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Abstract

A numerical algorithm is proposed for computing an extreme eigenpair of a sym-
metric/positive-definite matrix pencil (A,B). The leftmost or the rightmost eigenvalue
can be targeted. Knowledge of (A,B) is only required through a routine that performs
matrix-vector products. The method has excellent global convergence properties and its
local rate of convergence is superlinear. It is based on a constrained truncated-CG trust-
region strategy to optimize the Rayleigh quotient, in the framework of a recently-proposed
trust-region scheme on Riemannian manifolds.
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1 Introduction

The generalized eigenvalue problem
Ax = λBx,

where A and B are n×n real symmetric matrices with B positive definite, arises in many sci-
entific applications [Saa92]. The symmetric/positive-definite pencil (A, B) is known to admit
n real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn with associated B-orthonormal eigenvectors
v1, . . . , vn (see [Ste01]). We call (λ1, v1) and (λn, vn) the leftmost and rightmost eigenpairs,
respectively.

Single vector iterations [Par80, BDDR00] are the simplest methods for the eigenproblem.
It is worthwhile considering them briefly, as their advantages and drawbacks are ubiquitous
in eigencomputation methods. If the matrix A is positive definite, the power method

Bxk+1 = Axkτk, (1)
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where τk is a normalizing factor, converges to the principal eigenvector vn of (A, B) from
almost all initial points; but the rate of convergence is only linear and becomes very slow
when the eigenvalues of (A, B) are not well separated. Similarly, an inverse iteration

(A − µB)xk+1 = Bxkτk, (2)

with a shift µ that approximates λ1, converges linearly to v1 from almost all initial conditions.
A higher rate of convergence can be obtained using a feedback-like process that makes the
shift depend on the current iterate. When the shift is chosen as the Rayleigh quotient

R
n
0 → R : y 7→

yT Ay

yT By
, (3)

where R
n
0 denotes R

n without the origin, evaluated at xk, then a cubic rate of convergence
is obtained, but global convergence is lost in the sense that the iteration converges to the
“nearest” eigenvector; we refer e.g. to [Par80, BS89, ASVM04] for more details. If n is large,
then only an approximate solution of (2) is sought, and the key question is to determine how
crudely the solution can be approximated without tampering (too much) with the convergence
of the exact iteration; for recent advances, see [SP99, GY00, SE02, vdE02, Not03, KN03].

It is natural to think of combining the individual advantages of these simple methods and
obtain an iteration for which iterates are cheap to compute, convergence holds globally and
the rate of convergence is superlinear. There is evidence that such a method can come from
an optimization approach; indeed, for the problem of finding a minimum of a smooth cost
function on the Euclidean space, the trust-region scheme proposed by Steihaug [Ste83] and
Toint [Toi81], where the trust-region subproblems are approximately solved using a truncated
CG inner iteration, possesses a similar combination of advantages.

It is well known (see for example [ST00]) that the leftmost and rightmost eigenvectors of
(A, B) can be expressed as minimizers and maximizers of the Rayleigh quotient (3)—which
thus plays the role of a cost function. More precisely, assuming that λ1 < λ2 and λn−1 < λn,
one has

vT
1 Av1

vT
1 Bv1

<
yT Ay

yT By
<

vT
n Avn

vT
n Bvn

for all y that are collinear with neither v1 nor vn. The difficulty is that the optimizers
of (3) are not isolated: all the points αv1, α ∈ R0, are minimizers, and all the points αvn,
α ∈ R0, are maximizers. This is a cause of major difficulties of practical and theoretical
nature; for example, applying the Newton method to the Rayleigh quotient (3) in R

n yields
the iteration mapping y 7→ 2y, from which no information can be drawn. A remedy to this
difficulty is to impose some normalization condition on y that picks typically one or two
allowed points in each (or almost each) line {αy : α ∈ R

n}. This was recognized in the early
work of Bradbury and Fletcher [BF66] where several normalization conditions were considered
(such as ‖y‖1 = 1, ‖y‖2 = 1 and ‖y‖∞ = 1) and a nonlinear conjugate-gradient optimization
approach was proposed. For the generalized eigenproblem, we use the normalization ‖y‖B = 1,
where ‖y‖B :=

√
yT By; this particular normalization yields simplifications in the forthcoming

developments. The optimization problem is thus to minimize or maximize the cost function

f : {y ∈ R
n : yT By = 1} → R : y 7→

yT Ay

yT By
. (4)

The minimizers are ±v1 and the maximizers are ±vn, i.e., the eigenvectors of (A, B) as-
sociated with the extreme eigenvalues. The remaining issue is to adapt the classical (i.e.,
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in R
n) Steihaug approach to the constrained minimization of f . This task was carried out

in [ABG04b, ABG05] for the more general situation of a smooth cost function defined on a
Riemannian manifold.

