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Chapter 10
Exponential Stability of Semi-linear
One-Dimensional Balance Laws

Georges Bastin and Jean-Michel Coron

Abstract Raman amplifiers and plug flow chemical reactors are typical exam-1

ples of engineering systems that are conveniently represented by semi-linear one-2

dimensional systems of balance laws. The main goal of this chapter is to explain3

how a quadratic Lyapunov function can be used to prove the exponential stability of4

the steady state for this class of hyperbolic systems.5

10.1 Introduction6

The Lyapunov method is a well-established tool in stability analysis of dynamical7

systems. The principal merit of the method is that the actual solution (whether ana-8

lytical or numerical) of the concerned system is not required. Meanwhile, the main9

drawback is that no systematic procedure exists for deriving Lyapunov functions and10

Laurent Praly is definitely one of the scientists who made the greatest contributions11

to their construction (see e.g., [3, 9–11, 14]). In this chapter, we bring a modest12

additional stone to this building. The main goal is to explain how a quadratic Lya-13

punov function can be used to prove the exponential stability of the steady state of14

semi-linear one-dimensional hyperbolic systems of balance laws. As a motivation,15

in the next section, we present some interesting physical examples of such systems.16
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2 G. Bastin and J.-M. Coron

10.1.1 Raman Amplifiers17

Raman amplifiers are electro-optical devices that are used for compensating the nat-18

ural power attenuation of laser signals transmitted along optical fibers in long dis-19

tance communications. Their operation is based on the Raman effect which was dis-20

covered by [12]. The simplest implementation of Raman amplification in optical21

telecommunications is depicted in Fig. 10.1. The transmitted information is encoded22

by amplitude modulation of a laser signal with wavelength !s. The signal is provided23

by an optical source at the channel input and received by a photo-detector at the out-24

put. A pump laser beam with wavelength !p is injected backward in the optical fiber.25

If the wavelengths are appropriately selected, the energy of the pump is transferred26

to the signal and produces an amplification that counteracts the natural attenuation.27

The dynamics of the signal and pump powers along the fiber are represented by the28

following system of two balance laws [4]:29

"tS + #s

(
"xS + $sS − %sSP

)
= 0,

"tP − #p

(
"xP − $pP − %pPS

)
= 0,

t ∈ [0,+∞), x ∈ [0,L], (10.1)30

where S(t, x) is the power of the transmitted signal, P(t, x) is the power of the pump31

laser beam, #s and #p are the propagation group velocities of the signal and pump32

waves respectively, $s and $p are the attenuation coefficients per unit length, %s and33

%p are the amplification gains per unit length. All these positive constant parameters34

$s and $p, %s and %p, #s and #p are characteristic of the fiber material and dependent35

of the wavelengths !s and !p.36

As the input signal power and the launch pump power can be exogenously37

imposed, the boundary conditions are38

S(t, 0) = U0,P(t,L) = UL, (10.2)39

with constant inputs U0 and UL.40

x
0 L

input 
signal output 

signal

pump 
beam

Fig. 10.1 Optical communication with Raman amplification
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10 Exponential Stability of Semi-linear One-Dimensional Balance Laws 3

10.1.2 Plug Flow Chemical Reactors41

A plug flow chemical reactor (PFR) is a tubular reactor where a liquid reaction mix-42

ture circulates. The reaction proceeds as the reactants travel through the reactor.43

Here, we consider the case of an horizontal PFR where a simple monomolecular44

reaction takes place45

A ⇄ B.46

A is the reactant species and B is the desired product. The reaction is supposed to be47

exothermic and a jacket is used to cool the reactor. The cooling fluid flows around the48

wall of the tubular reactor. The dynamics of the PFR are described by the following49

system of balance laws:50

"tTc − Vc"xTc − ko(Tc − Tr) = 0,
"tTr + Vr"xTr + ko(Tc − Tr) − k1r(Tr,CA,CB) = 0,
"tCA + Vr"xCA + r(Tr,CA,CB) = 0,
"tCB + Vr"xCB − r(Tr,CA,CB) = 0,

(10.3)51

where t ∈ [0,+∞), x ∈ [0,L], Tc(t, x) is the coolant temperature, Tr(t, x) is the reac-52

tor temperature. The variables CA(t, x) and CB(t, x) denote the concentrations of the53

chemicals in the reaction medium. Vc is the constant coolant velocity in the jacket,54

