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The Problem : Leftmost Eigenpair of Matrix Pencil

Given n× n matrix pencil (A, B), A = AT , B = BT � 0 with

(unknown) eigen-decomposition

A [v1| . . . |vn] = B [v1| . . . |vn] diag(λ1, . . . , λn)

[v1| . . . |vn]T B [v1| . . . |vn] = I, λ1 < λ2 ≤ . . . ≤ λn.

The problem is to compute the “leftmost” eigenvector ±v1.
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Strategy: Optimization on Manifold

1. Rewrite the leftmost eigenpair problem as minimizing a

cost function (the Rayleigh quotient) on a manifold.

2. Select a suitable method of optimization on manifolds.

3. Apply the method to the leftmost eigenpair problem.
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Previous work

• Bradbury and Fletcher [BF66]: nonlinear CG on the

projective space using particular coordinate systems.

• Helmke, Moore, Mahony [HM94, MHM96]: steepest

descent on the sphere and on the projective space.

• Smith [Smi94], Edelman, Arias and Smith [EAS98]:

Newton method and nonlinear CG on the sphere (yields

single vector iteration) and on the Grassmann manifold

(yields block iteration).
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The ideal leftmost component algorithm

Given (A, B), A = AT , B = BT � 0 with (unknown)

eigenvalues 0 < λ1 ≤ . . . λn and associated eigenvectors

v1, . . . , vn.

1. Global convergence:

• Convergence to some eigenvector for all initial

conditions.

• Stable convergence to the “leftmost” eigenvector ±v1

only.

2. Superlinear (cubic) local convergence to ±v1.

3. “Matrix-free” (no factorization of A, B)

but possible use of preconditioner.

4. Minimal storage space required.
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Strategy: Optimization on Manifold
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Strategy: Optimization on Manifold

1. Rewrite the leftmost eigenpair problem as minimizing a

cost function (the Rayleigh quotient) on a manifold.

2. Define and analyze trust-region methods on manifolds.

3. Apply the method to the leftmost eigenpair problem.
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Outline

• Rewrite computation of leftmost eigenpair as an

optimization problem (on a manifold).

• Use a model-trust-region scheme to solve the problem.

; Global convergence.

• Take the exact quadratic model (at least, close to the

solution).

; Superlinear convergence.

• Solve the trust-region subproblems using the

(Steihaug-Toint) truncated CG (tCG) algorithm.

; “Matrix-free”, preconditioned iteration.

; Minimal storage of iteration vectors.
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Leftmost eigendirection computation ≡ optimization on R
n

Cost function: Rayleigh quotient

f : R
n
0 → R : y 7→

yT Ay

yT By

Minimizers: {αv1 : α 6= 0}.

Difficulty: the minimizers are not isolated.

(For example, Newton on f yields the iteration x 7→ 2x !)
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Leftmost eigenvector computation ≡ optimization on manifold

Manifold: ellipsoid

M = {y ∈ R
n : yT By = 1}

Cost function:

f :M→ R : y 7→ yT Ay

Properties:

• ±v1, . . . ,±vn are the stationary points of f .

• ±v1 are the local and global minimizers of f .
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The shape of the cost function

Cost function:

f :M→ R : y 7→ yT Ay

Manifold

R

Saddle point

Local minimum

Local maximum

The points ±v1, corresponding to the leftmost eigenvector, are

the only minima. The other stationary points are the other

eigenvectors.
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The Manifold: ellipsoid

Manifold: ellipsoidM = {y ∈ R
n : yT By = 1}

M

Cost function: f :M→ R : y 7→ yT Ay
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Iteration on the manifold
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Tangent space and retraction (2D picture)

TyM

Ry

y

M

t

Tangent space: TyM := {t ∈ R
n : yT Bt = 0}.

Retraction: Ryt := (y + t)/‖y + t‖B.

Lifted cost function: f̂y(t) := f(Ryt) = (y+t)T A(y+t)
(y+t)T B(y+t)

.
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Tangent space and retraction
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Tangent space: TyM := {t ∈ R
n : yT Bt = 0}.

Retraction: Ryt := (y + t)/‖y + t‖B.

Lifted cost function: f̂y(t) := f(Ryt) = (y+t)T A(y+t)
(y+t)T B(y+t)

.
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Quadratic model

f̂y(t) =
yT Ay

yT By
+ 2

yT At

yT By
+

1

yT By

(

tT At−
yT Ay

yT By
tT Bt

)

+ . . .

= f(y) + 2〈PAy, t〉+
1

2
〈2P (A− f(y)B)P t, t〉+ . . .

where 〈u, v〉 = uT v and P = I −By(yT B2y)−1yT B.

Model:

my(t) = f(y)+2〈PAy, t〉+
1

2
〈P (A−f(y)B)P t, t〉, yT Bt = 0.
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Quadratic model
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my(t) = f(y)+2〈PAy, t〉+
1

2
〈P (A−f(y)B)P t, t〉, yT Bt = 0.
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Model minimization

Model:

my(t) = f(y)+2〈PAy, t〉+
1

2
〈P (A−f(y)B)P t, t〉, yT Bt = 0.

(1)

Newton method: Compute the stationary point of the model,

i.e., solve

P (A− f(y)B)P t = −PAy.

