Stiefel Manifolds and their Applications

Pierre-Antoine Absil
(UCLouvain)

Seminar for Applied Mathematics, ETH Zurich

10 September 2009

Structure

- Definition and visualization
- A glimpse of applications
- Geometry of the Stiefel manifolds
- Applications

Collaborations

- Chris Baker (Sandia)
- Thomas Cason (UCLouvain)
- Kyle Gallivan (Florida State University)
- Damien Laurent (UCLouvain)
- Rob Mahony (Australian National University)
- Chafik Samir (U Clermont-Ferrand)
- Rodolphe Sepulchre (U of Liège)
- Fabian Theis (TU Munich)
- Paul Van Dooren (UCLouvain)
- ...

Stiefel manifold: Definition

The (compact) Stiefel manifold $V_{n, p}$ is the set of all p-tuples $\left(x_{1}, \ldots, x_{p}\right)$ of orthonormal vectors in \mathbb{R}^{n}.
If we turn p-tuples into $n \times p$ matrices as follows

$$
\left(x_{1}, \ldots, x_{p}\right) \mapsto\left[\begin{array}{lll}
x_{1} & \cdots & x_{p}
\end{array}\right],
$$

the definition becomes

$$
V_{n, p}=\left\{X \in \mathbb{R}^{n \times p}: X^{\top} X=I_{p}\right\}
$$

Visualization: an element of $V_{3,2}$

Stiefel manifold: (very unfaithful) artist view

Stiefel manifold: optimization problems

Stiefel manifold: optimization algorithms

Stiefel manifold: Extensions

- Recall: Real case:

$$
V_{p}\left(\mathbb{R}^{n}\right)=\left\{X \in \mathbb{R}^{n \times p}: X^{T} X=I_{p}\right\}=: V_{n, p}
$$

- Complex case:

$$
V_{p}\left(\mathbb{C}^{n}\right)=\left\{X \in \mathbb{C}^{n \times p}: X^{H} X=I_{p}\right\}
$$

- Quaternion case:

$$
V_{p}\left(\mathbb{H}^{n}\right)=\left\{X \in \mathbb{H}^{n \times p}: X^{*} X=I_{p}\right\} .
$$

- If M is a Riemannian manifold, one can define

$$
V_{p}(T M)=\left\{\left(\xi_{1}, \ldots, \xi_{p}\right) \mid \exists x \in M: \xi_{i} \in T_{x} M,\left\langle\xi_{i}, \xi_{j}\right\rangle=\delta_{i j}\right\}
$$

Stiefel manifold: Particular cases

- Recall: Real case:

$$
V_{p}\left(\mathbb{R}^{n}\right)=\left\{X \in \mathbb{R}^{n \times p}: X^{T} X=I_{p}\right\}=: V_{n, p}
$$

- $p=1$: the sphere

$$
V_{n, 1}=\left\{x \in \mathbb{R}^{n}: x^{\top} x=1\right\}
$$

- $p=n$: the orthogonal group

$$
V_{n, n}=O_{n}=\left\{X \in \mathbb{R}^{n \times n}: X^{\top} X=I_{n}\right\}
$$

Notation

- E. Stiefel (1935): $V_{n, m}$ (compact), $V_{n, m}^{*}$ (noncompact).
- I. M. James (1976): $O_{n, k}$ (compact) Stiefel manifold, $O_{n, k}^{*}$ noncompact Stiefel manifold, $V_{n, k}$ in the real case, $W_{n, k}$ in the complex case, $X_{n, k}$ in the quaternion case.
- Helmke \& Moore (1994): $\operatorname{St}(k, n)$ compact Stiefel manifold, $\mathrm{ST}(k, n)$ noncompact Stiefel manifold.
- Edelman, Arias, \& Smith (1998): $V_{n, p}$.
- Bridges \& Reich (2001): $V_{k}\left(\mathbb{R}^{n}\right)$.
- Bloch et al.(2006): $V(n, N)=\left\{Q \in \mathbb{R}^{n N} ; Q Q^{T}=I_{n}\right\}$.