The purpose of this paper is to apply the general Riemannian trust-region algorithm
of [ABG04b, ABG05] to the minimization of the Rayleigh quotient cost function (4). This
yields a numerical algorithm that automatically retains the good global and local convergence
properties of the general scheme. In particular, the property of convergence to stationary
points of the cost function for all initial conditions translates into convergence to eigenspaces,
since the stationary points of (4) are the eigenvectors of (A, B). Moreover, the instability of
the saddle points and local maxima turns into instability of all but the leftmost eigenvector
±v1. Furthermore, similar to the classical truncated-CG-based trust-region, the Riemannian
algorithm of [ABG04b, ABG05], with a suitably-chosen stopping criterion, converges super-
linearly to local minimizers of the cost function; this means that the proposed algorithm
converges locally superlinearly to the leftmost eigenvector ±v1. The precise statements on
convergence are given in Theorem 3.1. We will also see that since the algorithm is based
on CG, it only requires a routine that returns Ax and Bx given x (the algorithm is thus
“matrix-free”), along with storage space for a few n-vectors and a few scalars. Therefore, the
method is particularly relevant for very large-scale problems.

Since the algorithm does not assume positive definiteness of A, it can also be applied to
(−A, B) and compute the rightmost eigenpair of (A, B) with the same convergence properties.
It is also possible to compute a few extreme eigenvectors by using a block version of the
algorithm [ABG04a] or by relying on deflation techniques [Par80].

Of course, with B = I the generalized eigenproblem reduces to the standard eigenproblem.
However, in contrast to many methods that tackle the generalized eigenproblem by reducing
it to a standard one, the proposed method deals naturally with the generalized eigenproblem;
therefore, there is no interest in considering the case B = I separately.

We point out that the link with the deflation-accelerated CG (DACG) algorithm of [GSF92,
BGP97] is not as strong as it may seem. The DACG method minimizes the Rayleigh quotient
using a nonlinear CG method, whereas the proposed algorithm uses a truncated linear CG
as an inner iteration for approximately minimizing a model of the Rayleigh quotient within a
trust-region. In this respect, the proposed algorithm is more closely related to inexact New-
ton methods. The inexact scheme not only reduces the computational load while preserving
superlinear convergence, but it also yields excellent global convergence properties that the
exact Newton does not possess.

The proposed algorithm does have close connections with some existing eigenvalue algo-
rithms. In particular, it has striking similarities with a variant of the Jacobi-Davidson method
as analyzed by Notay [Not02]. The methods, however, differ on important points (see Sec-
tion 4.1). The proposed method also relates to the Trace Minimization method of Sameh and
Wisniewski [SW82, ST00]. We believe that the model trust region concept introduced in the
proposed algorithm can be combined with other existing strategies to obtain even more effi-
cient eigenvalue algorithms; in this respect, see [ABGS05] for a combination of the proposed
algorithm and Basic Tracemin within the framework of adaptive model-based methods.

The paper is organized as follows. The algorithm is derived in Section 2. Its convergence
properties are studied in Section 3. Some connections with other eigenvalue methods are
briefly described in Section 4. Promising numerical experiments are presented in Section 5.
Conclusions are drawn in Section 6.
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2 The Algorithm

The proposed method was initially derived from an algorithm for optimization on mani-
folds [ABG04b]. However, it can be presented with little if any reference to optimization
and differential geometry, as discussed in this section. We return to the connection with the
Riemannian Trust-Region method of [ABG04b] in Section 3 when we study the convergence
properties of the algorithm.

Let (A, B) be a symmetric/positive-definite pencil, with (λ1, v1) the leftmost eigenpair.
We consider the problem of computing the minimizer ±v1 of the Rayleigh quotient f (4)
constrained to the set {y : yT By = 1} by an iterative method evolving on {y : yT By = 1}.
Throughout the discussion, y denotes the current iterate. Consider the function

f̂y(s) := f

(
y + s

‖y + s‖B

)
=

(y + s)T A(y + s)

(y + s)T B(y + s)
, yT Bs = 0, (5)

where s can be thought of as a correction to the current iterate y. The condition yT Bs = 0
imposes that s be tangent to the set {y : yT By = 1}. Denoting by

Py = I − By(yT B2y)−1yT B (6)

the orthogonal projector onto {s : yT Bs = 0} and denoting by 〈u, v〉 = uT v the inner product
on the Euclidean space R

n, one has

f̂y(s) =
yT Ay

yT By
+ 2

yT As

yT By
+

1

yT By

(
sT As −

yT Ay

yT By
sT Bs

)
+ O

(
‖s‖3

)

