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Matrix Manifolds: first-order geometry

Chap 3: Matrix Manifolds: first-order geometry

1. Charts, atlases, manifolds
2. Differentiable functions
3. Embedded submanifolds
4. Quotient manifolds
5. Tangent vectors and differential maps
6. Riemannian metric, distance, gradient
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Intro

Smooth optimization in R
n

General unconstrained optimization problem in R
n:

Let
f : R

n → R,

The real-valued function f is termed the cost function or objective
function.
Problem: find x∗ ∈ R

n such that there exists ǫ > 0 for which

f (x) ≥ f (x∗) whenever ‖x − x∗‖ < ǫ.

Such a point x∗ is called a local minimizer of f .
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Intro

Smooth optimization in R
n

General unconstrained optimization problem in R
n:

Let
f : R

n → R,

The real-valued function f is termed the cost function or objective
function.
Problem: find x∗ ∈ R

n such that there exists a neighborhood N of x∗
such that

f (x) ≥ f (x∗) whenever x ∈ N .

Such a point x∗ is called a local minimizer of f .
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Intro

Smooth optimization beyond R
n

? arg minx∈Rn f (x)

◮ Several optimization techniques require the cost function to be
differentiable to some degree:

◮ Steepest-descent at x requires Df (x).
◮ Newton’s method at x requires D2f (x).

◮ Can we go beyond R
n without losing the concept of differentiability?

arg min
x∈Rn

f (x) ; arg min
x∈M

f (x)
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Intro

Smooth optimization on a manifold: what “smooth” means

M f

R

x

f ∈ C∞(x)?
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Intro

Smooth optimization on a manifold: what “smooth” means

M f

R

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ f ◦ ϕ−1 ∈ C∞(ϕ(x))
Yes iff
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Intro

Smooth optimization on a manifold: what “smooth” means

M f

R

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ f ◦ ϕ−1 ∈ C∞(ϕ(x))
Yes iff

ψ

U V

ψ(V)
ϕ(U ∩ V) ψ(U ∩ V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1

C∞
R

d

12



Intro

Smooth optimization on a manifold: what “smooth” means

M f

R

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ f ◦ ϕ−1 ∈ C∞(ϕ(x))
Yes iff

ψ

U V

ψ(V)
ϕ(U ∩ V) ψ(U ∩ V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1

C∞
R

d

Chart: U ϕ(U)//

ϕ

bij.

Atlas: Collection of “compatible chars” that coverM
Manifold: Set with an atlas
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Intro

Optimization on manifolds in its most abstract formulation

M f

R

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ f ◦ ϕ−1 ∈ C∞(ϕ(x))
Yes iff

ψ

U V

ψ(V)
ϕ(U ∩ V) ψ(U ∩ V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1

C∞
R

d

Given:

◮ A set M endowed (explicitly or implicitly) with a manifold structure
(i.e., a collection of compatible charts).

◮ A function f :M→ R, smooth in the sense of the manifold
structure.

Task: Compute a local minimizer of f .
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Intro

Optimization on manifolds: algorithms

M f

R

x

Given:

◮ A set M endowed (explicitly or implicitly) with a manifold structure
(i.e., a collection of compatible charts).

◮ A function f :M→ R, smooth in the sense of the manifold
structure.

Task: Compute a local minimizer of f .
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Intro

Previous work on Optimization On Manifolds

R

f

x

x+

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”.
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Intro

The purely Riemannian era

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Stepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics.

Smith (1994), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential; parallel translation.
But Remark 4.9: If Algorithm 4.7 (Newton’s iteration on the sphere for
the Rayleigh quotient) is simplified by replacing the exponential update
with the update

xk+1 =
xk + ηk

‖xk + ηk‖
then we obtain the Rayleigh quotient iteration.
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Intro

The pragmatic era

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expxη is replaced by a projective
update π(x + η), the projection of the point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.
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Intro

Looking ahead: Newton on abstract manifolds

Required: Riemannian manifoldM; retraction R on M; affine
connection ∇ on M; real-valued function f onM.
Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f (xk)ηk = −grad f (xk)

for the unknown ηk ∈ Txk
M, where

Hess f (xk)ηk := ∇ηk
grad f .

2. Set
xk+1 := Rxk

(ηk).
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Intro

Looking ahead: Newton on submanifolds of R
n

Required: Riemannian submanifoldM of R
n; retraction R on M;

real-valued function f onM.
Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f (xk)ηk = −grad f (xk)

for the unknown ηk ∈ Txk
M, where

Hess f (xk)ηk := PTxk
Mgrad f (xk).

2. Set
xk+1 := Rxk

(ηk).
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Intro

Looking ahead: Newton on the unit sphere Sn−1

Required: real-valued function f on Sn−1.
Iteration xk ∈M 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{

Pxk
D(grad f )(xk)[ηk ] = −grad f (xk)

xTηk = 0,

for the unknown ηk ∈ R
n, where

Pxk
= (I − xkxT

k ).

2. Set

xk+1 :=
xk + ηk

‖xk + ηk‖
.
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Intro

Looking ahead: Newton for Rayleigh quotient optimization on unit
sphere

Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{

Pxk
APxk

ηk − ηkxT
k Axk = −Pxk

Axk ,

xT
k ηk = 0,

for the unknown ηk ∈ R
n, where

Pxk
= (I − xkxT

k ).

2. Set

xk+1 :=
xk + ηk

‖xk + ηk‖
.
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Intro

Programme

◮ Provide background in differential geometry instrumental for
algorithmic development

◮ Present manifold versions of some classical optimization algorithms:
steepest-descent, Newton, conjugate gradients, trust-region methods

◮ Show how to turn these abstract geometric algorithms into practical
implementations

◮ Illustrate several problems that can be rephrased as optimization
problems on manifolds.
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Intro

Some important manifolds

◮ Stiefel manifold St(p, n): set of all orthonormal n × p matrices.

◮ Grassmann manifold Grass(p, n): set of all p-dimensional subspaces
of R

n

◮ Euclidean group SE (3): set of all rotations-translations

◮ Flag manifold, shape manifold, oblique manifold...

◮ Several unnamed manifolds

24



Overview of application to eigenvalue problem

A manifold-based approach to the
symmetric eigenvalue problem
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Overview of application to eigenvalue problem

OPT EVP
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient
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Overview of application to eigenvalue problem

Rayleigh quotient

Rayleigh quotient of (A, B):

f : R
n
∗ → R : f (y) =

yTAy

yTBy

Let A, B in R
n×n, A = AT , B = BT ≻ 0,

Avi = λiBvi

with λ1 < λ2 ≤ · · · ≤ λn.
Stationary points of f : αvi , for all α 6= 0.
Local (and global) minimizers of f : αv1, for all α 6= 0.
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient
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Overview of application to eigenvalue problem

“Block” Rayleigh quotient

Let R
n×p
∗ denote the set of all full-column-rank n × p matrices.

Generalized (“block”) Rayleigh quotient:

f : R
n×p
∗ → R : f (Y ) = trace

(

(Y TBY )−1Y TAY
)

Stationary points of f :

[
vi1 . . . vip

]
M, for all M ∈ R

p×p
∗ .

Minimizers of f :

[
v1 . . . vp

]
M, for all M ∈ R

p×p
∗ .
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Newton for Rayleigh quotient in R
n
0

Let f denote the Rayleigh quotient of (A, B).
Let x ∈ R

n
0 be any point such that f (x) /∈ spec(B−1A).

Then the Newton iteration

x 7→ x −
(
D2f (x)

)−1 · grad f (x)

reduces to the iteration
x 7→ 2x .
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Invariance properties of the Rayleigh quotient

Rayleigh quotient of (A, B):

f : R
n
∗ → R : f (y) =

yTAy

yTBy

Invariance: f (αy) = f (y) for all α ∈ R0.
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Overview of application to eigenvalue problem

Invariance properties of the Rayleigh quotient

Generalized (“block”) Rayleigh quotient:

f : R
n×p
∗ → R : f (Y ) = trace

(

(Y TBY )−1Y TAY
)

Invariance: f (YM) = f (Y ) for all M ∈ R
p×p
∗ .
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Remedy 1: modify f

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡???