Vr is the constant reactive fluid velocity in the reactor. The function r(Tr,CA,CB)55

represents the reaction rate. A typical form of this function is56

r(Tr,CA,CB) = (aCA − bCB) exp
(
− E

RTr

)
,57

where a and b are rate constants, E is the activation energy and R is the Boltzmann58

constant.59

The system is subject to the following constant boundary conditions:60

Tr(t, 0) = T in
r , CA(t, 0) = Cin

A , CB(t, 0) = 0, Tc(t, 0) = T in
c . (10.4)61

10.1.3 Chemotaxis62

Chemotaxis refers to the motion of certain living microorganisms (bacteria, slime63

molds, leukocytes ...) in response to the concentrations of chemicals. A simple model64

for one-dimensional chemotaxis, known as the Kac-Goldstein model, has been pro-65

posed in [5] in order to explain the spatial pattern formations in chemosensitive pop-66

ulations. Revisited in [6], this model, in its simplest form, is a system of two balance67

laws of the form68
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4 G. Bastin and J.-M. Coron

"t&+ + '"x&+ + ((&+, &−)(&− − &+) = 0,
"t&− − '"x&− + ((&+, &−)(&+ − &−) = 0,

t ∈ [0,+∞), x ∈ [0,L], (10.5)69

where &+ denotes the density of right-moving cells and &− the density of left-moving70

cells. The function((&+, &−) is called the “turning function”. The constant parameter71

' is the velocity of the cell motion. With the change of coordinates & ≜ &+ + &−,72

q ≜ '(&+ − &−), we have the following alternative equivalent model:73

"t& + "xq = 0,

"tq + '2"x& − 2(
(&
2 + q

2' ,
&
2 − q

2'
)
q = 0,74

where & is the total density and q is a flux proportional to the difference of densities75

of right and left-moving cells. Remark that we have q = &V where76

V ≜ ' &
+ − &−

&+ + &−
77

can be interpreted as the average group velocity of the moving cells.78

Various possible turning functions are reviewed in [8]. A typical example is79

((&+, &−) = $&+&− − ),80

where $ and ) are positive constants.81

A special case of interest (see, e.g., [7]) is when the cells are confined in the82

domain [0,L]. This situation may be represented by “no-flow boundary conditions”83

of the form84

q(t, 0) = '
(
&+(t, 0) − &−(t, 0)

)
= 0,

q(t,L) = '
(
&+(t,L) − &−(t,L)

)
= 0.

(10.6)85

10.2 Exponential Stability of Semi-linear Hyperbolic86

Systems of Balance Laws87

The examples given above are special cases of the general semi-linear hyperbolic88

system89

!t + *!x + G(!) = ", t ∈ [0,+∞), x ∈ [0,L], (10.7)90

B
(
!(t, 0),!(t,L)

)
= ", t ∈ [0,+∞), (10.8)91

92

where93
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10 Exponential Stability of Semi-linear One-Dimensional Balance Laws 5

∙ t and x are the two independent variables: a time variable t ∈ [0,+∞) and a space94

variable x ∈ [0,L] over a finite interval;95

96

∙ ! ∶ [0,+∞) × [0,L] →  is the vector of state variables, with  a nonempty con-97

nected open subset of ℝn;98

99

∙ * ∈ n,n(ℝ) is the diagonal matrix defined as100

* ≜
(
*+ 0
0 −*−

)
with

{
*+ = diag{#1,… , #m

}
,

*− = diag{#m+1,… , #n
}
,

(10.9)101

where m ∈ [0, n] and #i > 0 ∀i;102

103

∙ G ∈ C2( ,ℝn) is the vector of source terms;104

105

∙ B ∈ C2( ×  ,ℝn) is the vector of boundary conditions.106

107

A steady state !∗(x) is a solution of the ordinary differential equation *!∗
x (x) +108

G(!∗(x)) = " satisfying the boundary condition B
(
!∗(0),!∗(L)

)
= ".109

We define the following change of coordinates:110

#(t, x) ≜ !(t, x) − !∗(x), # = (Z1,… ,Zn)#.111

In the # coordinates, the system (10.7), (10.8) is rewritten112

#t + *#x + B(#, x) = ", (10.10)113

B
(
#(t, 0) + !∗(0),#(t,L) + !∗(L)

