconda-
tion as the ratio of (3.3) over (3.2):

pn+1 =
(1 + ρ)p2n + (1 + σ)pn(1− pn)

(1 + ρ)p2n + 2(1 + σ)pn(1− pn) + (1 + τ)(1− pn)2
,

which leads to the iteration

(3.4) pn+1 =
pn +

[
ρp2n + σpn(1− pn)

]
1 + ρp2n + 2σpn(1− pn) + τ(1− pn)2

.

We observe that, as expected, we have pn+1 = pn if ρ = σ = τ = 0 (no selection).
In order to find the relevant fixed points (or equilibria) of the iteration (3.4), we have

to find the values of p ∈ [0, 1] such that

p =
p+

[
ρp2 + σp(1− p)

]
1 + ρp2 + 2σp(1− p) + τ(1− p)2

= f(p).
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We can easily see that p = 0 and p = 1 are fixed points. If p 6= 0 we have

ρp2 + 2σp(1− p) + τ(1− p)2 − ρp− σ(1− p) = 0,

⇒ σ(1− p)(2p− 1) + τ(1− p)2 − ρp(1− p) = 0,

⇒ p(ρ− 2σ + τ) + σ − τ = 0.

We conclude that

p =
σ − τ

(σ − τ) + (σ − ρ)

is a third fixed point of the iteration (3.4) which belongs to [0, 1] if and only if

σ > max{ρ, τ} or σ < min{ρ, τ}.

The stability of the fixed points depends on the value of f ′(p). There are three possibilities.

• Case 1: ρ < σ < τ . In this case we have f ′(0) < 1 and f ′(1) > 1. This means that
p = 0 is stable and p = 1 is unstable. Allele A is favored by the natural selection.

• Case 2: τ < σ < ρ. Then f ′(0) > 1 and f ′(1) < 1, p = 0 is unstable and p = 1 is
stable. Allele B is favored by the natural selection.

• Case 3: σ > max{ρ, τ}. Then f ′(0) > 1 and f ′(1) > 1, p = 0 and p = 1 are both
unstable. The third fixed-point is stable. Both alleles coexist in the population.

• Case 4: σ < min{ρ, τ}. Then f ′(0) < 1 and f ′(1) < 1, p = 0 and p = 1 are both
stable. The third fixed-point is unstable. Depending of the initial conditions, either
A or B is favored by the natural selection.

3.5 References

[1] D. Ocone, Course Notes on Discrete and Probabilistic Models in Biology,
http://www.math.rutgers.edu/courses/338/coursenotes/coursetext.html

[2] W.J. Ewens, Population Genetics, Methuen, London (1969)
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Lecture 4

Modelling of within-host HIV
dynamics

4.1 The basic model

In the basic model of HIV dynamics, three species are taken into account: the uninfected
target cells (mainly a fraction of CD4+T cells), the infected cells and the blood free viruses.
The model is as follows (see e.g. [2], [5], [6]):

(4.1)
dT

dt
= λ− δTT − βV T,

(4.2)
dI

dt
= βV T − δII,

(4.3)
dV

dt
= pI − δV V.

In these equations, T denotes the density of susceptible target cells, I the density of
infected cells and V the viral concentration (also called viral load) at time t.

The target cells are assumed to be produced at the exogenous rate λ and to be infected
by the virus according to a simple mass-action principle with a proportionality coefficient
β. The free viruses are supposed to be produced by infected cells with a specific rate p.
The parameters δT , δI and δV are natural decay rates (death and/or degradation).

Remark : Simplified model. In some publications (e.g. [7]), a simplified model is
obtained by assuming that the virus concentration is just proportional to the infected cell
density, which corresponds to a quasi steady-state approximation of equation (4.3):

pI − δV V ' 0.
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Then the basic model reduces to

dT

dt
= λ− δTT − β̃IT,

dI

dt
= β̃IT − δII,

with β̃ , βp/δV .

4.2 Immune response

Cell-mediated immune response refers to the killing of infected CD4+T-cells by cytotoxic
T-cells (such as CD8T-cells). The simplest extension of the basic model is as follows (e.g.
[1], [9]):

dT

dt
= λ− δTT − βV T,

dI

dt
= βV T − kIC − δII,

dV

dt
= pI − δV V,

dC

dt
= γI − δCC.

where C denotes the density of cytotoxic cells, kIC represents the infected cells killing
rate and γI the proliferation rate of cytotoxic cells induced by the presence of infected
cells.

A simplfied 2nd-order model is used by Nowak in the book Evolutionary Dynamics
[4], and also in [7], under the quasi steady-state assumptions that T is constant and V is
proportional to I. In such case, the model reduces to:

dI

dt
= αI − kIC − δII,

dC

dt
= γI − δCC.

Remark that in the recent survey paper [6] (2013) it is mentioned that the immune response
models have not been validated from experimental data and the relevance of the immune
response modelling is still a subject of research and debate.