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Remedy 1: modify f

Consider

PA : R
n → R : x 7→ PA(x) := (xT x)2 − 2xTAx .

Theorem
(i)

min
x∈Rn

PA(x) = −λ2
n

The minimum is attained at any
√

λnvn, where vn is a unitary
eigenvector related to λn.
(ii) The set of critical points of PA is {0} ∪ {√λkvk}.
References: Auchmuty (1989), Mongeau and Torki (2004).
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Overview of application to eigenvalue problem

OPT EVP

for f : R
n → R for EVP

AlgorithmsOpt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

EVP: optimization on ellipsoid

f (αy) = f (y)

0level curves of f̃
minimizers of f̃

v1

M
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Overview of application to eigenvalue problem

Remedy 2: modify the search space

Instead of

f : R
n
∗ → R : f (y) =

yTAy

yTBy
,

minimize

f :M→ R : f (y) =
yTAy

yTBy
,

where
M = {y ∈ R

n : yTBy = 1}.
Stationary points of f : ±vi .
Local (and global) minimizers of f : ±v1.
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Overview of application to eigenvalue problem

Remedy 2: modify search space: block case

Instead of generalized (“block”) Rayleigh quotient:

f : R
n×p
∗ → R : f (Y ) = trace

(

(Y TBY )−1Y TAY
)

,

minimize

f : Grass(p, n)→ R : f (col(Y )) = trace
(

(Y TBY )−1Y TAY
)

,

where Grass(p, n) denotes the set of all p-dimensional subspaces of R
n,

called the Grassmann manifold.
Stationary points of f : col(

[
vi1 . . . vip

]
).

Minimizer of f : col(
[
v1 . . . vp

]
).

46



Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Smooth optimization on a manifold: big picture

M f

R
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Overview of application to eigenvalue problem

Smooth optimization on a manifold: tools

Purely Riemannian way Pragmatic way

Search direc-
tion

Tangent vector Tangent vector

Steepest de-
scent dir.

−grad f (x) −grad f (x)

Derivative of
vector field

Levi-Civita connection
g

∇ Any connection ∇

Update Search along the geodesic tan-
gent to the search direction

Search along any curve tangent
to the search direction
scribed by a retraction)

Displacement
of tgt vectors

Parallel translation induced by
g

∇
Vector Transport
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Newton’s method on abstract manifolds

Required: Riemannian manifoldM; retraction R on M; affine
connection ∇ on M; real-valued function f onM.
Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f (xk)ηk = −grad f (xk)

for the unknown ηk ∈ Txk
M, where Hess f (xk)ηk := ∇ηk

grad f .
2. Set

xk+1 := Rxk
(ηk).
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Convergence of Newton’s method on abstract manifolds

Theorem
Let x∗ ∈M be a nondegenerate critical point of f , i.e., grad f (x∗) = 0
and Hess f (x∗) invertible.
Then there exists a neighborhood U of x∗ inM such that, for all x0 ∈ U ,
Newton’s method generates an infinite sequence (xk)k=0,1,... converging
superlinearly (at least quadratically) to x∗.
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Geometric Newton for Rayleigh quotient optimization

Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{

Pxk
APxk

ηk − ηkxT
k Axk = −Pxk

Axk ,

xT
k ηk = 0,

for the unknown ηk ∈ R
n, where

Pxk
= (I − xkxT

k ).

2. Set

xk+1 :=
xk + ηk

‖xk + ηk‖
.
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Overview of application to eigenvalue problem

Geometric Newton for Rayleigh quotient optimization: block case

Iteration col(Yk) ∈ Grass(p, n) 7→ col(Yk+1) ∈ Grass(p, n) defined by

1. Solve the linear system

{

Ph
Yk

(
AZk − Zk(Y T

k Yk)−1Y T
k AYk

)
= −Ph

Yk
(AYk)

Y T
k Zk = 0

for the unknown Zk ∈ R
n×p, where

Ph
Yk

= (I − Yk(Y T
k Yk)−1Y T

k ).

2. Set
Yk+1 = (Yk + Zk)Nk

where Nk is a nonsingular p × p matrix chosen for normalization.
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Convergence of the EVP algorithm

Theorem
Let Y∗ ∈ R

n×p be such that col(Y∗) is a spectral invariant subspace of
B−1A. Then there exists a neighborhood U of col(Y∗) in Grass(p, n)
such that, for all Y0 ∈ R

n×p with col(Y0) ∈ U , Newton’s method
generates an infinite sequence (Yk)k=0,1,... such that (col(Yk))k=0,1,...

converges superlinearly (at least quadratically) to col(Y∗) on Grass(p, n).
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Overview of application to eigenvalue problem

OPT EVP

for EVP

Algorithms

for f :M→ R

Opt algorithms f ≡ Rayleigh quotient

Convergence Convergence

propertiesproperties

conditions
on f

conditions

on (A,B)
nondegenerate minimizers

Newton
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Overview of application to eigenvalue problem

Other optimization methods

◮ Trust-region methods: PAA, C. G. Baker, K. A. Gallivan,
Trust-region methods on Riemannian manifolds, Foundations of
Computational Mathematics, 2007.

◮ “Implicit” trust-region methods: PAA, C. G. Baker, K. A. Gallivan,
submitted.

60



Manifolds, submanifolds, quotient manifolds

Manifolds
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Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp
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Manifolds, submanifolds, quotient manifolds

Submanifolds of R
n

ϕ(U)

R
d

R
n−d

∃ϕ(x) : U diffeo−→ ϕ(U)

M

U open

R
n

x

The setM⊂ R
n is termed a submanifold of R

n if the situation described
above holds for all x ∈M.
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Manifolds, submanifolds, quotient manifolds

Submanifolds of R
n

ϕ(U)

R
d

R
n−d

∃ϕ(x) : U diffeo−→ ϕ(U)

M

U open

R
n

x

The manifold structure onM is defined in a unique way as the manifold

structure generated by the atlas












eT
1
...

eT
d




 ϕ(x)

∣
∣
M

: x ∈M







.
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Manifolds, submanifolds, quotient manifolds

Back to the basics: partial derivatives in R
n

Let F : R
n → R

q.
Define ∂iF : R

n → R
q by

∂iF (x) = lim
t→0

F (x + tei )− F (x)

t
.

If ∂iF is defined and continuous on R
n, then F is termed continuously

differentiable, denoted by F ∈ C 1.
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Manifolds, submanifolds, quotient manifolds

Back to the basics: (Fréchet) derivative in R
n

If F ∈ C 1, then

DF (x) : R
n lin−→ R

q : z 7→ DF (x)[z ] := lim
t→0

F (x + tz)− F (x)

t

is the derivative (or differential) of F at x .
We have DF (x)[z ] = JF (x)z , where the matrix

JF (x) =






∂1(e
T
1 F )(x) · · · ∂n(e

T
1 F )(x)

...
. . .

...
∂1(e

T
q F )(x) · · · ∂n(e

T
q F )(x)






is the Jacobian matrix of F at x .
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Manifolds, submanifolds, quotient manifolds

Submanifolds of R
n: sufficient condition

F : R
n C 1

→ R
q

R
n

R
q

M = F−1(0)

y

y ∈ R
q is a regular value of F if, for all x ∈ F−1(y), DF (x) is an onto

function (surjection).
Theorem (submersion theorem): If y ∈ R

q is a regular value of F ,
then F−1(y) is a submanifold of R

n.
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Manifolds, submanifolds, quotient manifolds

Submanifolds of R
n: sufficient condition: application

F : R
n C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

The unit sphere
Sn−1 := {x ∈ R

n : xT x = 1}
is a submanifold of R

n.
Indeed, for all x ∈ Sn−1, we have that

DF (x) : R
n → R : z 7→ DF (x)[z ] = xT z + zT x

is an onto function.
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Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp

Abstract manifold

Embedded submanifold

Quotient manifold

Grassmann

Stiefel

?

