Optimization On Manifolds

Pierre-Antoine Absil Robert Mahony
Rodolphe Sepulchre

Based on ''Optimization Algorithms on Matrix Manifolds'', Princeton University Press, January 2008

Collaboration

Chris Baker
(Florida State University and Sandia National Laboratories)
Kyle Gallivan
(Florida State University)
Paul Van Dooren
(Université catholique de Louvain)

Reference

Optimization Algorithms on Matrix Manifolds P.-A. Absil, R. Mahony, R. Sepulchre Princeton University Press, January 2008

About the reference

- The publisher, Princeton University Press, has been a non-profit company since 1910.
- Official publication date is January 2008.
- Copies are already shipping.

Reference: contents

1. Introduction
2. Motivation and applications
3. Matrix manifolds: first-order geometry
4. Line-search algorithms
5. Matrix manifolds: second-order geometry
6. Newton's method
7. Trust-region methods
8. A constellation of superlinear algorithms

Matrix Manifolds: first-order geometry

Chap 3: Matrix Manifolds: first-order geometry

1. Charts, atlases, manifolds
2. Differentiable functions
3. Embedded submanifolds
4. Quotient manifolds
5. Tangent vectors and differential maps
6. Riemannian metric, distance, gradient

Smooth optimization in \mathbb{R}^{n}

General unconstrained optimization problem in \mathbb{R}^{n} : Let

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R},
$$

The real-valued function f is termed the cost function or objective function.
Problem: find $x_{*} \in \mathbb{R}^{n}$ such that there exists $\epsilon>0$ for which

$$
f(x) \geq f\left(x_{*}\right) \text { whenever }\left\|x-x_{*}\right\|<\epsilon .
$$

Such a point x_{*} is called a local minimizer of f.

Smooth optimization in \mathbb{R}^{n}

General unconstrained optimization problem in \mathbb{R}^{n} :
Let

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

The real-valued function f is termed the cost function or objective function.
Problem: find $x_{*} \in \mathbb{R}^{n}$ such that there exists a neighborhood \mathcal{N} of x_{*} such that

$$
f(x) \geq f\left(x_{*}\right) \text { whenever } x \in \mathcal{N} .
$$

Such a point x_{*} is called a local minimizer of f.

Smooth optimization beyond \mathbb{R}^{n}

$$
? \arg \min _{x \in \mathbb{R}^{n}} f(x)
$$

- Several optimization techniques require the cost function to be differentiable to some degree:
- Steepest-descent at x requires $\operatorname{Df}(x)$.
- Newton's method at x requires $\mathrm{D}^{2} f(x)$.
- Can we go beyond \mathbb{R}^{n} without losing the concept of differentiability?

$$
\arg \min _{x \in \mathbb{R}^{n}} f(x) \quad \leadsto \quad \arg \min _{x \in \mathcal{M}} f(x)
$$

Smooth optimization on a manifold: what "smooth" means

Smooth optimization on a manifold: what "smooth" means

Smooth optimization on a manifold: what "smooth" means

Smooth optimization on a manifold: what "smooth" means

Chart: $\mathcal{U} \xrightarrow[\text { bij. }]{\varphi} \varphi(\mathcal{U})$
Atlas: Collection of "compatible chars" that cover \mathcal{M} Manifold: Set with an atlas

Optimization on manifolds in its most abstract formulation

Given:

- A set \mathcal{M} endowed (explicitly or implicitly) with a manifold structure (i.e., a collection of compatible charts).
- A function $f: \mathcal{M} \rightarrow \mathbb{R}$, smooth in the sense of the manifold structure.

Task: Compute a local minimizer of f.

Optimization on manifolds: algorithms

Given:

- A set \mathcal{M} endowed (explicitly or implicitly) with a manifold structure (i.e., a collection of compatible charts).
- A function $f: \mathcal{M} \rightarrow \mathbb{R}$, smooth in the sense of the manifold structure.

Task: Compute a local minimizer of f.

Previous work on Optimization On Manifolds

Luenberger (1973), Introduction to linear and nonlinear programming. Luenberger mentions the idea of performing line search along geodesics, "which we would use if it were computationally feasible (which it definitely is not)".

The purely Riemannian era

Gabay (1982), Minimizing a differentiable function over a differential manifold. Stepest descent along geodesics; Newton's method along geodesics; Quasi-Newton methods along geodesics.