= f(y) + 〈2PAy, s〉 +
1

2
〈2Py(A − f(y)B)Pys, s〉 + O

(
‖s‖3

)
. (7)

Define the quadratic model

my(s) = f(y) + 〈2PyAy, s〉 +
1

2
〈Hys, s〉, yT Bs = 0, (8)

where Hy : {s : yT Bs = 0} → {s : yT Bs = 0} is some symmetric operator. It follows from (7)

that the model my agrees with f̂y to order one. A popular choice is the form

Hy = 2Py(A − σB)Py, (9)

where σ is a scalar. When the operator Hy is chosen as the Hessian

Hessy : {s : yT Bs = 0} → {s : yT Bs = 0} : s 7→ 2Py(A − f(y)B)Pys, (10)

the model (8) becomes the Newton model

mN
y (s) = f(y) + 〈2PyAy, s〉 +

1

2
〈2Py(A − f(y)B)Pys, s〉, yT Bs = 0, (11)

which agrees with f̂y to order two. We will see in the convergence analysis (Section 3) that
global convergence holds with few assumptions on H, while the Newton model—rather, a
sufficiently accurate approximation thereof—is required for superlinear convergence to hold.
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Assuming that Hy is invertible, the model my(s) admits one and only one stationary point
s∗. In particular, if the Hessian operator (10) is invertible, then the Newton model mN

y (s)
admits one and only one stationary point s∗, solution of

PyAy + Py(A − f(y)B)Pys = 0, yT Bs = 0. (12)

Depending on whether the Hessian operator (10) is positive definite, negative definite, or
neither, the stationary point s∗ is a minimum, maximum, or saddle point of the Newton
model mN

y (s), respectively. The “pure” Newton approach [Smi94] consists in computing
the update s∗ and warping this update back onto the manifold, for example as y+ = (y +
s∗)/‖y + s∗‖B. This development is also presented in [WSS98] as an application of Tapia’s
algorithm for constrained optimization [Tap74], and it is closely related to the rationale
in [SW82, ST00] (with an fundamental difference explained in Section 4). It is also well
known [Shu86, AMSV02] that this pure Newton method is equivalent to the Rayleigh quotient
iteration, whose convergence behaviour is well understood [BS89]. The pure Newton approach,
however, is limited by two difficulties. First, while our objective is to minimize the Rayleigh
quotient (4), it is not guaranteed that the Newton iteration will converge to a minimizer;
depending on the initial condition, it may converge to a saddle point (interior eigenvector) or
a maximizer (rightmost eigenvector). Second, when the iterate is far away from the solution,
solving the Newton equation (12) accurately is a waste of computational effort. Therefore,
the Newton equation is usually solved approximately using iterative solvers. The approximate
solution, however, has to be sufficiently accurate for the (superlinear) convergence of the pure
algorithm to be preserved; recent related work include [SP99, GY00, SE02, vdE02, Not03,
KN03].

This paper innovates by proposing an inner iteration scheme that addresses these two
difficulties. The inner iteration, which directly stems from the truncated-CG trust-region
method of Steihaug [Ste83], proceeds as a classical CG enhanced with a dedicated stopping
criterion.

Steihaug’s approach relies on the following observations. Consider the quadratic model
my(s) given in (8) and assume for a moment that the chosen operator Hy is positive-definite.
Recall that CG (which can be viewed as an optimization algorithm for the quadratic model
my [GV96]) builds a sequence {sj} of approximate minimizers of my, a sequence {dj} of
search directions and a sequence {rj} of residuals. These search directions dj are descent
directions for the quadratic model my(s) at sj . The inner iterate sj+1 is the minimizer of
my(s) along the line sj + αdj , hence my(sj+1) ≤ my(sj). Finally, ‖sj+1‖ > ‖sj‖ where ‖ · ‖
denotes the standard 2-norm.

Steihaug proposes three termination rules which work along the following lines.
(i) The purpose of the model my(s) is to approximate f̂y(s) by a simpler function. As such,

when ‖s‖ gets large, the model loses its ability to closely match f̂y(s). Therefore, the CG
process is terminated when it crosses the boundary of the trust-region {s : ‖s‖ ≤ ∆}, where
∆ is the trust-region radius inherited from the previous outer iteration step, and the point
s = sj + τdj , with τ > 0 and ‖s‖ = ∆, is returned.
(ii) The operator Hy may not be positive-definite. In particular, the Hessian (10) is positive-
definite only when the current iterate y is sufficiently close to the minimizers ±v1. Conse-
quently, it may happen that a search direction dj is a direction of nonpositive curvature for
the model my(s), namely, dT

j Hydj ≤ 0; then the minimizer of my along the direction dj is
at infinity. This case is considered separately in the iteration before α is computed, and the
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point s = sj + τdj , with τ > 0 and ‖s‖ = ∆, is returned.
(iii) Finally, the CG process is terminated when ‖ri‖/‖r0‖ ≤ ξ for some ξ. With a view on
preserving the superlinear convergence of the exact algorithm, following [CGT00, §7.5.1], we
propose instead a stopping criterion of the form