A glimpse of applications

- Principal component analysis
- Lyapunov exponents of a dynamical system
- Procrustes problem
- Blind Source Separation - soft dimension reduction

Geometry

- Dimension
- Tangent spaces
- Projection onto tangent spaces
- Geodesics

Stiefel manifold: dimension

Dimension of $V_{n, p}$:

- 1st vector: one unit-norm constraint: $n-1$ DOF.
- 2nd vector: unit-norm and orthogonal to 1st: $n-2$ DOF.
- p th vector: $n-p$ DOF.

Total:

$$
\begin{aligned}
\operatorname{dim}\left(V_{n, p}\right) & =p n-(1+2+\cdots+p) \\
& =p n-p(p+1) / 2 \\
& =p(n-p)+p(p-1) / 2
\end{aligned}
$$

Stiefel manifold: tangent space

Stiefel manifold: tangent space

Let $X \in V_{n, p}$ and let $Y(t)$ be a curve on $V_{n, p}$ with $Y(0)=X$. Then $\dot{Y}(0)$ is a tangent vector to $V_{n, p}$ at X.
The set of all such vectors is the tangent space to $V_{n, p}$ at X.
We have

$$
\begin{gathered}
Y(t)^{T} Y(t)=I_{p} \quad \text { for all } t \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(Y(t)^{T} Y(t)\right)=0 \quad \text { for all } t \\
\dot{Y}(0)^{T} Y(0)+Y(0)^{T} \dot{Y}(0)=0 \\
X^{T} \dot{Y}(0) \text { is skew } \\
\dot{Y}(0)=X \Omega+X_{\perp} K, \Omega^{T}=-\Omega
\end{gathered}
$$

Hence $T_{X} V_{n, p}=\left\{X \Omega+X_{\perp} K: \Omega^{T}=-\Omega, K \in \mathbb{R}^{(n-p) \times p}\right\}$.

Stiefel manifold: projection onto the tangent space

Stiefel manifold: projection onto the tangent space

- Tangent space: $T_{X} V_{n, p}=\left\{X \Omega+X_{\perp} K: \Omega^{T}=-\Omega, K \in \mathbb{R}^{(n-p) \times p}\right\}$.
- Normal space: $N_{X} V_{n, p}=\left\{X S: S^{T}=S\right\}$.
- Projection onto the tangent space:

$$
\begin{aligned}
\mathcal{P}_{T_{X} V_{n, p}}(Z) & =Z-X \operatorname{sym}\left(X^{T} Z\right) \\
& =\left(I-X X^{T}\right) Z+X \operatorname{skew}\left(X^{T} Z\right),
\end{aligned}
$$

where $\operatorname{sym}(M)=\frac{1}{2}\left(M+M^{T}\right)$ and $\operatorname{skew}(M)=\frac{1}{2}\left(M-M^{T}\right)$.

Stiefel manifold: geodesics

Stiefel manifold: geodesics

A curve $X(t)$ on $V_{n, p}$ is a geodesic if, for all t,

$$
\ddot{X}(t) \in N_{X(t)} V_{n, p} .
$$

Ross Lippert showed that
$X(t)=\left[\begin{array}{ll}X(0) & \dot{X}(0)\end{array}\right] \exp t\left[\begin{array}{cc}X(0)^{T} \dot{X}(0) & -\dot{X}(0)^{T} \dot{X}(0) \\ 1 & X(0)^{T} \dot{X}(0)\end{array}\right] I_{2 p, p} e^{-t X(0)^{T} \dot{X}(0)}$.

Stiefel manifold: quotient geodesics

Bijection between $V_{n, p}$ and O_{n} / O_{n-p} :

$$
V_{n, p} \ni X \leftrightarrow\{\overbrace{\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right]}^{U}: U^{T} U=I_{n}\} \in O_{n} / O_{n-p}
$$

Quotient geodesics: If

$$
U(t)=U(0) \exp t\left[\begin{array}{cc}
A & -B^{T} \\
B & 0
\end{array}\right]
$$

then $U_{:, 1: p}(t) \in V_{n, p}$ follows a quotient geodesic.

Applications

- Principal component analysis
- Lyapunov exponents of a dynamical system
- Procrustes problem
- Blind Source Separation - soft dimension reduction

Principal component analysis

- Let $A=A^{T} \in \mathbb{R}^{n \times n}$.
- Goal: Compute the p dominant eigenvectors of A.
- Principle: Let $N=\operatorname{diag}(p, p-1, \cdots, 1)$ and solve The columns of X are the p dominant eigenvectors or A.