Smith (1994), Optimization techniques on Riemannian manifolds. Levi-Civita connection ∇; Riemannian exponential; parallel translation. But Remark 4.9: If Algorithm 4.7 (Newton's iteration on the sphere for the Rayleigh quotient) is simplified by replacing the exponential update with the update

$$
x_{k+1}=\frac{x_{k}+\eta_{k}}{\left\|x_{k}+\eta_{k}\right\|}
$$

then we obtain the Rayleigh quotient iteration.

The pragmatic era

Manton (2002), Optimization algorithms exploiting unitary constraints "The present paper breaks with tradition by not moving along geodesics". The geodesic update $\operatorname{Exp}_{x} \eta$ is replaced by a projective update $\pi(x+\eta)$, the projection of the point $x+\eta$ onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton's method on Riemannian manifolds and a geometric model for the human spine. The exponential update is relaxed to the general notion of retraction. The geodesic can be replaced by any (smoothly prescribed) curve tangent to the search direction.

Looking ahead: Newton on abstract manifolds

Required: Riemannian manifold \mathcal{M}; retraction R on \mathcal{M}; affine connection ∇ on \mathcal{M}; real-valued function f on \mathcal{M}. Iteration $x_{k} \in \mathcal{M} \mapsto x_{k+1} \in \mathcal{M}$ defined by

1. Solve the Newton equation

$$
\operatorname{Hess} f\left(x_{k}\right) \eta_{k}=-\operatorname{grad} f\left(x_{k}\right)
$$

for the unknown $\eta_{k} \in T_{x_{k}} \mathcal{M}$, where
Hess $f\left(x_{k}\right) \eta_{k}:=\nabla_{\eta_{k}} \operatorname{grad} f$.
2. Set

$$
x_{k+1}:=R_{x_{k}}\left(\eta_{k}\right)
$$

Looking ahead: Newton on submanifolds of \mathbb{R}^{n}

Required: Riemannian submanifold \mathcal{M} of \mathbb{R}^{n}; retraction R on \mathcal{M}; real-valued function f on \mathcal{M}. Iteration $x_{k} \in \mathcal{M} \mapsto x_{k+1} \in \mathcal{M}$ defined by

1. Solve the Newton equation

$$
\operatorname{Hess} f\left(x_{k}\right) \eta_{k}=-\operatorname{grad} f\left(x_{k}\right)
$$

for the unknown $\eta_{k} \in T_{x_{k}} \mathcal{M}$, where

$$
\text { Hess } f\left(x_{k}\right) \eta_{k}:=\mathrm{P}_{T_{x_{k}} \mathcal{M}} \operatorname{grad} f\left(x_{k}\right)
$$

2. Set

$$
x_{k+1}:=R_{x_{k}}\left(\eta_{k}\right)
$$

Looking ahead: Newton on the unit sphere S^{n-1}

Required: real-valued function f on S^{n-1}. Iteration $x_{k} \in \mathcal{M} \mapsto x_{k+1} \in S^{n-1}$ defined by

1. Solve the Newton equation

$$
\left\{\begin{array}{l}
\mathrm{P}_{x_{k}} \mathrm{D}(\operatorname{grad} f)\left(x_{k}\right)\left[\eta_{k}\right]=-\operatorname{grad} f\left(x_{k}\right) \\
x^{T} \eta_{k}=0
\end{array}\right.
$$

for the unknown $\eta_{k} \in \mathbb{R}^{n}$, where

$$
\mathrm{P}_{x_{k}}=\left(I-x_{k} x_{k}^{T}\right) .
$$

2. Set

$$
x_{k+1}:=\frac{x_{k}+\eta_{k}}{\left\|x_{k}+\eta_{k}\right\|}
$$

Looking ahead: Newton for Rayleigh quotient optimization on unit sphere

Iteration $x_{k} \in S^{n-1} \mapsto x_{k+1} \in S^{n-1}$ defined by

1. Solve the Newton equation

$$
\left\{\begin{array}{l}
\mathrm{P}_{x_{k}} A \mathrm{P}_{x_{x_{k}}} \eta_{k}-\eta_{k} x_{k}^{T} A x_{k}=-\mathrm{P}_{x_{k}} A x_{k}, \\
x_{k}^{T} \eta_{k}=0,
\end{array}\right.
$$

for the unknown $\eta_{k} \in \mathbb{R}^{n}$, where

$$
\mathrm{P}_{x_{k}}=\left(I-x_{k} x_{k}^{T}\right) .
$$

2. Set

$$
x_{k+1}:=\frac{x_{k}+\eta_{k}}{\left\|x_{k}+\eta_{k}\right\|}
$$

Programme

- Provide background in differential geometry instrumental for algorithmic development
- Present manifold versions of some classical optimization algorithms: steepest-descent, Newton, conjugate gradients, trust-region methods
- Show how to turn these abstract geometric algorithms into practical implementations
- Illustrate several problems that can be rephrased as optimization problems on manifolds.