‖rj‖ ≤ ‖r0‖min
(
‖r0‖

θ, κ
)

(13)

for some positive constants θ and κ.
According to these termination criteria, the truncated CG process returns with an ap-

proximate minimizer s̃ of my(s) constrained to the trust-region {s : ‖s‖ ≤ ∆}. A complete
algorithm is obtained by embedding the inner process in a trust-region framework. The de-
cision to accept or not the update s̃ and to modify the trust-region radius is based on the
quotient

ρ =
f̂y(0) − f̂y(s̃)

my(0) − my(s̃)
(14)

which compares the decrease predicted by the model with the decrease actually observed on
f̂y. If ρ is very small, then the model at s̃ is a very inaccurate appromation of f̂y(s̃): the
step is rejected and the trust-region radius is reduced. If ρ is small but less dramatically so,
then the step is accepted but the trust-region radius is reduced. If ρ is close to 1, then there
is a good agreement between the model and the function over the step, and the trust-region
radius can be expanded.

These considerations yield the following method, which is the numerical algorithm ob-
tained when applying the Riemannian trust-region scheme presented and analyzed in [ABG04b,
ABG05] to the Rayleigh quotient cost function (4), using the retraction (which defines how
the manifold is locally unwarped onto the tangent space at the current iterate) given by
Ry(s) = (y + s)/‖y + s‖B.

Algorithm 1 (outer iteration – trust-region)
Data: symmetric n × n matrices A and B, with B positive definite.
Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ (0, 1

4).
Input: initial iterate x0 ∈ {y : yT By = 1}.
Output: sequence of iterates {xk} in {y : yT By = 1}.
for k = 0, 1, 2, . . .

• Obtain sk using the Steihaug-Toint truncated conjugate-gradient method (Algorithm 2)
to approximately solve the trust-region subproblem

min
xT

k
Bs=0

mxk
(s) s.t. ‖s‖ ≤ ∆k, (15)

where m is defined in (8).

• Evaluate

ρk =
f̂xk

(0) − f̂xk
(sk)

mxk
(0) − mxk

(sk)
(16)

where f̂ is defined in (5).
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• Update the trust-region radius:
if ρk < 1

4
∆k+1 = 1

4∆k

else if ρk > 3
4 and ‖sk‖ = ∆k

∆k+1 = min(2∆k, ∆̄)
else

∆k+1 = ∆k.

• Update the iterate:
if ρk > ρ′

xk+1 = (xk + sk)/‖xk + sk‖B (17)

else
xk+1 = xk.

end (for)

Algorithm 2 (inner iteration – truncated CG)
Set s0 = 0, r0 = Pxk

Axk = Axk − Bxk(x
T
k B2xk)

−1xT
k BAxk, δ0 = −r0;

for j = 0, 1, 2, . . . until a stopping criterion (13) is satisfied, perform the following operations,
where 〈, 〉 denotes the standard inner product and Hxk

denotes the operator chosen in the
model (8).

if 〈δj ,Hxk
δj〉 ≤ 0

Compute τ such that s = sj + τδj minimizes m(s) in (8) and satisfies ‖s‖ = ∆;
return s;

Set αj = 〈rj , rj〉/〈δj ,Hxk
δj〉;

Set sj+1 = sj + αjδj;
if ‖sj+1‖ ≥ ∆

Compute τ ≥ 0 such that s = sj + τδj satisfies ‖s‖ = ∆;
return s;

Set rj+1 = rj + αjHxk
δj;

Set βj+1 = 〈rj+1, rj+1〉/〈rj , rj〉;
Set δj+1 = −rj+1 + βj+1δj;

end (for).

Finally, we mention that, as a CG process, the inner iteration (Algorithm 2) lends itself
nicely to preconditioning. Assume that an approximation PyKPy is available for the operator
Hy, where K is such that systems Kx̃ = x can be solved efficiently. The use of PyKPy

as a preconditioner is made possible by the following result due to Olsen et al. [OJS90] (or
see [SvdVM98]): If yT BK−1By 6= 0 and yT Bv = 0, then the solution u of PyKPyu = v
subject to yT Bu = 0 is given by u =

(
I − ỹ(yT Bỹ)−1yT B

)
ṽ, where ỹ and ṽ are solutions of

Kỹ = By and Kṽ = v. If the preconditioner PyKPy is used in the inner CG process, then the
property that the length of the update vector monotonically increases becomes true in the K
norm, i.e., ‖sj+1‖K > ‖sj‖K (see [Ste83]). In order to preserve the property that the inner
iterates never re-enter the trust-region, the trust-region is then defined as {s : ‖s‖K ≤ ∆}.