Instead, compute (approximately) the minimizer of my within

a trust-region

{t ∈ TxM : tT t ≤ ∆2}.
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Trust-region subproblem

Minimize

my(t) = f(y)+2〈PAy, t〉+
1

2
〈P (A−f(y)B)P t, t〉, yT Bt = 0.

subject to tT t ≤ ∆2.

v1

y

M

TyM

my
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Outline
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Truncated CG method for the TR subproblem (1)

Let 〈·, ·〉 denote the standard inner product and let

Hxk
:= P (A− f(xk)B)P denote the Hessian operator.

Initializations:

Set t0 = 0, r0 = Pxk
Axk = Axk −Bxk(x

T
k B2xk)

−1xT
k BAxk,

δ0 = −r0;

Then repeat the following loop on j:

Check for negative curvature

if 〈δj ,Hxk
δj〉 ≤ 0

Compute τ such that t = tj + τδj minimizes m(t) in (1)

and satisfies ‖t‖ = ∆;

return t;
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Truncated CG method for the TR subproblem (2)

Generate next inner iterate

Set αj = 〈rj , rj〉/〈δj ,Hxk
δj〉;

Set tj+1 = tj + αjδj ;

Check trust-region

if ‖tj+1‖ ≥ ∆

Compute τ ≥ 0 such that t = tj + τδj satisfies ‖t‖ = ∆;

return t;
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Truncated CG method for the TR subproblem (3)

Update residual and search direction

Set rj+1 = rj + αjHxk
δj ;

Set βj+1 = 〈rj+1, rj+1〉/〈rj , rj〉;

Set δj+1 = −rj+1 + βj+1δj ;

j ← j + 1;

Check residual

If

‖rj‖ ≤ ‖r0‖min
(

‖r0‖
θ, κ

)

(2)

for some prescribed θ and κ

return tj ;
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Overall iteration

v1

y

M

TyM

myy+

t

29



The outer iteration – manifold trust-region (1)

Data: symmetric n× n matrices A and B, with B positive

definite.

Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ (0, 1
4).

Input: initial iterate x0 ∈ {y : yT By = 1}.

Output: sequence of iterates {xk} in {y : yT By = 1}.

Initialization: k = 0

Repeat the following:
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The outer iteration – manifold trust-region (2)

• Obtain tk using the Steihaug-Toint truncated

conjugate-gradient method to approximately solve the

trust-region subproblem

min
xT

k
Bt=0

mxk
(t) s.t. ‖t‖ ≤ ∆k, (3)

where m is defined in (1).
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The outer iteration – manifold trust-region (3)

• Evaluate

ρk =
f̂xk

(0)− f̂xk
(tk)

mxk
(0)−mxk

(tk)
(4)

where f̂xk
(t) = (xk+t)T A(xk+t)

(xk+t)T B(xk+t)
.

• Update the trust-region radius:

if ρk < 1
4

∆k+1 = 1
4∆k

else if ρk > 3
4 and ‖tk‖ = ∆k

∆k+1 = min(2∆k, ∆̄)

else

∆k+1 = ∆k;
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The outer iteration – manifold trust-region (4)

• Update the iterate:

if ρk > ρ′

xk+1 = (xk + tk)/‖xk + tk‖B; (5)

else

xk+1 = xk;

k ← k + 1
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Convergence
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Convergence

Theorem:

Let (A, B) be an n× n symmetric/positive-definite matrix

pencil with eigenvalues λ1 < λ2 ≤ . . . ≤ λn−1 ≤ λn and an

associated B-orthonormal basis of eigenvectors (v1, . . . , vn).

Let Si = {y : Ay = λiBy, yT By = 1} denote the intersection of

the eigenspace of (A, B) associated to λi with the set

{y : yT By = 1}.

...
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Convergence (global)

(i) Let {xk} be a sequence of iterates generated by the

Algorithm. Then {xk} converges to the eigenspace of (A, B)

associated to one of its eigenvalues. That is, there exists i such

that limk→∞ dist(xk,Si) = 0.

(ii) Only the set S1 = {±v1} is stable.
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Convergence (local)

(iii) There exists c > 0 such that, for all sequences {xk}

generated by the Algorithm converging to S1, there exists

K > 0 such that for all k > K,

dist(xk+1,S1) ≤ c (dist(xk,S1))
min{θ+1,2} (6)

with θ > 0.
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Outline
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Numerical experiments: RTR vs LOBPCG
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Numerical experiments: RTR vs Krylov [GY02]
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Key points

1. Minimize the Rayleigh quotient on a manifold in order to

have isolated minima.

2. Do not try to solve Jacobi correction equations. Instead,

(approximately) minimize a model within a trust-region.

3. To obtain superlinear convergence, use an appropriate

stopping criterion (2) in the inner iteration.
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Current and future work

• When approximately minimizing the model, monitor the

eigenproblem residual and the cost function.

• Use subspace acceleration to improve efficiency.
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Conclusions

• “Brute-force” application of the Riemannian Trust-Region

scheme [ABG04b, ABG05] to the extreme symmetric

generalized eigenproblem.

• Local and global convergence results inherited from the

Riemannian scheme.

• Promising numerical results.

• Several enhancements are possible...

For more details on the topic of this talk, see [ABG04a].
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