Shape

Oblique

Flag
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Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp

Abstract manifold

Embedded submanifold

Quotient manifold

Grassmann

Stiefel

?

Shape

Oblique

Flag

Embedding theorems
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Manifolds, submanifolds, quotient manifolds

A simple quotient set: the projective space

2θ

R
2
0/ ∼= R

2
0/R0 ≃ S1

π

[x ] = {αx : α ∈ R0} = {y ∈ R
2
0 : y ∼ x}

x θ
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Manifolds, submanifolds, quotient manifolds

A slightly less simple quotient set: R
n×p
∗ /GLp

[Y ] = Y GLp

R
n×p
∗

Y

π(Y )

span

R
n×p
∗ /GLp Grass(p,n)

span(Y )

π
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Manifolds, submanifolds, quotient manifolds

Abstract quotient setM/ ∼

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π
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Manifolds, submanifolds, quotient manifolds

Abstract quotient manifoldM/ ∼

M

π(x)

M=M/ ∼

x

[x ] = {y ∈M : y ∼ x}

π

R
q

R
n−q

∃ϕ(x)

diffeo

The set M/ ∼ is termed a quotient manifold if the situation described
above holds for all x ∈M.
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Manifolds, submanifolds, quotient manifolds

Abstract quotient manifoldM/ ∼

M

π(x)

M=M/ ∼

x

[x ] = {y ∈M : y ∼ x}

π

R
q

R
n−q

∃ϕ(x)

diffeo

The manifold structure onM/ ∼ is defined in a unique way as the

manifold structure generated by the atlas












eT
1
...

eT
q




ϕ(x) ◦ π−1 : x ∈M







.

75



Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

g , R , ∇, T
Tools:

f :M→ R

M = St(p, n)

M⊂ R
n×p

R
n×p
∗ /Op

On\Rn×p
∗

...

M = R
n×p
∗ / ∼ R

n×p
∗ /Sdiag+

R
n×p
∗ /Supp∗

R
n×p/GLp

Abstract manifold

Embedded submanifold

Quotient manifold

Grassmann

Stiefel

?

Shape

Oblique

Flag

Embedding theorems
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Manifolds, submanifolds, quotient manifolds

Manifolds, and where they appear

◮ Stiefel manifold St(p, n) and orthogonal group Op = St(n, n)

St(p, n) = {X ∈ R
n×p : XTX = Ip}

Applications: computer vision; principal component analysis;
independent component analysis...

◮ Grassmann manifold Grass(p, n)

Set of all p-dimensional subspaces of R
n

Applications: various dimension reduction problems...
◮ R

n×p
∗ /Op

X ∼ Y ⇔ ∃Q ∈ Op : Y = XQ

Applications: Low-rank approximation of symmetric matrices;
low-rank approximation of tensors...
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Manifolds, submanifolds, quotient manifolds

Manifolds, and where they appear

◮ Shape manifold On/R
n×p
∗

Y ∼ Y ⇔ ∃U ∈ On : Y = UX

Applications: shape analysis
◮ Oblique manifold R

n×p
∗ /Sdiag+

R
n×p
∗ /Sdiag+ ≃ {Y ∈ R

n×p
∗ : diag(Y TY ) = Ip}

Applications: independent component analysis; factor analysis
(oblique Procrustes problem)...

◮ Flag manifold R
n×p
∗ /Supp∗

Elements of the flag manifold can be viewed as a p-tuble of linear
subspaces (V1, . . . ,Vp) such that dim(Vi ) = i and Vi ⊂ Vi+1.
Applications: analysis of QR algorithm...
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Steepest descent

Steepest-descent methods on
manifolds
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Steepest descent

Steepest-descent in R
n

R
n

x

x+

R

grad f (x)

f

grad f (x) =
[
∂1f (x) · · · ∂nf (x)

]T
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Steepest descent

Steepest-descent: from R
n to manifolds

R
n

x

x+

R

grad f (x)

f

R
n Manifold

Search direction Vector at x Tangent vector at x

Steepest-desc. dir. −grad f (x) −grad f (x)

Curve γ : t 7→ x − t grad f (x) γ s.t. γ(0) = x and
γ̇(0) = −grad f (x)
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Steepest descent

Steepest-descent: from R
n to manifolds

R

f
x

x+

grad f (x)

R
n Manifold

Search direction Vector at x Tangent vector at x

Steepest-desc. dir. −grad f (x) −grad f (x)

Curve γ : t 7→ x − t grad f (x) γ s.t. γ(0) = x and
γ̇(0) = −grad f (x)
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Steepest descent

Update directions: tangent vectors

R

f

x+

grad f (x)
x

Let γ be a curve in the manifoldM with γ(0) = x .

For an abstract manifold, the definition γ̇(0) = dγ
dt

(0) = limt→0
γ(t)−γ(0)

t

is meaningless.
Instead, define: Df (x)[γ̇(0)] := d

dt
f (γ(t))

∣
∣
t=0

IfM⊂ R
n and f = f |M, then

Df (x)[γ̇(0)] = Df (x)

[
dγ

dt
(0)

]

.

The application γ̇(0) : f 7→ Df (x)[γ̇(0)] is a tangent vector at x .
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Steepest descent

Update directions: tangent spaces

R

f

x+

grad f (x)
x

The set

TxM = {γ̇(0) : γ curve inM through x at t = 0}

is the tangent space to M at x .
With the definition

αγ̇1(0) + βγ̇2(0) : f 7→ αDf (x)[γ̇1(0)] + βDf (x)[γ̇2(0)],

the tangent space TxM becomes a linear space.
The tangent bundle TM is the set of all tangent vectors to M.
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Steepest descent

Tangent vectors: submanifolds of Euclidean spaces

R

f

x+

grad f (x)
x

IfM is a submanifold of R
n and f = f |M, then

Df (x)[γ̇(0)] = Df (x)

[
dγ

dt
(0)

]

.

Proof: The left-hand side is equal to d
dt

f (γ(t))
∣
∣
t=0

. This is equal to
d
dt

f (γ(t))
∣
∣
t=0

because γ(t) ∈M for all t. The classical chain rule yields
the right-hand side.
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Steepest descent

Tangent vectors: quotient manifolds

x
M

π(x)

[x ] = {y ∈M : y ∼ x}

M=M/ ∼

π

ξπ(x)

ξx

Vx

Hx

LetM/ ∼ be a quotient manifold. Then [x ] is a submanifold ofM. The
tangent space Tx [x ] is the vertical space Vx . A horizontal space is a
subspace of TxM complementary to Vx .
Let ξπ(x) be a tangent vector to M/ ∼ at π(x).

Theorem: In Hx there is one and only one ξx such that

Dπ(x)[ξx ] = ξπ(x).
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Steepest descent

Steepest-descent: norm of tangent vectors
R

f
x

x+

grad f (x)

The steepest ascent direction is along

arg max
ξ∈TxM
‖ξ‖=1

Df (x)[ξ].

To this end, we need a norm on TxM.
For all x ∈M, let gx denote an inner product in TxM, and define

‖ξx‖ :=
√

gx(ξx , ξx).

When gx “smoothly” depends on x , we say that (M, g) is a Riemannian
manifold.
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Steepest descent

Steepest-descent: gradient
R

f
x

x+

grad f (x)

There is a unique grad f (x), called the gradient of f at x , such that

{

grad f (x) ∈ TxM
gx(grad f (x), ξx) = Df (x)[ξx ], ∀ξx ∈ TxM.

We have
grad f (x)

‖grad f (x)‖ = arg max
ξ∈TxM
‖ξ‖=1

Df (x)[ξ]

and

‖grad f (x)‖ = Df (x)

[
grad f (x)

‖grad f (x)‖

]

.

88



Steepest descent

Steepest-descent: Riemannian submanifolds

R

f
x

x+

grad f (x)

Let (M, g) be a Riemannian manifold andM be a submanifold ofM.
Then

gx(ξx , ζx) := g x(ξx , ηx), ∀ξx , ζx ∈ TxM
defines a Riemannian metric g onM. With this Riemannian metric,M
is a Riemannian submanifold ofM.
Every z ∈ TxM admits a decomposition z = Pxz

︸︷︷︸

∈TxM

+ P⊥x z
︸︷︷︸

∈T⊥
x M

.