Note that some papers [SS98, vdE02] refer to preconditioning as replacing the Hessian
in the correction equation (12) by some approximation. This is not what is meant here:
for example, without stopping criteria, and assuming that the Hessian operator (10) is pos-
itive definite, the preconditioned CG for the Newton model (11) would compute—in exact
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arithmetic—the exact solution of the Newton equation (12) in a finite number of steps. How-
ever, both approaches—solving exactly an inexact Newton equation (quasi-Newton approach)
or solving approximately the exact Newton equation (inexact Newton approach)—are closely
related [Căt05].

3 Convergence analysis

The global and local convergence properties of trust-region schemes, including the truncated
CG variant of Steihaug and Toint, have been studied thoroughly in the literature; see [CGT00,
NW99] and references therein. However, the method proposed in the previous section differs
from a classical trust-region algorithm in order to accommodate the fact that the optimization
problem is not defined on the Euclidean space but on the non-Euclidean set {y : yT By = 1}.
In particular, the “unwarped” cost function f̂y(s) depends on the current iterate y, and the
update defined by (17) is different from the classical additive update.

Fortunately, the proposed method is an application of the general Riemannian trust-
region algorithm [ABG04b], whose convergence was studied in [ABG04a, ABG05]: classical
assumptions were rewritten in a way that makes sense on manifolds and it was proven that
the convergence results of the classical trust-region schemes are preserved, mutatis mutandis.
This yields the following statement for the proposed algorithm.

Theorem 3.1 Let (A, B) be an n × n symmetric/positive-definite matrix pencil with eigen-
values λ1 < λ2 ≤ . . . ≤ λn−1 ≤ λn and an associated B-orthonormal basis of eigenvectors
(v1, . . . , vn). Let Si = {y : Ay = λiBy, yT By = 1} denote the intersection of the eigenspace
of (A, B) associated to λi with the set {y : yT By = 1}. Assume that the operator Hy chosen
in (8) is bounded over {y : yT By = 1}.
(i) Let {xk} be a sequence of iterates generated by Algorithm 1. Then {xk} converges to the
eigenspace of (A, B) associated to one of its eigenvalues. That is, there exists i such that
limk→∞ dist(xk,Si) = 0.
(ii) Only the set S1 = ±v1 is stable. More precisely, given i ∈ {2, . . . , n} and ǫ > 0, there ex-
ists x0, ‖x0‖B = 1, with dist(x0,Si) < ǫ such that the sequence {xk} generated by Algorithm 1
from the initial condition x0, converges to an Sj with λj < λi.
(iii) Suppose moreover that the choice of Hy in (8) is such that ‖Hy − 2Py(A− f(y)B)Py‖ ≤
β2‖PyAy‖ for some constant β2, where f is the Rayleigh quotient (4) and Py is the projec-
tor (6). Then there exists c > 0 such that, for all sequences {xk} generated by Algorithm 1
converging to S1, there exists K > 0 such that for all k > K,

dist(xk+1,S1) ≤ c (dist(xk,S1))
min{θ+1,2} (18)

with θ > 0 as in (13).

Proof. (i) Algorithm 1 is the RTR-tCG algorithm of [ABG05] applied to the Rayleigh quotient
cost function (4) on the manifold {y : yT By = 1} equipped with the retraction Ry(s) =
(y+s)/‖y+s‖B. The cost function and the retraction are smooth, the manifold is compact, the
truncated CG scheme satisfies the Cauchy decrease condition, and the parameter ρ′ belongs
to (0, 1

4). Therefore all the assumptions of [ABG05, Th. 4.4] are satisfied. Consequently, the
gradient of f converges to zero, that is, Pxk

Axk → 0. This means that every limit point
of {xk} is an eigenvector of (A, B). Moreover, since the Rayleigh quotient f given in (4)
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is nonincreasing over the whole sequence {xk}, it follows that all the limit points have the
same value of f . Since f evaluated at an eigenvector returns the corresponding eigenvalue,
it follows that all the limit points of {xk} are eigenvectors of (A, B) corresponding to the
same eigenvalue; that is, all limit points belong to some Si. The fact that the sequence {xk}
converges to its limit set follows from boundedness of the manifold by a classical contradiction
argument. Indeed, suppose that this is not the case; then there is an ǫ > 0 and an infinite
subsequence {xkj

} such that dist(xkj
,Sj) > ǫ. Since the sequence xkj

is bounded, it contains
a convergent subsequence, whose limit point must belong to Si and at the same time be at a
distance at least ǫ from Si, a contradiction.