Principal component analysis

- Let $A=A^{T} \in \mathbb{R}^{n \times n}$.
- Goal: Compute the p dominant eigenvectors of A.
- Principle: Let $N=\operatorname{diag}(p, p-1, \cdots, 1)$ and solve

$$
\max _{X^{\top} X=I_{\rho}} \operatorname{tr}\left(X^{\top} A X N\right) .
$$

The columns of X are the p dominant eigenvectors or A.

- A basic method: Steepest-descent on $V_{n, p}$.

Principal component analysis

- Let $A=A^{T} \in \mathbb{R}^{n \times n}$.
- Goal: Compute the p dominant eigenvectors of A.
- Principle: Let $N=\operatorname{diag}(p, p-1, \cdots, 1)$ and solve

$$
\max _{X^{\top} X=I_{\rho}} \operatorname{tr}\left(X^{\top} A X N\right) .
$$

The columns of X are the p dominant eigenvectors or A.

- A basic method: Steepest-descent on $V_{n, p}$.
- Let $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}: X \mapsto \operatorname{tr}\left(X^{\top} A X N\right)$.
- We have $\frac{1}{2} \operatorname{grad} f(X)=A X N$.
- Thus $\left.\frac{1}{2} \operatorname{grad} f\right|_{V_{n, p}}(X)=\mathcal{P}_{T_{X} V_{n, p}}(A X N)=A X N-X \operatorname{sym}\left(X^{\top} A X N\right)$, where $\operatorname{sym}(Z):=\left(Z+Z^{\top}\right) / 2$.

Principal component analysis

- Let $A=A^{T} \in \mathbb{R}^{n \times n}$.
- Goal: Compute the p dominant eigenvectors of A.
- Principle: Let $N=\operatorname{diag}(p, p-1, \cdots, 1)$ and solve

$$
\max _{X^{\top} X=I_{\rho}} \operatorname{tr}\left(X^{\top} A X N\right) .
$$

The columns of X are the p dominant eigenvectors or A.

- A basic method: Steepest-descent on $V_{n, p}$.
- Let $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}: X \mapsto \operatorname{tr}\left(X^{T} A X N\right)$.
- We have $\frac{1}{2} \operatorname{grad} f(X)=A X N$.
- Thus $\left.\frac{1}{2} \operatorname{grad} f\right|_{V_{n, p}}(X)=\mathcal{P}_{T_{X}} V_{n, p}(A X N)=A X N-X \operatorname{sym}\left(X^{\top} A X N\right)$, where $\operatorname{sym}(Z):=\left(Z+Z^{T}\right) / 2$.
- Basic algorithm: Follow $X=\operatorname{grad} f \mid v_{\text {op }}(X)$

Principal component analysis

- Let $A=A^{\top} \in \mathbb{R}^{n \times n}$.
- Goal: Compute the p dominant eigenvectors of A.
- Principle: Let $N=\operatorname{diag}(p, p-1, \cdots, 1)$ and solve

$$
\max _{X^{\top} X=I_{\rho}} \operatorname{tr}\left(X^{\top} A X N\right) .
$$

The columns of X are the p dominant eigenvectors or A.

- A basic method: Steepest-descent on $V_{n, p}$.
- Let $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}: X \mapsto \operatorname{tr}\left(X^{\top} A X N\right)$.
- We have $\frac{1}{2} \operatorname{grad} f(X)=A X N$.
- Thus $\left.\frac{1}{2} \operatorname{grad} f\right|_{V_{n, p}}(X)=\mathcal{P}_{T_{X} V_{n, p}}(A X N)=A X N-X \operatorname{sym}\left(X^{T} A X N\right)$, where $\operatorname{sym}(Z):=\left(Z+Z^{T}\right) / 2$.
- Basic algorithm: Follow $X=\left.\operatorname{grad} f\right|_{V_{n, p}}(X)$.

Principal component analysis

- Let $A=A^{T} \in \mathbb{R}^{n \times n}$.
- Goal: Compute the p dominant eigenvectors of A.
- Principle: Let $N=\operatorname{diag}(p, p-1, \cdots, 1)$ and solve

$$
\max _{X^{T} X=I_{p}} \operatorname{tr}\left(X^{T} A X N\right)
$$

The columns of X are the p dominant eigenvectors or A.