)
= ", (10.11)114

115

where116

B(#, x) ≜ [
G(# + !∗(x)) − G(!∗(x))

]
.117

Since B(", x) = " by definition of the steady state, it follows that there exists a matrix118

M(#, x) ∈ n×n(ℝ) such that (10.10) may be rewritten as119

#t + *#x + M(#, x)# = ", (10.12)120

with121

M(", x) = "B
"# (", x).122

In order to have a well-posed Cauchy problem, a basic requirement is that “at each123

boundary point the incoming information #in is determined by the outgoing infor-124

mation #out” [13, Sect. 3], with the definitions125
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6 G. Bastin and J.-M. Coron

#in(t) ≜
(
#+(t, 0)
#−(t,L)

)
and #out(t) ≜

(
#+(t,L)
#−(t, 0)

)
, (10.13)126

where #+ and #− are defined as follows:127

#+ =
⎛
⎜
⎜⎝

Z1
⋮

Zm

⎞
⎟
⎟⎠
, #− =

⎛
⎜
⎜⎝

Zm+1
⋮
Zn

⎞
⎟
⎟⎠
.128

This means that the system (10.12) is subject to boundary conditions having the form129

#in(t) = (
#out(t)

)
, (10.14)130

where the map  ∈ C1(ℝn;ℝn).131

Our concern is to analyze the exponential stability of the steady state #(t, x) ≡132

" of the system (10.12) under the boundary condition (10.14) and under an initial133

condition134

#(0, x) = #o(x), x ∈ [0,L]. (10.15)135

which satisfies the compatibility condition136

(
#+o (0)
#−o (L)

)
= 

(
#+o (L)
#−o (0)

)
. (10.16)137

Let us first recall the following theorem on the well-posedness of the Cauchy problem138

(10.12), (10.14), (10.15).139

Theorem 1 There exists +0 > 0 such that, for every #o ∈ H1((0,L);ℝn) satisfying

‖#o‖H1((0,L);ℝn) ⩽ +0

and the compatibility condition (10.16), the Cauchy problem (10.12), (10.14), (10.15)140

has a unique maximal classical solution141

# ∈ C0([0,T),H1((0,L);ℝn)) (10.17)142

with T ∈ (0,+∞].143

Moreover, if
‖#(t, ⋅)‖H1((0,L);ℝn) ⩽ +0, ∀t ∈ [0,T),

then T = +∞.144

A proof of this theorem is easily adapted from [1, Appendix B] by considering145

the special case of a constant matrix * which allows to replace H2((0,L);ℝn) by146

H1((0,L);ℝn).147
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10 Exponential Stability of Semi-linear One-Dimensional Balance Laws 7

The definition of the exponential stability is as follows.148

Definition 1 The steady state #(t, x) ≡ 0 of the system (10.12), (10.14) is exponen-149

tially stable for the H1-norm if there exist + > 0, , > 0 and C > 0 such that, for every150

#o ∈ H1((0,L);ℝn) satisfying ‖#o‖H1((0,L);ℝn) ⩽ + and the compatibility conditions151

(10.16), the solution # of the Cauchy problem (10.12), (10.14), (10.15) is defined on152

[0,+∞) × [0,L] and satisfies153

‖#(t, .)‖H1((0,L);ℝn) ≤ Ce−,t‖#o‖H1((0,L);ℝn), ∀t ∈ [0,+∞). (10.18)154

Let us now define the matrix $ as the linearization of the map  at the steady155

state156

$ ≜ ′(").157

We then have the following stability theorem.158

Theorem 2 The steady state #(t, x) ≡ " of the system (10.12), (10.14) is exponen-159

tially stable for the H1-norm if there exists a map Q satisfying160

Q(x) ≜ %&'({Q+(x),Q−(x)},161

Q+(x) ≜ %&'({q1(x),… , qm(x)}, Q−(x) ≜ %&'({qm+1(x),… , qn(x)},162

qi ∈ C1([0,L];ℝ+) ∀i.163
164

such that the following Matrix Inequalities hold:165

166

(i) the matrix167

(
Q+(L)*+ 0

0 Q−(0)*−

)
−$#

(
Q+(0)*+ 0

0 Q−(L)*−

)
$ (10.19)168

is positive semi-definite;169

170

(ii) the matrix171

−Q′(x)* + Q(x)M(", x) + M#(", x)Q(x)172

is positive definite ∀x ∈ [0,L].173

10.3 Proof in the Case Where m = n174

For the clarity of the demonstration, we shall first prove the theorem in the spe-175