(ii) It is well known (see, e.g., [ST00, AMSV02]) that the eigenvectors related to λ2, . . . , λn

are saddle points or maxima of the Rayleigh quotient f and that the eigenvector related to λ1

is a minimum of f . Since f is nonincreasing over the sequences generated by the algorithm,
the result follows from (i).

(iii) The cost function and the retraction are smooth; the manifold is compact; 2PyAy is

the gradient of f at y; 2Py(A − f(y)B)Py is the Hessian of f̂y at the origin; the assumption
λ1 < λ2 ensures that ±v1 is a nondegenerate local minimum of f (the Hessian is positive
definite). Consequently, all the assumptions of [ABG05, Th. 4.13] hold and the result follows.
�

Strictly speaking, dist(u, v) denotes the geodesic distance on {y : yT By = 1} between two
points u and v, which is the length of the shortest curve on {y : yT By = 1} that joins u
and v. However, this distance is asymptotically equivalent to the more classical Euclidean
distance ‖u − v‖ in the embedding space R

n. That is, for all u with ‖u‖B = 1, there exist
constants c1, c2 and ǫ such that, for all v that satisfies ‖v‖B = 1 and ‖v − u‖ < ǫ, one has
c1‖v−u‖ ≤ dist(u, v) ≤ c2‖v−u‖. Since all the statements involving “dist” in the convergence
results are asymptotic, all the occurrences of dist can be replaced by the Euclidean distance.

4 Links with other methods

Not surprisingly, the proposed method relates to several Newton, CG or Krylov eigenvalue
methods [ABG04a]. It can be anticipated that the strong convergence results presented in
Section 3 will help understand the workings of several of these methods. In this section, we
briefly consider the case of two well-known and successful methods whose workings are still
the object of investigation in the literature.

4.1 Jacobi-Davidson

The proposed algorithm relates to the Simplified Jacobi-Davidson (JD) analyzed by Notay
in [Not02] for the case B = I. In Simplified JD, the next iterate is obtained by adding to the
current iterate y the computed approximate solution to the correction equation

(I − yyT )(A − σI)(I − yyT )s = −(I − yyT )Ay, yT s = 0, (19)

where the shift σ is selected either as the Rayleigh quotient θ = yT Ay or as some ‘target’
τ less than the smallest eigenvalue λ1. Simplified JD is thus a JD method [SV96] without
subspace acceleration. The approximate solution to the correction equation (19) is obtained
using a CG iteration with a specific termination strategy [Not02, §4].
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Simplified JD and the proposed algorithm are closely related. For the choice σ = θ and
B = I, the exact solution to the correction equation (19) is equal to the stationary point of
the Newton model (11), since (12) and (19) are identical. Under these assumptions, from a
given iterate y, the inner iteration of both algorithms start generating identical sequences,
because they both rely on the same CG process. The two approaches, however, differ on the
use of σ and on the stopping strategy for the inner CG iteration, and this has important
theoretical and practical consequences that we now describe.

The proposed algorithm terminates using a trust-region strategy combined with a residual-
based condition (13). The trust-region strategy yields the global convergence properties of
Theorem 3.1-(i,ii), which does not seem to have equivalents in the existing JD-related litera-
ture. The trust-region also helps avoid a waste of computational effort when the eigenvector
approximations are not yet accurate. The residual-based stopping condition (13) comes di-
rectly from general concepts without any effort to adapt it to the Rayleigh quotient minimiza-
tion. In contrast, the stopping criterion in [Not02] relies on a careful analysis of the relation
between the norm of the residuals in the eigenvector approximations and in the residuals in
the CG iterates [Not02, (12)]. However, we found in preliminary numerical experiments that
the stopping criterion (13) performs better than the stopping criterion [Not02, (27-28)]. A
possible explanation is that the inner CG process strives to reduce to zero the model residual
involved in (13), and not the residual of the actual cost function computed by [Not02, (12)].
A combination of criteria based on [Not02, (12)] and on (13) may yield better results. This
clearly deserves further investigation.