- A basic method: Steepest-descent on $V_{n, p}$.
- Let $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}: X \mapsto \operatorname{tr}\left(X^{\top} A X N\right)$.
- We have $\frac{1}{2} \operatorname{grad} f(X)=A X N$.
- Thus $\left.\frac{1}{2} \operatorname{grad} f\right|_{V_{n, p}}(X)=\mathcal{P}_{T_{X} V_{n, p}}(A X N)=A X N-X \operatorname{sym}\left(X^{\top} A X N\right)$, where $\operatorname{sym}(Z):=\left(Z+Z^{\top}\right) / 2$.
- Basic algorithm: Follow $\dot{X}=\left.\operatorname{grad} f\right|_{V_{n, p}}(X)$.

Computing Lyapunov exponents: a method on the Stiefel manifold

- Ref: T. Bridges and S. Reich, Computing Lyapunov exponents on a Stiefel manifold, Physica D 156, pp. 219-238, 2001.
- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.

Computing Lyapunov exponents: a method on the Stiefel manifold

- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.

Computing Lyapunov exponents: a method on the Stiefel manifold

- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.
- Principle: Consider the evolution of an infinitesimal ball of perturbed initial conditions. The ball becomes distorted into an infinitesimal ellipsoid. If the length $\delta_{k}(t)$ of the k th principal axis evolves as

$$
\delta_{k}(t) \approx \delta_{k}(0) e^{\lambda_{k} t},
$$

then λ_{k} is the k th Lyapunov exponent of the system along the nominal trajectory.
The mean Lyapunov exponents are given by

$$
\lambda_{k}=\lim _{t \rightarrow \infty} \frac{1}{t} \frac{\left\|\delta_{k}(t)\right\|}{\left\|\delta_{k}(0)\right\|} .
$$

Computing Lyapunov exponents: a method on the Stiefel manifold

- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.
- Principle: $\delta_{k}(t) \approx \delta_{k}(0) e^{\lambda_{k} t}$.
- Challenge 1: Compute just a few Lyapunov exponents \leadsto work with p-frames (noncompact Stiefel manifold).
- Perturbed system:

$$
\begin{equation*}
\dot{Z}=A(t) Z, \quad Z \in \mathbb{R}^{n \times p}, \quad A(t):=\operatorname{Df}\left(x_{*}(t)\right) . \tag{1}
\end{equation*}
$$

Computing Lyapunov exponents: a method on the Stiefel manifold

- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.
- Principle: $\delta_{k}(t) \approx \delta_{k}(0) e^{\lambda_{k} t}$.
- Challenge 1: Compute just a few Lyapunov exponents \leadsto work with p-frames (noncompact Stiefel manifold).
- Perturbed system:

$$
\begin{equation*}
\dot{Z}=A(t) Z, \quad Z \in \mathbb{R}^{n \times p}, \quad A(t):=\operatorname{D} f\left(x_{*}(t)\right) . \tag{1}
\end{equation*}
$$

Computing Lyapunov exponents: a method on the Stiefel manifold

- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.
- Principle: $\delta_{k}(t) \approx \delta_{k}(0) e^{\lambda_{k} t}$.
- Challenge 1: Compute just a few Lyapunov exponents \leadsto work with p-frames (noncompact Stiefel manifold).
- Perturbed system:

$$
\begin{equation*}
\dot{Z}=A(t) Z, \quad Z \in \mathbb{R}^{n \times p}, \quad A(t):=\operatorname{Df}\left(x_{*}(t)\right) . \tag{1}
\end{equation*}
$$

Computing Lyapunov exponents: a method on the Stiefel manifold

- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.
- Principle: $\delta_{k}(t) \approx \delta_{k}(0) e^{\lambda_{k} t}$.
- Perturbed system:

$$
\begin{equation*}
\dot{Z}=A(t) Z, \quad Z \in \mathbb{R}^{n \times p}, \quad A(t):=\operatorname{Df}\left(x_{*}(t)\right) . \tag{1}
\end{equation*}
$$