cial case where m = n, which means that the matrix * is the positive diagonal176

matrix diag{#1,… , #n} with #i > 0 ∀i = 1,… , n. In that case, the boundary condi-177

tion (10.14) and the compatibility conditions (10.16) are simply rewritten178
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8 G. Bastin and J.-M. Coron

#(t, 0) = (
#(t,L)

)
, (10.20)179

#o(0) = (
#o(L)

)
. (10.21)180

181

Moreover, condition (i) of Theorem 2 is restated as182

183

(i-bis) the matrix Q(L)* −$#Q(0)*$ is positive semi-definite.184

185

For the stability analysis, we adopt the H1 Lyapunov function candidate186

) ≜ )1 + )2 (10.22)187

such that188

)1 = ∫
L

0
##Q(x)# dx, (10.23)189

)2 = ∫
L

0
##t Q(x)#t dx, (10.24)190

191

where, by definition, the notation #t must be understood as192

#t ≜ −*#x − B(#, x).193

Let us remark that by (10.17) ) is a continuous function of t. In order to prove The-194

orem 2, we temporarily assume that # is of class C2 on [0,T] × [0,L] and therefore195

that ) is of class C1 in [0,T]. Under this assumption (that will be relaxed later on) the196

first step of the proof is to compute the following estimates of d)1∕dt and d)2∕dt.197

Estimate of d)1∕dt198

The time derivative of )1 along the solutions of (10.12), (10.20) is1199

d)1
dt

= ∫
L

0
2##Q(x)#tdx200

= ∫
L

0
2##Q(x)

(
− *#x − B(#, x)

)
dx.201

202

Then, using integrations by parts, we get203

d)1
dt

= 11 + 12, (10.25)204

with205

1The notation M# denotes the transpose of the matrix M.
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10 Exponential Stability of Semi-linear One-Dimensional Balance Laws 9

11 ≜
[
− ##Q(x)*#

]L

0
, (10.26)206

207

12 ≜ ∫
L

0
−##Q′(x)*# − 2##Q(x)B(#, x)dx. (10.27)208

From (10.26), we have209

11 = −##(t,L)Q(L)*#(t,L) + ##(t, 0)Q(0)*#(t, 0). (10.28)210

Let us introduce a notation in order to deal with estimates on “higher order terms”.211

We denote by (X;Y), with X ⩾ 0 and Y ⩾ 0, quantities for which there exist C > 0212

and - > 0, independent of # and #t, such that213

(Y ⩽ -) ⇒ (|(X;Y)| ⩽ CX).214

Then from (10.28), using the boundary condition (10.20), we have215

11 = −##(t,L)
[
Q(L)* −$#Q(0)*$

]
#(t,L) + (|#(t,L)|3; |#(t,L)|), (10.29)216

and from (10.27) we have217

12 = −∫
L

0
##

[
− Q′(x)* + M#(", x)Q(x) + Q(x)M(", x)

]
# dx218

+ (∫
L

0
|#|3dx; |#(t, .)|0

)
, (10.30)219

220

where, for f ∈ C0([0,L];ℝn), we denote |f |0 = max{|f (x)|; x ∈ [0,L]}.221

Estimate of d)2∕dt222

By time differentiation of the system equations (10.12), (10.20), #t can be shown to223

satisfy the following hyperbolic dynamics:224

#tt + *#tx +
"B
"# (#, x)#t = ", (10.31)225

#t(t, 0) = ′(#(t,L))#t(t,L). (10.32)226
227

The time derivative of )2 along the solutions of (10.12), (10.20), (10.31),228

(10.32) is229

d)2
dt

= ∫
L

0
2##t Q(x)(#t)tdx230

= ∫
L

0
2##t Q(x)

(
− *#tx −

"B
"# (#, x)#t

)
dx.231

232

Then, using integrations by parts, we get233
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10 G. Bastin and J.-M. Coron
d)2
dt