4.3 Mutants

For simplicity, as in [5], we consider the very simplest case where there is one wild-type
virus (with concentration Vw) and one mutant (with concentration Vm).
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The basic model is then expanded as follows:

dT

dt
= λ− δTT − βwVwT − βmVmT,

dIw
dt

= βw(1− εw)VwT + βmεmVmT − δIIw,

dIm
dt

= βwεwVwT + βm(1− εm)VmT − δIIm,

dVw
dt

= pwIw − δV Vw,

dVm
dt

= pmIm − δV Vm.

In these equations, Iw and Im represent the densities of cells infected by wild and mutant
viruses respectively, εw is the probability of mutation from wild-type to mutant and εm
the inverse mutation probability. In absence of therapy, it can be shown that the selection
favors the wild-type virus if εw > εm and βwpw > βmpm.

4.4 Latency

Latency refers to the fact that the infection of CD4+T-cells can give latent cells that carry
the virus genome and reproduce but do not produce new viruses. To take this situation
into account, the basic model can be expanded as follows (e.g. [5], [8]):

dT

dt
= λ− δTT − βV T,

dI

dt
= qβV T − δII,

dL

dt
= (1− q)βV T − δLL,

dV

dt
= pII + pLL− δV V.

In this model L is the density of latent cells and q is the probability that, upon infection,
a cell will enter active viral replication. In [5], pL << pI is a small parameter representing
the virus production at a much slower rate than normal replication. In contrast, in [8],
pL(t) is a pulsed signal representing random intermittent viral ”blips”.
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4.5 Antiretroviral therapies

Antiretroviral therapies are based on two fundamental mechanisms:

(1) using drugs containing reverse transcriptase inhibitors which reduce the virus pro-
duction by infected cells; this is modelled by multiplying the infection term by (1−u1)
where 0 6 u1 6 1 is the control input that represents the effectiveness of the drug;

(2) using drugs containing protease inhibitors which partially prevent the produced
viruses to be infectious; the effectiveness of these drugs is denoted u2 with 0 6 u2 6 1.

The basic model is then expanded as follows (see e.g. [6]):

dT

dt
= λ− δTT − (1− u1)βV T,

dI

dt
= (1− u1)βV T − δII,

dV

dt
= (1− u2)pI − δV V.

Remark that this nonlinear control system is a flat system !

4.6 Resistance to antiretroviral therapies

Antiretroviral therapies may fail because of virus mutation. In order to deal with this issue,
the equations must combine both the presence of mutations and the use of therapies. We
consider the general case where there are n virus mutants and m antiretroviral therapies
which can be used in combination. In such case, the models proposed above can be
extended in the following way:

dT

dt
= λ− δTT −

∑
j=1,n

[
βjVjT

( ∏
k=1,m

(1− ηjkuk)
)]
,

dIi
dt

= βiViT
(

1−
∑
j=1,n
j 6=i

εij

)( ∏
k=1,m

(1− ηikuk)
)

+
∑
j=1,n
j 6=i

[
βjVjTεji

( ∏
k=1,m

(1− ηjkuk)
)]
− δIIi,

dVi
dt

= piIi − δV Vi, i = 1, . . . , n.

In these equations, εij is the probability of mutation from species i to species j, ui is the
intensity of the i-th drug administration, ηik is the effectiveness of the i-th drug against
mutant k. The other notations are obvious. This model can also be written in a more
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compact matrix form:

dT

dt
= λ− T (VTb(u)),

dIi
dt

= −δIIi + T (eTi V)φi(u), i = 1, . . . , n,

dVi
dt

= piIi − δV Vi,

with the definitions

u , diag{u1, . . . , um} , φj(u) ,
∏

k=1,m

(1− ηjkuk),

b(u) , (β1φ1(u), . . . , βnφ(u))T , V , (V1, . . . , Vn)T ,

ei is a column vector with i-th entry = βi

(
1−

∑
j=1,n
j 6=i

εij

)
and j-th entry = βjεji for j 6= i.

Using quasi-steady state approximations (T constant and Vi proportional to Ii) as in
[3], we get a linear model for the dynamics of the infected cells:

dIi
dt

= (eTi DI)φ(u)− δIIi, i = 1, . . . , n,

with the definitions

I , (I1, . . . , In)T , D , diag{p1T/δV , . . . , pnT/δV } .

4.7 Resistance to immune response

In the book Evolutionary Dynamics [4], Nowak proposes a model to analyze the resis-
tance against immune response induced by virus mutations. Using the quasi-steady state
approximations T constant and Vi proportional to Ii, the model is as follows:

dVi
dt

= αVi − k1ViCi − k2ViC0, i = 1, . . . , n,

dCi

dt
= γVi − δCCi − k3Ci

∑
i=1,n

Vi i = 1, . . . , n,

,
dC0

dt
= k4

∑
i=1,n

Vi − δCC0 − k3C0

∑
i=1,n

Vi.

In this model, Vi denotes the viral load of mutant i, Ci denotes the immune response
specifically directed against virus straini and C0 denotes a global immune response against
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all virus strains. Furthermore, it is assumed that “the virus can impair immune responses”
and this effect is represented by the terms −k3CiV and −k3C0V .

This model has been received with skepticism and does not seem to have been ex-
perimentally validated. Furthermore, it is not fully consistent with the previous models
presented above.
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