- Challenge 2: Perform continuous orthogonalization to prevent the columns of Z from converging to 1 st Lyapunov vector $\sim V_{n, p}$.
- Method: Follow the evolution of $Q(t)$ in the thin $Q R$ decomposition

$$
Z(t)=Q(t) R(t) .
$$

Computing Lyapunov exponents: a method on the Stiefel manifold

- Dynamical system: $\dot{x}=f(x)$.
- Nominal trajectory: $x_{*}(t)$.
- Goal: Describe the behavior of nearby trajectories.
- Principle: $\delta_{k}(t) \approx \delta_{k}(0) e^{\lambda_{k} t}$.
- Perturbed system:

$$
\begin{equation*}
\dot{Z}=A(t) Z, \quad Z \in \mathbb{R}^{n \times p}, \quad A(t):=\operatorname{Df}\left(x_{*}(t)\right) . \tag{1}
\end{equation*}
$$

- Challenge 2: Perform continuous orthogonalization to prevent the columns of Z from converging to 1st Lyapunov vector $\leadsto V_{n, p}$.
- Method: Follow the evolution of $Q(t)$ in the thin QR decomposition

$$
Z(t)=Q(t) R(t) .
$$

Computing Lyapunov exponents: details of method on Stiefel

- Perturbed system: $\dot{Z}=A(t) Z, Z \in \mathbb{R}^{n \times p}, A(t):=\mathrm{D} f\left(x_{*}(t)\right)$.
- Principle: track $Q(t)$ in $Z(t)=Q(t) R(t)$.

Computing Lyapunov exponents: details of method on Stiefel

- Perturbed system: $\dot{Z}=A(t) Z, Z \in \mathbb{R}^{n \times p}, A(t):=\operatorname{D} f\left(x_{*}(t)\right)$.
- Principle: track $Q(t)$ in $Z(t)=Q(t) R(t)$.
- We have the formula

$$
\dot{Q}=\left(I-Q Q^{T}\right) \dot{Z} R^{-1}+Q S, \quad S_{i, j}= \begin{cases}\left(Q^{T} \dot{Z} R^{-1}\right)_{i, j}, & i>j \\ 0 & i=j \\ -\left(Q^{T} \dot{Z} R^{-1}\right)_{j, i} & i<j\end{cases}
$$

- Hence

$\dot{Q}=\left(I-Q Q^{T}\right) A(t) Q+Q S$,

[^0]

Computing Lyapunov exponents: details of method on Stiefel

- Perturbed system: $\dot{Z}=A(t) Z, Z \in \mathbb{R}^{n \times p}, A(t):=\operatorname{D} f\left(x_{*}(t)\right)$.
- Principle: track $Q(t)$ in $Z(t)=Q(t) R(t)$.
- We have the formula

$$
\dot{Q}=\left(I-Q Q^{T}\right) \dot{Z} R^{-1}+Q S, \quad S_{i, j}= \begin{cases}\left(Q^{T} \dot{Z} R^{-1}\right)_{i, j}, & i>j \\ 0 & i=j \\ -\left(Q^{T} \dot{Z} R^{-1}\right)_{j, i} & i<j\end{cases}
$$

- Hence

$$
\dot{Q}=\left(I-Q Q^{T}\right) A(t) Q+Q S, \quad S_{i, j}= \begin{cases}\left(Q^{T} A(t) Q\right)_{i, j}, & i>j \\ 0 & i=j \\ -\left(Q^{T} A(t) Q\right)_{j, i} & i<j .\end{cases}
$$

- This is a dynamical system on the Stiefel manifold $V_{n, p}$. It can be rewritten as

$$
\dot{Q}=A(t) Q-Q T,
$$

where T is upper triangular.

Computing Lyapunov exponents: details of method on Stiefel

- Perturbed system: $Z=A(t) Z, Z \in \mathbb{R}^{n \times p}, A(t):=\mathrm{D} f\left(x_{*}(t)\right)$.
- Principle: track $Q(t)$ in $Z(t)=Q(t) R(t)$.
- Hence

$$
\dot{Q}=\left(I-Q Q^{T}\right) A(t) Q+Q S, \quad S_{i, j}= \begin{cases}\left(Q^{\top} A(t) Q\right)_{i, j}, & i>j \\ 0 & i=j \\ -\left(Q^{\top} A(t) Q\right)_{j, i} & i<j .\end{cases}
$$