= 21 + 22, (10.33)234

with235

21 ≜
[
− ##t Q(x)*#t

]L

0
, (10.34)236

237

22 ≜ ∫
L

0
##t Q′(x)*#t + 2##t Q(x)

( "B
"# (#, x)#t

))
dx. (10.35)238

From (10.34), we have239

21 = −##t (t,L)Q(L)*#t(t,L) + ##t (t, 0)Q(0)*#t(t, 0). (10.36)240

Then, using the boundary condition (10.32), we get241

21 = −##t (t,L)
[
Q(L)* −$#Q(0)*$

]
#t(t,L)242

+ (|#t(t,L)|2|#(t,L)|; |#(t,L)|). (10.37)243
244

Moreover 22 is written245

22 = −∫
L

0
##t

[
− Q′(x)* + M#(", x)Q(x) + Q(x)M(", x)

]
#t dx246

+ (∫
L

0
|#t|2|#|dx; |#(t, .)|0

)
. (10.38)247

248

In the next lemma, we shall now use these estimates to show that the Lyapunov249

function exponentially decreases along the system trajectories.250

Lemma 1 There exist positive real constants $, % and + such that, for every # such251

that |#|0 ≤ +, we have252

1
% ∫

L

0
(|#|2 + |#x|2)dx ⩽ ) ⩽ % ∫

L

0
(|#|2 + |#x|2)dx, (10.39)253

d)
dt

≤ −$). (10.40)254
255

Proof Inequalities (10.39) follow directly from the definition of ) and straightfor-256

ward estimations.257

Let us introduce the following compact matrix notations:258

K ≜ Q(L)* −$#Q(0)*$, (10.41)259

L(x) ≜ −Q′(x)* + M#(", x)Q(x) + Q(x)M(", x). (10.42)260
261
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10 Exponential Stability of Semi-linear One-Dimensional Balance Laws 11

Then it follows from (10.28), (10.30), (10.37), (10.38) that262

d)
dt

= −##(t,L)K#(t,L) − ##t (t,L)K#t(t,L)263

+ (|#(t,L)|(|#(t,L)|2 + |#t(t,L)|2); |#(t,L)|)264

− ∫
L

0

(
##L(x)# + ##t L(x)#t

)
dx265

+ (∫
L

0

(
(|#|2| + |#t|2)|#|

)
dx; |#(t, .)|0

)
.

(10.43)
266

267

Then, by assumption (i-bis) of Theorem 2 and from (10.41), there exists +1 > 0 such268

that if |#(t,L)| < +1 then269

− ##(t,L)K#(t,L) − ##t (t,L)K#t(t,L)270

+ (|#(t,L)|(|#(t,L)|2 + |#t(t,L)|2); |#(t,L)|) ⩽ 0.
(10.44)

271

272

Let us recall the following Sobolev inequality, see, e.g., [2]: for a function . ∈273

C1([0,L];ℝn), there exists C1 > 0 such that274

|.|0 ⩽ C1 ∫
L

0
(|.(x)|2 + |.′(x)|2)dx. (10.45)275

Moreover, from (10.10) and (10.31), we know also that there exist +2 > 0 and C2 > 0276

such that, if |#(t, x)| + |#t(t, x)| < +2, then277

|#t(t, x)| ⩽ C2
(|#(t, x)| + |#x(t, x)|

)
, (10.46)278

|#x(t, x)| ⩽ C2
(|#(t, x)| + |#t(t, x)|

)
. (10.47)279

280

Using repeatedly, inequalities (10.45) to (10.47), it follows that there exists +3 > 0281

and C3 > 0 such that, if |#(t, .)|0 < +3, then282

(∫
L

0

(
(|#|2| + |#t|2)|#|

)
dx; |#(t, .)|0

)
⩽ C3|#(t, .)|0). (10.48)283

Using assumption (ii) of Theorem 2, there exists ' > 0 such that284

− ∫
L

0

(
##L(x)# + ##t L(x)#t

)
dx ⩽ −2'). (10.49)285

Finally it follows from (10.43), (10.44), (10.48) and (10.49) that, if + < min(+1, +3)286

is taken sufficiently small, then $ > 0 can be selected such that287
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12 G. Bastin and J.-M. Coron
d)
dt