If f :M→ R and f = f |M, then

grad f (x) = Pxgrad f (x).
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Steepest descent

Steepest-descent: Riemannian quotient manifolds

ζπ(x)

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π

ξπ(x)

ξx

Hx

Vx

Let g̃ be a Riemannian metric onM.
Suppose that, for all ξπ(x) and ζπ(x) in Tπ(x)M/ ∼, and all
x̃ ∈ π−1(π(x)), we have

g x̃(ξx̃ , ζ x̃) = g x(ξx , ζx).
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Steepest descent

Steepest-descent: Riemannian quotient manifolds

ζπ(x)

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π

ξπ(x)

ξx

Hx

Vx

Then
gπ(x)(ξπ(x), ζπ(x)) := g x(ξx , ζx).

defines a Riemannian metric on M/ ∼. This turnsM/ ∼ into a
Riemannian quotient manifold.
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Steepest descent

Steepest-descent: Riemannian quotient manifolds

ζπ(x)

x
M

π(x)

M=M/ ∼

[x ] = {y ∈M : y ∼ x}

π

ξπ(x)

ξx

Hx

Vx

Let f :M/ ∼→ R. Let P
h,g
x denote the orthogonal projection onto Hx .

grad f x = Ph,g
x grad (f ◦ π)(x).

If Hx is the orthogonal complement of Vx in the sense of g (π is a
Riemannian submersion), then grad (f ◦ π)(x) is already in Hx , and thus

grad f x = grad (f ◦ π)(x).
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Steepest descent

Steepest-descent: choosing the search curve

R

f
x

x+

grad f (x)

It remains to choose a curve γ through x at t = 0 such that

γ̇(0) = −grad f (x).

Let R : TM→M be a retraction onM, that is

1. R(0x) = x , where 0x denotes the origin of TxM;
2. d

dt
R(tξx) = ξx .

Then choose γ : t 7→ R(−tgrad f (x)).
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Steepest descent

Steepest-descent: line-search procedure

R

f
x

x+

grad f (x)

Find t such that f (γ(t)) is “sifficiently smaller” than f (γ(0)). Since
t 7→ f (γ(t)) is just a function from R to R, we can use the step selection
techniques that are available for classical line-search methods.
For example: exact minimization, Armijo backtracking,...
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

F : R
n C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

Let the manifold be the unit sphere

Sn−1 = {x ∈ R
n : xT x = 1} = F−1(1),

where F : R
n → R : x 7→ xT x .

Let A = AT ∈ R
n×n and let the cost function be the Rayleigh quotient

f : Sn−1 → R : x 7→ xTAx .

The tangent space to Sn−1 at x is

TxS
n−1 = ker(DF (x)) = {z ∈ R

n : xT z = 0}.
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Steepest descent

Derivation formulas

If F is linear, then
DF (x)[z ] = F (z).

Chain rule: If range(F ) ⊆ dom(G ), then

D(G ◦ F )(x)[z ] = DG (F (x))[DF (x)[z ]].

Product rule: If the ranges of F and G are in matrix spaces of
compatible dimension, then

D(FG )(x)[z ] = DF (x)[z ]G (x) + F (x)DG (x)[z ].
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

F : R
n C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

Rayleigh quotient:
f : Sn−1 → R : x 7→ xTAx .

The tangent space to Sn−1 at x is

TxS
n−1 = ker(DF (x)) = {z ∈ R

n : xT z = 0}.

Product rule:

D(FG )(x)[z ] = DF (x)[z ]G (x) + F (x)DG (x)[z ].

Differential of f at x ∈ Sn−1:

Df (x)[z ] = xTAz + zTAx = 2zTAx , z ∈ TxS
n−1.
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

F : R
n C 1

→ R
1 : x 7→ xTx

R

0 1

Sn−1 := {x ∈ R
n : xTx = 1} = F−1(1)

“Natural” Riemannian metric on Sn−1:

gx(z1, z2) = zT
1 z2, z1, z2 ∈ TxS

n−1.

Differential of f at x ∈ Sn−1:

Df (x)[z ] = 2zTAx = 2gx(z , Ax), z ∈ TxS
n−1.

Gradient:
grad f (x) = 2PxAx = 2(I − xxT )Ax .

Check: {

grad f (x) ∈ TxS
n−1

Df (x)[z ] = gx(grad f (x), z), ∀z ∈ TxS
n−1.
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Steepest descent

Steepest-descent: Rayleigh quotient on unit sphere

x

grad f (x) = 2Ax

grad f (x) = 2PxAx

Sn−1

f : Sn−1 → R : x 7→ xTAx

f : R
n → R : x 7→ xTAx

grad f (x) = 2Ax

grad f (x) = 2PxAx = 2(I − xxT )Ax .
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Newton

Newton’s method on manifolds
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Newton

Newton in R
n

Let f : R
n → R.

Recall grad f (x) =
[
∂1f (x) · · · ∂nf (x)

]T
.

Newton’s iteration:

1. Solve, for the unknown z ∈ R
n,

D(grad f )(x)[z ] = −grad f (x).

2. Set
x+ = x + z .
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Newton

Newton in R
n: how it may fail

Let f : R
n
0 → R : x 7→ xT Ax

xT x
.

Newton’s iteration:

1. Solve, for the unknown z ∈ R
n,

D(grad f )(x)[z ] = −grad f (x).

2. Set
x+ = x + z .

Proposition: For all x such that f (x) is not an eigenvalue of A, we have

x+ = 2x .
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Newton

Newton: how to make it work for RQ

Let f : Sn−1 → R : x 7→ xT Ax
xT x

.
Newton’s iteration:

1. Solve, for the unknown z ∈ R
n

; ηx ∈ TxS
n−1

D(grad f )(x)[z ] = −grad f (x) ; ? (grad f )(x)[ηx ] = −grad f (x)

2. Set
x+ = x + z ; x+ = R(ηx)
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Newton

Newton’s equation on an abstract manifold

LetM be a manifold and let f :M→ R be a cost function.
The mapping x ∈M 7→ grad f (x) ∈ TxM is a vector field.

D(grad f )(x)[z ] = −grad f (x) ; ? (grad f )(x)[ηx ] = −grad f (x)

The new object has to be such that

◮ In R
n, ? reduces to the classical derivative

◮ ? (grad f )(x)[ηx ] belongs to TxM
◮ ? has the same linearity properties and multiplication rule as the

classical derivative.

Differential geometry offers a concept that matches these conditions: the
concept of an affine connection.
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Newton

Newton: affine connections

Let X(M) denote the set of smooth vector fields on M and F(M) the
set of real-valued functions onM.
An affine connection ∇ on a manifoldM is a mapping

∇ : X(M)× X(M)→ X(M),

which is denoted by (η, ξ)
∇−→ ∇ηξ and satisfies the following properties:

i) F(M)-linearity in η: ∇f η+gχξ = f∇ηξ + g∇χξ,
ii) R-linearity in ξ: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ,
iii) Product rule (Leibniz’ law): ∇η(f ξ) = (ηf )ξ + f∇ηξ,

in which η, χ, ξ, ζ ∈ X(M), f , g ∈ F(M), and a, b ∈ R.
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Newton

Newton’s method on abstract manifolds

Cost function: f : R
n → R ; f :M→ R.

Newton’s iteration:

1. Solve, for the unknown z ∈ R
n

; ηx ∈ TxM

D(grad f )(x)[z ] = −grad f (x) ; ∇(grad f )(x)[ηx ] = −grad f (x)

2. Set
x+ = x + z ; x+ = R(ηx)

In the algorithm above, ∇ is an affine connection onM and R is a
retraction onM.
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Newton

Newton’s method on Sn−1

IfM is a Riemannian submanifold of R
n, then ∇ defined by

∇ηx ξ = PxDξ(x)[ηx ], ηx ∈ TxM, ξ ∈ X(M)

is a particular affine connection, called Riemannian connection.
For the unit sphere Sn−1, this yields

∇ηx ξ = (I − xxT )Dξ(x)[ηx ], xTηx = 0.
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Newton

Newton’s method for Rayleigh quotient on Sn−1

Let f :







R
n

M
Sn−1

→ R : x 7→







f (x)

f (x)
xT Ax
xT x

.