- This is a dynamical system on the Stiefel manifold $V_{n, p}$. It can be rewritten as

$$
\dot{Q}=A(t) Q-Q T,
$$

where T is upper triangular.
leading Lyapunov vectors for the given trajectory of the given
system. The corresponding Lyapunov exponents can be computed as

$$
\lambda_{j}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} T_{j j}(s) \mathrm{d} s, \quad j=1, \ldots, p
$$

Computing Lyapunov exponents: details of method on Stiefel

- Perturbed system: $\dot{Z}=A(t) Z, Z \in \mathbb{R}^{n \times p}, A(t):=\mathrm{D} f\left(x_{*}(t)\right)$.
- Principle: track $Q(t)$ in $Z(t)=Q(t) R(t)$.
- Hence

$$
\dot{Q}=\left(I-Q Q^{\top}\right) A(t) Q+Q S, \quad S_{i, j}= \begin{cases}\left(Q^{\top} A(t) Q\right)_{i, j}, & i>j \\ 0 & i=j \\ -\left(Q^{\top} A(t) Q\right)_{j, i} & i<j .\end{cases}
$$

- This is a dynamical system on the Stiefel manifold $V_{n, p}$. It can be rewritten as

$$
\dot{Q}=A(t) Q-Q T,
$$

where T is upper triangular.

- For almost all initial $Q(0)$, the p columns of $Q(t)$ converge to the p leading Lyapunov vectors for the given trajectory of the given system. The corresponding Lyapunov exponents can be computed as

$$
\lambda_{j}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} T_{j j}(s) \mathrm{d} s, \quad j=1, \ldots, p
$$

Procrustes problem on the Stiefel manifold

- Ref: Lars Eldén and Haesun Park, A Procrustes problem on the Stiefel manifold, Numer. Math. (1999) 82: 599-619.

Procrustes problem on the Stiefel manifold

- Orthogonal Procrustes problem: given $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times p}$. find $Q \in \mathbb{R}^{n \times p}$ that solves

$$
\min _{Q^{T} Q=I_{p}}\|A Q-B\|_{F}^{2}
$$

First-order optimality condition à la manifold:
Consider $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}: Q \mapsto\|A Q-B\|_{F}^{2}$. We have

Procrustes problem on the Stiefel manifold

- Orthogonal Procrustes problem: given $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times p}$. find $Q \in \mathbb{R}^{n \times p}$ that solves

$$
\min _{Q^{T} Q=I_{P}}\|A Q-B\|_{F}^{2} .
$$

- Applications: factor analysis, used notably in psychometrics.

$$
\begin{aligned}
f(Q) & =\operatorname{tr}\left(B^{\top} B\right)+\operatorname{tr}\left(Q^{\top} A^{\top} A Q\right)-2 \operatorname{tr}\left(Q^{\top} A^{\top} B\right) \\
D f(Q)[Q] & =-2 \operatorname{tr}\left(Q^{\top} A^{\top} B\right)+2 \operatorname{tr}\left(Q^{\top} A^{\top} A Q\right), \\
\operatorname{grad} f(Q) & =-2 A^{\top}(B-A Q),
\end{aligned}
$$

where $\operatorname{sym}(A):=\frac{1}{2}\left(A+A^{T}\right)$

Procrustes problem on the Stiefel manifold

- Orthogonal Procrustes problem:

$$
\min _{Q^{T} Q=I_{\rho}}\|A Q-B\|_{F}^{2} .
$$

- First-order optimality condition à la manifold:

Consider $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}: Q \mapsto\|A Q-B\|_{F}^{2}$. We have

$$
\begin{aligned}
& f(Q)=\operatorname{tr}\left(B^{\top} B\right)+\operatorname{tr}\left(Q^{\top} A^{T} A Q\right)-2 \operatorname{tr}\left(Q^{\top} A^{\top} B\right) \\
& \operatorname{Df(}(Q)[\dot{Q}]=-2 \operatorname{tr}\left(\dot{Q}^{\top} A^{\top} B\right)+2 \operatorname{tr}\left(\dot{Q}^{\top} A^{\top} A Q\right), \\
& \operatorname{grad} f(Q)=-2 A^{T}(B-A Q), \\
&\left.\operatorname{grad} f\right|_{v_{n, p}}(Q)=\operatorname{grad} f(Q)-Q \operatorname{sym}\left(Q^{T} \operatorname{grad} f(Q)\right), \\
& \text { where } \operatorname{sym}(A):=\frac{1}{2}\left(A+A^{T}\right) .
\end{aligned}
$$

is given by

if $A^{T} B$ is invertible.