Some important manifolds

- Stiefel manifold $\operatorname{St}(p, n)$: set of all orthonormal $n \times p$ matrices.
- Grassmann manifold $\operatorname{Grass}(p, n)$: set of all p-dimensional subspaces of \mathbb{R}^{n}
- Euclidean group $S E(3)$: set of all rotations-translations
- Flag manifold, shape manifold, oblique manifold...
- Several unnamed manifolds

A manifold-based approach to the symmetric eigenvalue problem

I
 OPT I

EVP

OPT

EVP

Opt algorithms

for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Algorithms
for EVP

Rayleigh quotient

Rayleigh quotient of (A, B) :

$$
f: \mathbb{R}_{*}^{n} \rightarrow \mathbb{R}: f(y)=\frac{y^{\top} A y}{y^{\top} B y}
$$

Let A, B in $\mathbb{R}^{n \times n}, A=A^{T}, B=B^{T} \succ 0$,

$$
A v_{i}=\lambda_{i} B v_{i}
$$

with $\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n}$.
Stationary points of $f: \alpha v_{i}$, for all $\alpha \neq 0$.
Local (and global) minimizers of $f: \alpha v_{1}$, for all $\alpha \neq 0$.

"Block" Rayleigh quotient

Let $\mathbb{R}_{*}^{n \times p}$ denote the set of all full-column-rank $n \times p$ matrices. Generalized ("block") Rayleigh quotient:

$$
f: \mathbb{R}_{*}^{n \times p} \rightarrow \mathbb{R}: f(Y)=\operatorname{trace}\left(\left(Y^{\top} B Y\right)^{-1} Y^{\top} A Y\right)
$$

Stationary points of f :

$$
\left[\begin{array}{lll}
v_{i_{1}} & \ldots & v_{i_{p}}
\end{array}\right] M, \quad \text { for all } M \in \mathbb{R}_{*}^{p \times p} .
$$

Minimizers of f :

$$
\left[\begin{array}{lll}
v_{1} & \ldots & v_{p}
\end{array}\right] M, \quad \text { for all } M \in \mathbb{R}_{*}^{p \times p} .
$$

Newton for Rayleigh quotient in \mathbb{R}_{0}^{n}

Let f denote the Rayleigh quotient of (A, B).
Let $x \in \mathbb{R}_{0}^{n}$ be any point such that $f(x) \notin \operatorname{spec}\left(B^{-1} A\right)$.
Then the Newton iteration

$$
x \mapsto x-\left(\mathrm{D}^{2} f(x)\right)^{-1} \cdot \operatorname{grad} f(x)
$$

reduces to the iteration

$$
x \mapsto 2 x
$$

Invariance properties of the Rayleigh quotient

Rayleigh quotient of (A, B) :

$$
f: \mathbb{R}_{*}^{n} \rightarrow \mathbb{R}: f(y)=\frac{y^{\top} A y}{y^{\top} B y}
$$

Invariance: $f(\alpha y)=f(y)$ for all $\alpha \in \mathbb{R}_{0}$.

Invariance properties of the Rayleigh quotient

Generalized ("block") Rayleigh quotient:

$$
f: \mathbb{R}_{*}^{n \times p} \rightarrow \mathbb{R}: f(Y)=\operatorname{trace}\left(\left(Y^{\top} B Y\right)^{-1} Y^{\top} A Y\right)
$$

Invariance: $f(Y M)=f(Y)$ for all $M \in \mathbb{R}_{*}^{p \times p}$.

Remedy 1: modify f

Remedy 1: modify f

Consider

$$
P_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}: x \mapsto P_{A}(x):=\left(x^{\top} x\right)^{2}-2 x^{\top} A x
$$

Theorem

(i)

$$
\min _{x \in \mathbb{R}^{n}} P_{A}(x)=-\lambda_{n}^{2}
$$

The minimum is attained at any $\sqrt{\lambda_{n}} v_{n}$, where v_{n} is a unitary eigenvector related to λ_{n}.
(ii) The set of critical points of P_{A} is $\{0\} \cup\left\{\sqrt{\lambda_{k}} v_{k}\right\}$. References: Auchmuty (1989), Mongeau and Torki (2004).