Newton’s iteration:

1. Solve, for the unknown z ∈ R
n

; ηx ∈ TxM ; xTηx = 0

D(grad f )(x)[z ] = −grad f (x)

; ∇(grad f )(x)[ηx ] = −grad f (x)

; (I − xxT )(A− f (x)I )ηx = −(I − xxT )Ax

2. Set

x+ = x + z ; x+ = R(ηx) ; x+ =
x + ηx

‖x + ηx‖
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Newton

Newton for RQ on Sn−1: a closer look

(I − xxT )(A− f (x)I )ηx = −(I − xxT )Ax

⇒ (I − xxT )(A− f (x)I )(x + ηx) = 0

⇒ (A− f (x)I )(x + ηx) = αx

Therefore, x+ is collinear with (A− f (x)I )−1x , which is the vector
computed by the Rayleigh quotient iteration.
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Newton

Newton method on quotient manifolds

x
M

π(x)

[x ] = {y ∈M : y ∼ x}

M=M/ ∼

π

ξπ(x)

ξx

Vx

Hx

Affine connection: choose ∇ defined by

∇ηξx
= Ph

x∇ηx
ξ,

provided that this really defines a horizontal lift. This requires special
choices of ∇.
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Newton

Newton method on quotient manifolds

x
M

π(x)

[x ] = {y ∈M : y ∼ x}

M=M/ ∼

π

ξπ(x)

ξx

Vx

Hx

If π :M→M/ ∼ is a Riemannian submersion, then the Riemannian
connection on M/ ∼ is given by

∇ηξx
= Ph

x∇ηx
ξ,

where ∇ denotes the Riemannian connection onM.
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Rayleigh on Grassmann

A detailed exercise

Newton’s method for the Rayleigh
quotient on the Grassmann

manifold
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Rayleigh on Grassmann

Manifold: Grassmann

The manifold is the Grassmann manifold of p-planes in R
n:

Grass(p, n) ≃ ST(p, n)/GLp.

The one-to-one correspondence is

Grass(p, n) ∋ Y ↔ Y GLp ∈ ST(p, n)/GLp

such that Y is the column space of Y .
The quotient map

π : ST(p, n)→ Grass(p, n)

is the “column space” or “span” operation.
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Rayleigh on Grassmann

Grassmann and its quotient representation

[Y ] = Y GLp

R
n×p
∗

Y

π(Y )

span

R
n×p
∗ /GLp Grass(p,n)

span(Y )

π
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Rayleigh on Grassmann

Total space: the noncompact Stiefel manifold

The total space of the quotient is

ST(p, n) = {Y ∈ R
n×p : rank(Y ) = p}.

This is an open submanifold of the Euclidean space R
n×p.

Tangent spaces: TY ST(p, n) ≃ R
n×p.
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Rayleigh on Grassmann

Riemannian metric on the total space

Define a Riemannian metric g on ST(p, n) by

gY (Z1, Z2) = trace
(

(Y TY )−1ZT
1 Z2

)

.

This is not the canonical Riemannian metric, but it will allow us to turn
the quotient map π : ST(p, n)→ Grass(p, n) into a Riemannian
submersion.
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Rayleigh on Grassmann

Vertical and horizontal spaces

The vertical spaces are the tangent spaces to the equivalence classes:

VY := TY (Y GLp) = Y TY GLp = Y R
p×p.

Choice of horizontal space:

HY := (VY )⊥

= {Z ∈ TY ST(p, n) : gY (Z , V ) = 0,∀V ∈ VY }
= {Z ∈ R

n×p : Y TZ = 0}.

Horizontal projection:

Ph
Y = (I − Y (Y TY )−1Y T ).
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Rayleigh on Grassmann

Compatibility equation for horizontal lifts

Given ξ ∈ Tπ(Y )Grass(p, n), we have

ξYM = ξY M.

To see this, observe that ξY M is in HYM ; moreover, since YM + tξY M
and Y + tξY have the same column space for all t, one has

Dπ(YM)[ξY M] = Dπ(Y )[ξY ] = ξπ(Y ).

Thus ξY M satisfies the conditions to be ξYM .
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Rayleigh on Grassmann

Riemannian metric on the quotient

On Grass(p, n) ≃ ST(p, n)/GLp, define the Riemannian metric g by

gπ(Y )(ξπ(Y ), ζπ(Y )) = gY (ξY , ζY ).

This is well defined, because for all Ỹ ∈ π−1(π(Y )) = Y GLp, we have
Ỹ = YM for some invertible M, and

gYM(ξYM , ζYM) = gY (ξY , ζY ).

This definition of g turns

π : (ST(p, n), g)→ (Grass(p, n), g)

into a Riemannian submersion.
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Rayleigh on Grassmann

Cost function: Rayleigh quotient

Consider the cost function

f : Grass(p, n)→ R : span(Y ) 7→ trace
(

(Y TY )−1Y TAY
)

.

This is the projection of

f : ST(p, n)→ R : Y 7→ trace
(

(Y TY )−1Y TAY
)

.

That is, f = f ◦ π.
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Rayleigh on Grassmann

Gradient of the cost function

For all Z ∈ R
n×p,

Df (Y )[Z ] = 2 trace
(

(Y TY )−1ZT (AY − Y (Y TY )−1Y TAY )
)

.

Hence
grad f (Y ) = 2

(

AY − Y (Y TY )−1Y TAY
)

,

and
grad f Y = 2

(

AY − Y (Y TY )−1Y TAY
)

.

121



Rayleigh on Grassmann

Riemannian connection

The quotient map is a Riemannian submersion. Therefore

∇η ξ = Ph
Y

(
∇ηY

ξ
)

It turns out that
∇η ξ = Ph

Y

(
Dξ (Y ) [ηY ]

)
.

(This is because the Riemanian metric g is “horizontally invariant”.)
For the Rayleigh quotient f , this yields

∇ηgrad f = Ph
Y

(
Dgrad f (Y ) [ηY ]

)

= 2Ph
Y

(

AηY − ηY (Y TY )−1Y TAY
)

.
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Rayleigh on Grassmann

Newton’s equation

Newton’s equation at π(Y ) is

∇η
π(Y )

grad f = −grad f (π(Y ))

for the unknown ηπ(Y ) ∈ Tπ(Y )Grass(p, n).
To turn this equation into a matrix equation, we take its horizontal lift.
This yields

Ph
Y

(

AηY − ηY (Y TY )−1Y TAY
)

= −Ph
Y AY , ηY ∈ HY ,

whose solution ηY in the horizontal space HY is the horizontal lift of the
solution η of the Newton equation.
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Rayleigh on Grassmann

Retraction

Newton’s method sends π(Y ) to Y+ according to

∇η
π(Y )

grad f = −grad f (π(Y ))

Y+ = Rπ(Y )(ηπ(Y )).

It remains to pick the retraction R.
Choice: R defined by

Rπ(Y )ξπ(Y ) = π(Y + ξY ).

(This is a well-defined retraction.)
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Rayleigh on Grassmann

Newton’s iteration for RQ on Grassmann

Require: Symmetric matrix A.
Input: Initial iterate Y0 ∈ ST(p, n).
Output: Sequence of iterates {Yk} in ST(p, n).
1: for k = 0, 1, 2, . . . do
2: Solve the linear system

{

Ph
Yk

(
AZk − Zk(Y T

k Yk)−1Y T
k AYk

)
= −Ph

Yk
(AYk)

Y T
k Zk = 0

for the unknown Zk , where Ph
Y is the orthogonal projector onto

HY . (The condition Y T
k Zk expresses that Zk belongs to the

horizontal space HYk
.)

3: Set
Yk+1 = (Yk + Zk)Nk

where Nk is a nonsingular p × p matrix chosen for normalization
purposes.