= (−2' + C3|#(t, .)|0)) ⩽ −$),288

for every #(t, .) such that |#(t, .)|0 ≤ +. This concludes the proof of Lemma 1.289

In this lemma, the estimates (10.39) and (10.40) were obtained under the assump-290

tion that # is of class C2 on [0,T] × [0,L]. But the selection of $ and % does not291

depend on the C2-norm of #: they depend only on the C0([0,T];H1((0,L);ℝn))-292

norm of #. Hence, using a classical density argument (see, e.g., [1, Comment 4.6]),293

the estimates (10.39) and (10.40) remain valid in the distribution sense if #(., .) is294

only of class C1.295

Let us now introduce296

- ≜ min
{

+
2C1%

,
+0
%

}
. (10.50)297

298

Note that % ⩾ 1 and therefore that + ⩽ +0. Using Lemma 1, (10.45) and (10.50), for299

every t ∈ [0,T]300

(‖#(t, .)‖H1((0,L);ℝn) ⩽ -
)
⟹

(
|#(t, .)|0 ≤ +

2 and )(t) ⩽ %-2
)
, (10.51)301

302

(|#(t, .)|0 ≤ + and ) ⩽ %-2
)

303

⟹
(
|#(t, .)|0 ≤ +

2 and ‖#(t, .)‖H1((0,L);ℝn) ⩽ +0
)
,

(10.52)
304

305

306 (|#(t, .)|0 ≤ +
)
⟹

(d)
dt

⩽ 0
)

in the distribution sense. (10.53)307

Let #o ∈ H1((0,L);ℝn) satisfy the compatibility condition (10.21) and308

‖#o‖H1((0,L);ℝn) < -.309

Let # ∈ C0([0,T∗),H1((0,L);ℝn)) be the maximal classical solution the Cauchy310

problem (10.12), (10.14), (10.15). Using implications (10.51) to (10.53) for T ∈311

[0,T∗), we get that312

|#(t, ⋅)|H1((0,L);ℝn) ⩽ +0, ∀t ∈ [0,T∗), (10.54)313

|#(t, ⋅)|0 + |#t(t, ⋅)|0 ⩽ +, ∀t ∈ [0,T∗). (10.55)314
315

Using (10.54) and Theorem 1, we have that T = +∞. Using Lemma 1 and (10.55),316

we finally obtain that317
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10 Exponential Stability of Semi-linear One-Dimensional Balance Laws 13

‖#(t, ⋅)‖2H1((0,L);ℝn) ⩽ %)(t) ⩽ %)(0)e−$t ⩽ %2‖#o‖2H1((0,L);ℝn)e
−$t.318

This concludes the proof of Theorem 2.319

10.4 Proof in the Case Where " < M < N320

In this section, we explain the modifications of the proof that must be used to deal321

with the case 0 < m < n. (Of course,the case m = 0 is equivalent to the case m = n322

by considering #(t,L − x) instead of #(t, x).)323

The major difference lies in functions 11 and 21 which are now written as fol-324

lows:325

11 = −
(
#+(t,L)
#−(t, 0)

)# (Q+(L)*+ 0
0 Q−(0)*−

)(
#+(t,L)
#−(t, 0)

)
326

+
(
#+(t, 0)
#−(t,L)

)# (Q+(0)*+ 0
0 Q−(L)*−

)(
#+(t, 0)
#−(t,L)

)
,327

328

329

21 = −
(
#+

t (t,L)
#−

t (t, 0)

)# (Q+(L)*+ 0
0 Q−(0)*−

)(
#+

t (t,L)
#−

t (t, 0)

)
330

+
(
#+

t (t, 0)
#−

t (t,L)

)# (Q+(0)*+ 0
0 Q−(L)*−

)(
#+

t (t, 0)
#−

t (t,L)

)
.331

332

Using the boundary condition (10.14) and assumption (i) in these equations, it is333

then a straightforward exercise to verify that Theorem 2 can be established for the334

case 0 < m < n in a manner completely parallel to the one we have followed in the335

case m = n.336

10.5 Conclusion337

The main goal of this chapter was to explain how a quadratic Lyapunov function338

can be used to prove the exponential stability of the steady state of semi-linear one-339

dimensional hyperbolic systems of balance laws. Further stability results for hyper-340

bolic systems of balance laws can be found in the textbook [1].341
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