The other difference concerns the use of σ. The classical CG breaks down in the presence of
an indefinite Hessian, and the possibility of choosing σ = τ provides a way out by forcing the
operator in the correction equation (19) to be positive definite. In contrast, indefiniteness of
the Hessian is natually taken care of in the Steihaug trust-region CG: when a direction of neg-
ative curvature is encountered, the inner iteration hits the trust-region boundary and returns
the obtained point. Therefore, the proposed algorithm can use the shift σ = θ throughout,
which corresponds to using the Newton model given in (11). This does not mean that the
trust-region approach cannot benefit from using other models. Indeed, the global convergence
theory (Section 3) holds regardless of the choice of the quadratic term in the model m; as a
consequence, global convergence holds for any value of σ in (9). For local superlinear conver-
gence to occur, however, the model Hessian Hy has to be a sufficiently good approximation
of the exact Hessian (see Theorem 3.1-(iii)); it is thus a good idea to select the model Hessian
as the exact Hessian (10) (that is, σ = θ) when the iteration approaches the solution. This
points to an adaptive model strategy that was recently investigated in [ABGS05].

We now return to the subspace acceleration technique that was left out in Simplified JD.
Much as the complete JD (i.e., with subspace acceleration) is faster in general than Simplified
JD, the proposed algorithm is generally faster with a subspace acceleration enhancement. A
difference is that the proposed algorithm converges globally (Theorem 3.1) without subspace
acceleration, while Simplified JD benefits from subspace acceleration for global convergence
purposes: selecting the leftmost Ritz pair from the acceleration subspace favors convergence
to the leftmost eigenpair and makes the choice of the shift σ less critical, although no global
convergence result in the form of Theorem 3.1-(i,ii) seems to be available yet.

We conclude with a remark concerning the projector (6) appearing in the model (8)
and in the Hessian operator (10). This is an orthogonal projector, in contrast to the oblique
projector on which JD for B 6= I usually relies (see e.g. [SvdV00]). The choice of an orthogonal
projection comes from geometric considerations: by definition, the gradient PyAy appearing
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in (8) must belong to the tangent space to the manifold, and the Hessian operator (10)
must be from the tangent space into itself. Consequently, the projector (6) must be into
the tangent space of {y : yT By = 1}, which is (By)⊥. This has favorable consequences:
orthogonal projectors are numerically safer, and the resulting operator 2Py(A − f(y)B)Py

maps the space (By)⊥ to itself, which is not the case in the usual JD formulation, thus
making the use of a preconditioner unavoidable if a Krylov solver is used.

4.2 Tracemin

Sameh and Wisniewski [SW82] and Sameh and Tong [ST00] proposed and analyzed a trace
minimization (Tracemin) algorithm for computing a few (p) minor eigenpairs of a symmetric
positive definite matrix pencil (A, B). For simplicity, we consider the algorithm for the
case p = 1; block versions of Algorithm 1-2 and the Tracemin algorithm will be considered
elsewhere. The basic Tracemin method can be viewed as using a particular choice of the
model (8):

mTM
y (s) = yT Ay + 2yT As + sT As

= yT Ay + 〈2PAy, s〉 +
1

2
〈2PAPs, s〉, yT Bs = 0.

(20)

Comparing with the Newton model (11), we see that there is a “missing term” in the second-
order part. This indicates why the simple Tracemin method does not reach superlinear
convergence. On the other hand, assuming that A is also positive definite, the model mTM

y (s)

has an interesting beneficial feature: the exact minimizer s⋆ of (20) satisfies f̂y(s⋆) ≤ f̂y(0),
i.e.,

(y + s⋆)
T

‖y + s⋆‖B

A
(y + s⋆)

‖y + s⋆‖B

≤
yT

‖y‖B

A
y

‖y‖B

,

and moreover, if CG is used to compute s⋆, then the above inequality is satisfied by all
intermediate iterates of the CG process [ST00, Lemma 3.2]. Therefore, the basic Tracemin
method is in fact a descent method for the Rayleigh quotient that is robust with respect to
inexact solves.

To improve the speed of convergence of the iteration, Sameh and Wisniewski [SW82] and
Sameh and Tong [ST00] proposed a dynamic shift technique that appears to be effective in
practice but whose workings are not yet rigorously understood. The results of this paper may
shed some light on this issue, since the “missing term” in (20) is simply a Rayleigh quotient
shift.

5 Numerical experiments

In this section, we report on preliminary numerical experiments that show the strong potential
of Algorithm 1-2 as a competitive method for computing extreme eigenpairs of symmetric/positive-
definite matrix pencils.

The first set of experiments was conducted to illustrate the convergence properties pre-
sented in Section 3. The matrices A and B were chosen from random distributions and the
initial condition x0 was chosen from a normal distribution and B-normalized. More than 104

such experiments were conducted and convergence to the leftmost eigenvector v1 was system-
atically observed. The θ parameter in the inner stopping criterion (13) was set to θ = 1.0,
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and the observed results were compatible with the (at least) quadratic convergence proven
in Section 3. In fact, due to the symmetry of the problem, it can be argued that the rate of
convergence is actually min{1 + θ, 3}, and this is supported by the numerical experiments.
We refer to [ABG04a] for details.