4: end for
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Vector Transport

A new tool for Optimization On
Manifolds:

Vector Transport
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Vector Transport

Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-
gent to the search direction

Search along any curve tangent
to the search direction
scribed by a retraction)

Displacement
of tgt vectors

Parallel translation induced by
g

∇
??
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Vector Transport

Where do we use parallel translation?

In CG. Quoting (approximately) Smith (1994):

1. Select x0 ∈M, compute H0 = −grad f (x0), and set k = 0
2. Compute tk such that f (Expxk

(tkHk)) ≤ f (Expxk
(tHk)) for all

t ≥ 0.
3. Set xk+1 = Expxk

(tkHk).
4. Set Hk+1 = −grad f (xk+1) + βkτHk , where τ is the parallel

translation along the geodesic from xk to xk+1.
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Vector Transport

Where do we use parallel translation?

In BFGS. Quoting (approximately) Gabay (1982):
xk+1 = Expxk

(tkξk) (update along geodesic)

grad f (xk+1)− τ tk
0 grad f (xk) = Bk+1τ

tk
0 (tkξk) (requirement on

approximate Jacobian B)
This leads to the a generalized BFGS update formula involving parallel
translation.
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Vector Transport

Where else could we use parallel translation?

In finite-difference quasi-Newton.
Let ξ be a vector field on a Riemannian manifoldM. Exact Jacobian of
ξ at x ∈M: Jξ(x)[η] = ∇ηξ.
Finite difference approximation to Jξ: choose a basis (E1, · · · , Ed) of
TxM and define J̃(x) as the linear operator that satisfies

J̃(x)[Ei ] =
τ0
h ξExpx (hEi ) − ξx

h
.
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Vector Transport

Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-
gent to the search direction

Search along any prescrib
curve tangent to the search
rection

Displacement
of tgt vectors

Parallel translation induced by
g

∇
??
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Vector Transport

Parallel translation can be tough

Edelman et al (1998): We are unaware of any closed form expression for
the parallel translation on the Stiefel manifold (defined with respect to
the Riemannian connection induced by the embedding in R

n×p).
Parallel transport along geodesics on Grassmannians:

ξ(t)Y (t) = −Y0V sin(Σt)UT ξ(0)Y0
+U cos(Σt)UT ξ(0)Y0

+(I−UUT )ξ(0)Y0
.

where Ẏ(0)Y0
= UΣV T is a thin SVD.
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Vector Transport

Alternatives found in the literature

Edelman et al (1998): “extrinsic” CG algorithm. “Tangency of the
search direction at the new point is imposed via the projection I − YY T”
(instead of via parallel translation).
Brace & Manton (2006), An improved BFGS-on-manifold algorithm for
computing weighted low rank approximation. “The second change is that
parallel translation is not defined with respect to the Levi-Civita
connection, but rather is all but ignored.”
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Filling a gap

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-
gent to the search direction

Search along any curve tangent
to the search direction
scribed by a retraction)

Displacement
of tgt vectors

Parallel translation induced by
g

∇
??
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Vector Transport

Filling a gap: Vector Transport

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-
gent to the search direction

Search along any curve tangent
to the search direction
scribed by a retraction)

Displacement
of tgt vectors

Parallel translation induced by
g

∇
Vector Transport
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Vector Transport

Still to come

◮ Vector transport in one picture

◮ Formal definition

◮ Particular vector transports

◮ Applications: finite-difference Newton, BFGS, CG.
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Vector Transport

The concept of vector transport

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx
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Vector Transport

Retraction

A retraction on a manifoldM is a smooth mapping

R : TM→M

such that

1. R(0x) = x for all x ∈M, where 0x denotes the origin of TxM;
2. d

dt
R(tξx)

∣
∣
t=0

= ξx for all ξx ∈ TxM.

Consequently, the curve t 7→ R(tξx) is a curve onM tangent to ξx .
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Vector Transport

The concept of vector transport – Whitney sum

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx
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Vector Transport

Whitney sum

Let TM⊕ TM denote the set

TM⊕ TM = {(ηx , ξx) : ηx , ξx ∈ TxM, x ∈M}.

This set admits a natural manifold structure.
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Vector Transport

The concept of vector transport – definition

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx
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Vector Transport

Vector transport: definition

A vector transport on a manifoldM on top of a retraction R is a smooth
map

TM⊕ TM→ TM : (ηx , ξx) 7→ Tηx (ξx) ∈ TM
satisfying the following properties for all x ∈M:

1. (Underlying retraction) Tηx ξx belongs to TRx (ηx )M.
2. (Consistency) T0x ξx = ξx for all ξx ∈ TxM;
3. (Linearity) Tηx (aξx + bζx) = aTηx (ξx) + bTηx (ζx).

142



Vector Transport

Inverse vector transport

When it exists, (Tηx )
−1(ξRx (ηx )) belongs to TxM. If η and ξ are two

vector fields on M, then (Tη)−1ξ is naturally defined as the vector field
satisfying

(
(Tη)−1ξ

)

x
= (Tηx )

−1 (ξRx (ηx )).
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Vector Transport

Still to come

◮ Vector transport in one picture

◮ Formal definition

◮ Particular vector transports

◮ Applications: finite-difference Newton, BFGS, CG.
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Vector Transport

Parallel translation is a vector transport

Proposition

If ∇ is an affine connection and R is a retraction on a manifoldM, then

Tηx (ξx) := P1←0
γ ξx (1)

is a vector transport with associated retraction R, where Pγ denotes the
parallel translation induced by ∇ along the curve t 7→ γ(t) = Rx(tηx).
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Vector Transport

Vector transport on Riemannian submanifolds

IfM is an embedded submanifold of a Euclidean space E andM is
endowed with a retraction R, then we can rely on the natural inclusion
TyM⊂ E for all y ∈ N to simply define the vector transport by

Tηx ξx := PRx (ηx )ξx , (2)

where Px denotes the orthogonal projector onto TxN .

146



Vector Transport

Still to come

◮ Vector transport in one picture

◮ Formal definition

◮ Particular vector transports

◮ Applications: finite-difference Newton, BFGS, CG.
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Vector Transport

Vector transport in finite differences

LetM be a manifold endowed with a vector transport T on top of a
retraction R. Let x ∈M and let (E1, . . . ,Ed) be a basis of TxM. Given
a smooth vector field ξ and a real constant h > 0, let
J̃ξ(x) : TxM→ TxM be the linear operator that satisfies, for
i = 1, . . . , d ,

J̃ξ(x)[Ei ] =
(ThEi

)−1ξR(hEi ) − ξx

h
. (3)

Lemma (finite differences)

Let x∗ be a nondegenerate zero of ξ. Then there is c > 0 such that, for
all x sufficiently close to x∗ and all h sufficiently small, it holds that

‖J̃ξ(x)[Ei ]− J(x)[Ei ]‖ ≤ c(h + ‖ξx‖). (4)
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Vector Transport

Convergence of Newton’s method with finite differences

Proposition

Consider the geometric Newton method where the exact Jacobian J(xk)
is replaced by the operator J̃ξ(xk) with h := hk . If

lim
k→∞

hk = 0,

then the convergence to nondegenerate zeros of ξ is superlinear. If,
moreover, there exists some constant c such that

hk ≤ c‖ξxk
‖

for all k, then the convergence is (at least) quadratic.
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Vector Transport

Vector transport in BFGS

With the notation

sk := Tηk
ηk ∈ Txk+1

M,

yk := grad f (xk+1)− Tηk
(grad f (xk)) ∈ Txk+1

M,

we define the operator Ak+1 : Txk+1
M 7→ Txk+1

M by

Ak+1η = Ãkη − 〈sk , Ãkη〉
〈sk , Ãksk〉

Ãksk +
〈yk , η〉
〈yk , sk〉

yk for all η ∈ Txk+1
M,

with
Ãk = Tηk

◦ Ak ◦ (Tηk
)−1.
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Vector Transport

Vector transport in CG

Compute a step size αk and set

xk+1 = Rxk
(αkηk). (5)

Compute βk+1 and set

ηk+1 = −grad f (xk+1) + βk+1Tαkηk
(ηk). (6)
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Vector Transport

Filling a gap: Vector Transport

Purely Riemannian way Pragmatic way

Update Search along the geodesic tan-
gent to the search direction

Search along any curve tangent
to the search direction
scribed by a retraction)

Displacement
of tgt vectors

Parallel translation induced by
g

∇
Vector Transport
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Vector Transport

Ongoing work

◮ Use vector transport wherever we can.
◮ Extend convergence analyses.
◮ Develop recipies for building efficient vector transports.
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Trust-Region Methods

Trust-region methods on
Riemannian manifolds
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Trust-Region Methods

Motivating application: Mechanical vibrations

Mass matrix M, stiffness matrix K .
Equation of vibrations (for undamped discretized linear structures):

Kx = ω2Mx

were

◮ ω is an angular frequency of vibration

◮ x is the corresponding mode of vibration

Task: find lowest modes of vibration.
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Trust-Region Methods

Generalized eigenvalue problem

Given n × n matrices A = AT and B = BT ≻ 0, there exist v1, . . . , vn in
R

n and λ1 ≤ . . . ≤ λn in R such that

Avi = λiBvi

vT
i Bvj = δij .