Procrustes problem on the Stiefel manifold

- Orthogonal Procrustes problem:

$$
\min _{Q^{T} Q=I_{P}}\|A Q-B\|_{F}^{2} .
$$

- First-order optimality condition à la manifold:

Consider $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}: Q \mapsto\|A Q-B\|_{F}^{2}$. We have

$$
\begin{aligned}
f(Q) & =\operatorname{tr}\left(B^{\top} B\right)+\operatorname{tr}\left(Q^{\top} A^{T} A Q\right)-2 \operatorname{tr}\left(Q^{T} A^{T} B\right) \\
\operatorname{Df}(Q)[\dot{Q}] & =-2 \operatorname{tr}\left(\dot{Q}^{\top} A^{\top} B\right)+2 \operatorname{tr}\left(\dot{Q}^{\top} A^{\top} A Q\right), \\
\operatorname{grad} f(Q) & =-2 A^{T}(B-A Q), \\
\left.\operatorname{grad} f\right|_{V_{n, p}}(Q) & =\operatorname{grad} f(Q)-Q \operatorname{sym}\left(Q^{T} \operatorname{grad} f(Q)\right),
\end{aligned}
$$

where $\operatorname{sym}(A):=\frac{1}{2}\left(A+A^{T}\right)$.

- Case $p=n$: Then $\left.f\right|_{V_{n, p}}(Q)=c s t-2 \operatorname{tr}\left(Q^{T} A^{T} B\right)$, and the solution is given by

$$
A^{T} B=U \Sigma V^{T}, \quad Q=U V^{\top}
$$

if $A^{T} B$ is invertible.

Joint diagonalization on the Stiefel manifold

- Measurements $X=\left[\begin{array}{cccc}x_{1}\left(t_{1}\right) & x_{1}\left(t_{2}\right) & \cdots & x_{1}\left(t_{f}\right) \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}\left(t_{1}\right) & x_{n}\left(t_{2}\right) & \cdots & x_{n}\left(t_{f}\right)\end{array}\right]$.
> Goal: Find a matrix $W \in \mathbb{R}^{n \times p}$ such that the rows of
look as statistically independent as possible.

Joint diagonalization on the Stiefel manifold

- Measurements $X=\left[\begin{array}{cccc}x_{1}\left(t_{1}\right) & x_{1}\left(t_{2}\right) & \cdots & x_{1}\left(t_{f}\right) \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}\left(t_{1}\right) & x_{n}\left(t_{2}\right) & \cdots & x_{n}\left(t_{f}\right)\end{array}\right]$
- Goal: Find a matrix $W \in \mathbb{R}^{n \times p}$ such that the rows of

$$
Y=W^{\top} X
$$

look as statistically independent as possible.

- Decompose $W=U \Sigma V^{\top}$. We have

Joint diagonalization on the Stiefel manifold

- Measurements $X=\left[\begin{array}{cccc}x_{1}\left(t_{1}\right) & x_{1}\left(t_{2}\right) & \cdots & x_{1}\left(t_{f}\right) \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}\left(t_{1}\right) & x_{n}\left(t_{2}\right) & \cdots & x_{n}\left(t_{f}\right)\end{array}\right]$
- Goal: Find a matrix $W \in \mathbb{R}^{n \times p}$ such that the rows of

$$
Y=W^{T} X
$$

look as statistically independent as possible.

- Decompose $W=U \Sigma V^{T}$. We have

$$
Y=V^{T} \underbrace{\sum U^{\top} X}_{=: \tilde{X}} .
$$

- Whitening: Choose Σ and U such that $\tilde{X} \tilde{X}^{\top}=I_{n}$. Then $Y Y^{T}=V^{T} \tilde{X} \tilde{X}^{T} V=V^{T} V=I_{p}$.
- Independence and dimension reduction: Consider a collection of covariance-like matrix functions $C_{i}(Y)$ such that $C_{i}(Y)=V^{\top} C_{i}(\tilde{X}) V$. Choose V to make the $C_{i}(Y)$'s as diagonal as possible.

Joint diagonalization on the Stiefel manifold

- Goal: Find a matrix $W \in \mathbb{R}^{n \times p}$ such that the rows of

$$
Y=W^{T} X
$$

look as statistically independent as possible.