A second set of experiments was conducted to compare Algorithm 1-2 with the matrix-free
Krylov subspace method for the generalized eigenproblem proposed by Golub and Ye [GY02,
Alg. 1] (referred to as the GY method). Note that the use of preconditioners is not considered
here. These preliminary experiments were conducted on matrices of moderate size (n = 100);
since the proposed algorithm is matrix-free, it is suitable for dealing with very-large-scale
problems, but the influence of finite-precision arithmetic deserves further theoretical and
numerical investigation.

In each experiment, a symmetric positive-definite matrix A was generated with specific
eigenvalues. The symmetric positive definite matrix B was chosen as B = SST + 1000I,
where S was a square matrix with elements chosen from a standard normal distribution.
This choice allowed the eigenvalue distribution of the pencil to be essentially determined via
A, while testing the ability of the method to operate on a non-trivial B. For each generated
problem (A, B), the proposed method was applied using the Newton model (11) and three
different values of the θ parameter from criterion (13): θ = 0.5, θ = 1.0, and θ = 1.5. The
GY method was allowed to form a basis of size m = 6. This number was chosen so that both
of the algorithms were allowed an equal amount of memory. The distance to the solution is
measured by computing the angle between the current iterate and the leftmost eigenvector of
the pencil.

Figure 1(a) shows the results of the first test, where the gap between the leftmost two

eigenvalues is small ( λ2(A,B)−λ1(A,B)
λ100(A,B)−λ1(A,B) ≈ .009)(Figure 1(b)). The superlinear convergence

of the proposed algorithm is clearly seen. Moreover, we see that in terms of the number
of matrix-vector multiplications (which can be considered as a consistent measure of the
computational cost of both algorithms), the proposed method outperforms the GY method,
even for mild accuracy requirements.

Figure 1(c) shows the results of a second test, where the gap between the leftmost two

eigenvalues was much larger ( λ2(A,B)−λ1(A,B)
λ100(A,B)−λ1(A,B) ≈ .47)(Figure 1(d)). The numerical perfor-

mance, in term of matrix-vector multiplications, has improved for both algorithms. While
the GY method experienced greater improvement in performance due to the larger gap, the
proposed method performed comparably well.

Also note that while there is some variation in the performance of the proposed method
for different values of the stopping parameter θ, the performance is not dramatically sensitive
to this parameter. This is important, because it suggests that the choice of θ be more easily
made than is often the case with parameter-based methods in the literature in order to provide
adequate performance of the algorithm across varying matrices A and B.

Note that the GY method has been shown to yield faster convergence when a precondi-
tioner is used; future experiments will consider the relative performance of the preconditioned
GY method against a preconditioned version of the proposed method.

6 Conclusion and future work

We have proposed a “matrix-free” method for computing the leftmost eigenpair of a symmetric/positive-
definite matrix pencil (A, B). The algorithm stems from a method of optimization on Rie-
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Figure 1: Numerical efficiency of Algorithm 1-2 (with θ = 0.5, 1.0 and 1.5 in (13)) and the
Krylov subspace method of [GY02, Alg. 1]. (a,c) plots the distance to the solution versus the
number of matrix-vector products by A and B. (b,d) illustrates the spectrum of the pencil
A − λB.

mannian manifolds [ABG04b, ABG05], from which it inherits good and well-understood lo-
cal and global convergence properties (Theorem 3.1). It employs a trust-region strategy
where the trust-region subproblems are solved approximately using a truncated conjugate-
gradient method. The algorithm can be applied to (−A, B) to compute the eigenvector cor-
responding to the rightmost eigenvalue (A, B). The algorithm relates to the Jacobi-Davidson
method [FSvdV98] and the trace minimization method [SW82, ST00]. In particular, it is
closely related to a variant of the Jacobi-Davidson method analyzed by Notay [Not02], from
which it notably differs by the trust-region-based inner stopping criterion that avoids a waste
of computational effort and yields global convergence properties. Numerical experiments show
that the proposed method is able to outperform a recently-proposed [GY02] Krylov subspace
method for the generalized eigenproblem.

The current form of the proposed method is simply a direct application of the Riemannian
trust-region method of [ABG04b, ABG05] to the eigenproblem, but even in this simple form
it demonstrates promising numerical results and sheds light on the behaviour of other well-
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known methods. In an upcoming paper, we report on improvements to the method that take
into account properties specific to the eigenproblem and compare the resulting algorithms
with several other methods. We will also report on a block version of the algorithm obtained
by applying the Riemannian trust-region method on the Grassmann manifold to the trace
minimization problem associated with the symmetric generalized eigenvalue problem.
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