Task: find λ1, . . . , λp and v1, . . . , vp.
We assume throughout that λp < λp+1.
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Trust-Region Methods

Case p = 1: optimization in R
n

Avi = λiBvi

Consider the Rayleigh quotient

f̃ : R
n
∗ → R : f (y) =

yTAy

yTBy

Invariance: f̃ (αy) = f̃ (y).
Stationary points of f̃ : αvi , for all α 6= 0.
Minimizers of f̃ : αv1, for all α 6= 0.
Difficulty: the minimizers are not isolated.
Remedy: optimization on manifold.
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Trust-Region Methods

Case p = 1: optimization on ellipsoid

f̃ : R
n
∗ → R : f (y) =

yTAy

yTBy

Invariance: f̃ (αy) = f̃ (y).
Remedy 1:

◮ M := {y ∈ R
n : yTBy = 1}, submanifold of R

n.

◮ f :M→ R : f (y) = yTAy .

Stationary points of f : ±v1, . . . ,±vn.
Minimizers of f : ±v1.
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Trust-Region Methods

Case p = 1: optimization on projective space

f̃ : R
n
∗ → R : f (y) =

yTAy

yTBy

Invariance: f̃ (αy) = f̃ (y).
Remedy 2:

◮ [y ] := yR := {yα : α ∈ R}
◮ M := R

n
∗/R = {[y ]}

◮ f :M→ R : f ([y ]) := f̃ (y)

Stationary points of f : [v1], . . . , [vn].
Minimizer of f : [v1].
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Trust-Region Methods

Case p ≥ 1: optimization on the Grassmann manifold

f̃ : R
n×p
∗ → R : f̃ (Y ) = trace

(

(Y TBY )−1Y TAY
)

Invariance: f̃ (YR) = f̃ (Y ).
Define:

◮ [Y ] := {YR : R ∈ R
p×p
∗ }, Y ∈ R

n×p
∗

◮ M := Grass(p, n) := {[Y ]}
◮ f :M→ R : f ([Y ]) := f̃ (Y )

Stationary points of f : span{vi1 , . . . , vip}.
Minimizer of f : [Y ] = span{v1, . . . , vp}.
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Trust-Region Methods

Optimization on Manifolds

◮ Luenberger [Lue73], Gabay [Gab82]: optimization on submanifolds
of R

n.

◮ Smith [Smi93, Smi94] and Udrişte [Udr94]: optimization on general
Riemannian manifolds (steepest descent, Newton, CG).

◮ ...

◮ PAA, Baker and Gallivan [ABG07]: trust-region methods on
Riemannian manifolds.

◮ PAA, Mahony, Sepulchre [AMS08]:Optimization Algorithms on
Matrix Manifolds, textbook.
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Trust-Region Methods

The Problem : Leftmost Eigenpairs of Matrix Pencil

Given n × n matrix pencil (A, B), A = AT , B = BT ≻ 0 with (unknown)
eigen-decomposition

A [v1| . . . |vn] = B [v1| . . . |vn]diag(λ1, . . . , λn)

[v1| . . . |vn]
T B [v1| . . . |vn] = I , λ1 < λ2 ≤ . . . ≤ λn.

The problem is to compute the minor eigenvector ±v1.

162



Trust-Region Methods

The ideal algorithm

Given (A, B), A = AT , B = BT ≻ 0 with (unknown) eigenvalues
0 < λ1 ≤ . . . λn and associated eigenvectors v1, . . . , vn.

1. Global convergence:
◮ Convergence to some eigenvector for all initial conditions.
◮ Stable convergence to the “leftmost” eigenvector ±v1 only.

2. Superlinear (cubic) local convergence to ±v1.
3. “Matrix-free” (no factorization of A, B)

but possible use of preconditioner.
4. Minimal storage space required.
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Trust-Region Methods

Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
; Global convergence.

◮ Take the exact quadratic model (at least, close to the solution).
; Superlinear convergence.

◮ Solve the trust-region subproblems using the (Steihaug-Toint)
truncated CG (tCG) algorithm.
; “Matrix-free”, preconditioned iteration.
; Minimal storage of iteration vectors.
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Trust-Region Methods

Iteration on the manifold

Manifold: ellipsoidM = {y ∈ R
n : yTBy = 1}.

Cost function: f :M→ R : y 7→ yTAy
?

y

v1

M
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Trust-Region Methods

Tangent space and retraction (2D picture)

TyM
Ry

y

M

η

Tangent space: TyM := {η ∈ R
n : yTBη = 0}.

Retraction: Ryη := (y + η)/‖y + η‖B .

Lifted cost function: f̂y (η) := f (Ryη) = (y+η)T A(y+η)
(y+η)T B(y+η)

.
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Trust-Region Methods

Concept of retraction

Introduced by Shub [Shu86].

M

TxM

x

Rx

x-lift

1. Rx is defined and one-to-one in a neighbourhood of 0x in TxM.
2. Rx(0x) = x .
3. DRx(0x) = idTxM , the identity mapping on TxM, with the canonical

identification T0x TxM ≃ TxM.
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Trust-Region Methods

Tangent space and retraction

y

v1

M

TyM

f̂y

η
Ry

Tangent space: TyM := {η ∈ R
n : yTBη = 0}.

Retraction: Ryη := (y + η)/‖y + η‖B .

Lifted cost function: f̂y (η) := f (Ryη) = (y+η)T A(y+η)
(y+η)T B(y+η)

.
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Trust-Region Methods

Quadratic model

f̂y (η) =
yTAy

yTBy
+ 2

yTAη

yTBy
+

1

yTBy

(

ηTAη − yTAy

yTBy
ηTBη

)

+ . . .

= f (y) + 2〈PAy , η〉+ 1

2
〈2P(A− f (y)B)Pη, η〉+ . . .

where 〈u, v〉 = uT v and P = I − By(yTB2y)−1yTB.
Model:

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0.
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Quadratic model

y

v1

M

TyM

f̂y

η
Ry

my

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0.
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Trust-Region Methods

Newton vs Trust-Region

Model:

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0. (7)

Newton method: Compute the stationary point of the model, i.e., solve

P(A− f (y)B)P η = −PAy .