- Decompose $W=U \Sigma V^{T}$. We have

$$
Y=V^{\top} \underbrace{\sum U^{\top} X}_{=: \tilde{X}} .
$$

- Whitening: Choose Σ and U such that $\tilde{X} \tilde{X}^{T}=I_{n}$. Then $Y Y^{T}=V^{T} \tilde{X} \tilde{X}^{T} V=V^{T} V=I_{p}$.
- Independence and dimension reduction: Consider a collection of covariance-like matrix functions $C_{i}(Y)$ such that $C_{i}(Y)=V^{T} C_{i}(\tilde{X}) V$. Choose V to make the $C_{i}(Y)$'s as diagonal as possible.
- Principle: Solve

Joint diagonalization on the Stiefel manifold

- Goal: Find a matrix $W \in \mathbb{R}^{n \times p}$ such that the rows of

$$
Y=W^{T} X
$$

look as statistically independent as possible.

- Decompose $W=U \Sigma V^{T}$. We have

$$
Y=V^{T} \underbrace{\sum U^{\top} X}_{=: \tilde{x}} .
$$

- Whitening: Choose Σ and U such that $\tilde{X} \tilde{X}^{T}=I_{n}$. Then $Y Y^{T}=V^{T} \tilde{X} \tilde{X}^{T} V=V^{T} V=I_{p}$.
- Independence and dimension reduction: Consider a collection of covariance-like matrix functions $C_{i}(Y)$ such that $C_{i}(Y)=V^{T} C_{i}(\tilde{X}) V$. Choose V to make the $C_{i}(Y)$'s as diagonal as possible.
- Principle: Solve

Joint diagonalization on the Stiefel manifold

- Goal: Find a matrix $W \in \mathbb{R}^{n \times p}$ such that the rows of

$$
Y=W^{\top} X
$$

look as statistically independent as possible.

- Decompose $W=U \Sigma V^{T}$. We have

$$
Y=V^{T} \underbrace{\sum U^{\top} X}_{=: \tilde{x}} .
$$

- Whitening: Choose Σ and U such that $\tilde{X} \tilde{X}^{T}=I_{n}$. Then $Y Y^{T}=V^{T} \tilde{X} \tilde{X}^{T} V=V^{T} V=I_{p}$.
- Independence and dimension reduction: Consider a collection of covariance-like matrix functions $C_{i}(Y)$ such that $C_{i}(Y)=V^{T} C_{i}(\tilde{X}) V$. Choose V to make the $C_{i}(Y)$'s as diagonal as possible.
- Principle: Solve

$$
\max _{V^{T} V=I_{p}} \sum_{i=1}^{N}\left\|\operatorname{diag}\left(V^{T} C_{i}(\tilde{X}) V\right)\right\|_{F}^{2}
$$

Joint diagonalization on the Stiefel manifold: application

The application is blind source separation.
Two mixed pictures are given as input to a blind source separation algorithm based on a trust-region method on $V_{2,2}$.

Joint diagonalization on the Stiefel manifold: application: input

Joint diagonalization on the Stiefel manifold: application: output

Some References

- E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv. 8, no. 1, 305-353, 1935.
- U. Helmke, J. B. Moore, Optimization and Dynamical Systems, Springer, 1994.
- A. Edelman, T. Arias, S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20(2), pp. 303-353, 1998.
- L. Eldén, H. Park, A Procrustes problem on the Stiefel manifold, Numer. Math. 82: 599-619, 1999.
- T. Bridges, S. Reich, Computing Lyapunov exponents on a Stiefel manifold, Physica D 156, pp. 219-238, 2001.
- Y. Nishimori, S. Akaho, Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold, Neurocomputing 67: 106-135, 2005.
- A. M. Bloch, P. E. Crouch, A. K. Sanyal, A variational problem on Stiefel manifolds, Nonlinearity 19, pp. 2247-2276, 2006.
- F. Tompkins, P. J. Wolfe, Bayesian Filtering on the Stiefel Manifold, 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007.
- P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008.
- F. J. Theis, T. P. Cason, P.-A. Absil, Soft Dimension Reduction for ICA by Joint Diagonalization on the Stiefel Manifold, Proc. ICA 2009.

Applications

[^0]: rewritten as