Instead, compute (approximately) the minimizer of my within a
trust-region

{η ∈ TxM : ηTη ≤ ∆2}.
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Trust-Region Methods

Trust-region subproblem

Minimize

my (η) = f (y) + 2〈PAy , η〉+ 1

2
〈P(A− f (y)B)Pη, η〉, yTBη = 0.

subject to ηTη ≤ ∆2.

y

v1

M

TyM

my
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Trust-Region Methods

Truncated CG method for the TR subproblem (1)

Let 〈·, ·〉 denote the standard inner product and let
Hxk

:= P(A− f (xk)B)P denote the Hessian operator.
Initializations:
Set η0 = 0, r0 = Pxk

Axk = Axk − Bxk(xT
k B2xk)−1xT

k BAxk , δ0 = −r0;
Then repeat the following loop on j :
Check for negative curvature

if 〈δj ,Hxk
δj〉 ≤ 0

Compute τ such that η = ηj + τδj minimizes m(η) in (7) and
satisfies ‖η‖ = ∆;

return η;
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Trust-Region Methods

Truncated CG method for the TR subproblem (2)

Generate next inner iterate
Set αj = 〈rj , rj〉/〈δj ,Hxk

δj〉;
Set ηj+1 = ηj + αjδj ;

Check trust-region
if ‖ηj+1‖ ≥ ∆

Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖ = ∆;
return η;
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Trust-Region Methods

Truncated CG method for the TR subproblem (3)

Update residual and search direction
Set rj+1 = rj + αjHxk

δj ;
Set βj+1 = 〈rj+1, rj+1〉/〈rj , rj〉;
Set δj+1 = −rj+1 + βj+1δj ;
j ← j + 1;

Check residual
If ‖rj‖ ≤ ‖r0‖min

(
‖r0‖θ, κ

)
for some prescribed θ and κ

return ηj ;
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Overall iteration

y

v1

M

TyM

my

η
y+
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Trust-Region Methods

The outer iteration – manifold trust-region (1)

Data: symmetric n × n matrices A and B, with B positive definite.
Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ (0, 1

4).
Input: initial iterate x0 ∈ {y : yTBy = 1}.
Output: sequence of iterates {xk} in {y : yTBy = 1}.
Initialization: k = 0
Repeat the following:

177



Trust-Region Methods

The outer iteration – manifold trust-region (2)

◮ Obtain ηk using the Steihaug-Toint truncated conjugate-gradient
method to approximately solve the trust-region subproblem

min
xT
k

Bη=0
mxk

(η) s.t. ‖η‖ ≤ ∆k , (8)

where m is defined in (7).
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The outer iteration – manifold trust-region (3)

◮ Evaluate

ρk =
f̂xk

(0)− f̂xk
(ηk)

mxk
(0)−mxk

(ηk)
(9)

where f̂xk
(η) = (xk+η)T A(xk+η)

(xk+η)T B(xk+η)
.

◮ Update the trust-region radius:
if ρk < 1

4
∆k+1 = 1

4∆k

else if ρk > 3
4 and ‖ηk‖ = ∆k

∆k+1 = min(2∆k , ∆̄)
else

∆k+1 = ∆k ;
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Trust-Region Methods

The outer iteration – manifold trust-region (4)

◮ Update the iterate:
if ρk > ρ′

xk+1 = (xk + ηk)/‖xk + ηk‖B ; (10)

else
xk+1 = xk ;

k ← k + 1
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Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
; Global convergence.

◮ Take the exact quadratic model (at least, close to the solution).
; Superlinear convergence.

◮ Solve the trust-region subproblems using the (Steihaug-Toint)
truncated CG (tCG) algorithm.
; “Matrix-free”, preconditioned iteration.
; Minimal storage of iteration vectors.
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Trust-Region Methods

Summary

We have obtained a trust-region algorithm for minimizing the Rayleigh
quotient over an ellipsoid.

Generalization to trust-region algorithms for minimizing functions on
manifolds: the Riemannian Trust-Region (RTR) method [ABG07].
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Convergence analysis

y

v1

M

TyM

my
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Trust-Region Methods

Global convergence of Riemannian Trust-Region algorithms

Let {xk} be a sequence of iterates generated by the RTR algorithm with
ρ′ ∈ (0, 1

4). Suppose that f is C 2 and bounded below on the level set
{x ∈ M : f (x) < f (x0)}. Suppose that ‖grad f (x)‖ ≤ βg and
‖Hess f (x)‖ ≤ βH for some constants βg , βH , and all x ∈ M. Moreover
suppose that

‖ D
dt

d
dt

Rtξ‖ ≤ βD (11)

for some constant βD , for all ξ ∈ TM with ‖ξ‖ = 1 and all t < δD ,
where D

dt
denotes the covariant derivative along the curve t 7→ Rtξ.

Further suppose that all approximate solutions ηk of the trust-region
subproblems produce a decrease of the model that is at least a fixed
fraction of the Cauchy decrease.
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Global convergence (cont’d)

It then follows that
lim

k→∞
grad f (xk) = 0.

And only the local minima are stable (the saddle points and local
maxima are unstable).
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Local convergence of Riemannian Trust-Region algorithms

Consider the RTR-tCG algorithm. Suppose that f is a C 2 cost function
on M and that

‖Hk −Hess f̂xk
(0k)‖ ≤ βH‖grad f (xk)‖. (12)

Let v ∈ M be a nondegenerate local minimum of f , (i.e., grad f (v) = 0
and Hess f (v) is positive definite). Further assume that Hess f̂xk

is
Lipschitz-continuous at 0x uniformly in x in a neighborhood of v , i.e.,
there exist β1 > 0, δ1 > 0 and δ2 > 0 such that, for all x ∈ Bδ1(v) and
all ξ ∈ Bδ2(0x), it holds

‖Hess f̂xk
(ξ)−Hess f̂xk

(0xk
)‖ ≤ βL2‖ξ‖. (13)
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Local convergence (cont’d)

Then there exists c > 0 such that, for all sequences {xk} generated by
the RTR-tCG algorithm converging to v , there exists K > 0 such that for
all k > K ,

dist(xk+1, v) ≤ c (dist(xk , v))min{θ+1,2}, (14)

where θ governs the stopping criterion of the tCG inner iteration.
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Convergence of trust-region-based eigensolver

Theorem:

Let (A, B) be an n × n symmetric/positive-definite matrix pencil with
eigenvalues λ1 < λ2 ≤ . . . ≤ λn−1 ≤ λn and an associated
B-orthonormal basis of eigenvectors (v1, . . . , vn).

Let Si = {y : Ay = λiBy , yTBy = 1} denote the intersection of the
eigenspace of (A, B) associated to λi with the set {y : yTBy = 1}.

...
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Convergence (global)

(i) Let {xk} be a sequence of iterates generated by the Algorithm. Then
{xk} converges to the eigenspace of (A, B) associated to one of its
eigenvalues. That is, there exists i such that limk→∞ dist(xk ,Si ) = 0.

(ii) Only the set S1 = {±v1} is stable.
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Convergence (local)

(iii) There exists c > 0 such that, for all sequences {xk} generated by the
Algorithm converging to S1, there exists K > 0 such that for all k > K ,

dist(xk+1,S1) ≤ c (dist(xk ,S1))
min{θ+1,2} (15)

with θ > 0.
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Strategy

◮ Rewrite computation of leftmost eigenpair as an optimization
problem (on a manifold).

◮ Use a model-trust-region scheme to solve the problem.
; Global convergence.

◮ Take the exact quadratic model (at least, close to the solution).
; Superlinear convergence.

◮ Solve the trust-region subproblems using the (Steihaug-Toint)
truncated CG (tCG) algorithm.
; “Matrix-free”, preconditioned iteration.
; Minimal storage of iteration vectors.
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Numerical experiments: RTR vs Krylov [GY02]
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Distance to target versus matrix-vector multiplications.
Symmetric/positive-definite generalized eigenvalue problem.
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Conclusion: A Three-Step Approach

◮ Formulation of the computational problem as a geometric
optimization problem.

◮ Generalization of optimization algorithms on abstract manifolds.

◮ Exploit flexibility and additional structure to build numerically
efficient algorithms.
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A few pointers

◮ Optimization on manifolds: Luenberger [Lue73], Gabay [Gab82],
Smith [Smi93, Smi94], Udrişte [Udr94], Manton [Man02], Mahony
and Manton [MM02], PAA et al. [ABG04, ABG07]...

◮ Trust-region methods: Powell [Pow70], Moré and Sorensen [MS83],
Moré [Mor83], Conn et al. [CGT00].

◮ Truncated CG: Steihaug [Ste83], Toint [Toi81], Conn et
al. [CGT00]...

◮ Retractions: Shub [Shu86], Adler et al. [ADM+02]...
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THE END
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