EVP: optimization on ellipsoid

Remedy 2: modify the search space

Instead of

$$
f: \mathbb{R}_{*}^{n} \rightarrow \mathbb{R}: f(y)=\frac{y^{\top} A y}{y^{\top} B y}
$$

minimize

$$
f: \mathcal{M} \rightarrow \mathbb{R}: f(y)=\frac{y^{\top} A y}{y^{\top} B y},
$$

where

$$
\mathcal{M}=\left\{y \in \mathbb{R}^{n}: y^{\top} B y=1\right\} .
$$

Stationary points of $f: \pm v_{i}$.
Local (and global) minimizers of $f: \pm v_{1}$.

Remedy 2: modify search space: block case

Instead of generalized ("block") Rayleigh quotient:

$$
f: \mathbb{R}_{*}^{n \times p} \rightarrow \mathbb{R}: f(Y)=\operatorname{trace}\left(\left(Y^{\top} B Y\right)^{-1} Y^{\top} A Y\right)
$$

minimize

$$
f: \operatorname{Grass}(p, n) \rightarrow \mathbb{R}: f(\operatorname{col}(Y))=\operatorname{trace}\left(\left(Y^{\top} B Y\right)^{-1} Y^{\top} A Y\right)
$$

where $\operatorname{Grass}(p, n)$ denotes the set of all p-dimensional subspaces of \mathbb{R}^{n}, called the Grassmann manifold. Stationary points of $f: \operatorname{col}\left(\left[\begin{array}{lll}v_{i_{1}} & \ldots & v_{i_{p}}\end{array}\right]\right)$. Minimizer of $f: \operatorname{col}\left(\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]\right)$.

Smooth optimization on a manifold: big picture

Smooth optimization on a manifold: tools

	Purely Riemannian way	Pragmatic way
Search direc- tion	Tangent vector	Tangent vector
Steepest de- scent dir.	$-\operatorname{grad} f(x)$	$-\operatorname{grad} f(x)$
Derivative of vector field	Levi-Civita connection $\stackrel{g}{\nabla}$	Any connection ∇
Update	Search along the geodesic tan- gent to the search direction	Search along any curve ta to the search direction scribed by a retraction $)$
Displacement of tgt vectors	Parallel translation induced by g	Vector Transport

Newton's method on abstract manifolds

Required: Riemannian manifold \mathcal{M}; retraction R on \mathcal{M}; affine connection ∇ on \mathcal{M}; real-valued function f on \mathcal{M}. Iteration $x_{k} \in \mathcal{M} \mapsto x_{k+1} \in \mathcal{M}$ defined by

1. Solve the Newton equation

$$
\operatorname{Hess} f\left(x_{k}\right) \eta_{k}=-\operatorname{grad} f\left(x_{k}\right)
$$

for the unknown $\eta_{k} \in T_{x_{k}} \mathcal{M}$, where Hess $f\left(x_{k}\right) \eta_{k}:=\nabla_{\eta_{k}} \operatorname{grad} f$.
2. Set

$$
x_{k+1}:=R_{x_{k}}\left(\eta_{k}\right)
$$

Convergence of Newton's method on abstract manifolds

Theorem

Let $x_{*} \in \mathcal{M}$ be a nondegenerate critical point of f, i.e., $\operatorname{grad} f\left(x_{*}\right)=0$ and Hess $f\left(x_{*}\right)$ invertible.
Then there exists a neighborhood \mathcal{U} of x_{*} in \mathcal{M} such that, for all $x_{0} \in \mathcal{U}$, Newton's method generates an infinite sequence $\left(x_{k}\right)_{k=0,1, \ldots}$ converging superlinearly (at least quadratically) to x_{*}.

Geometric Newton for Rayleigh quotient optimization

Iteration $x_{k} \in S^{n-1} \mapsto x_{k+1} \in S^{n-1}$ defined by

1. Solve the Newton equation

$$
\left\{\begin{array}{l}
\mathrm{P}_{x_{k}} A \mathrm{P}_{x_{k}} \eta_{k}-\eta_{k} x_{k}^{T} A x_{k}=-\mathrm{P}_{x_{k}} A x_{k}, \\
x_{k}^{T} \eta_{k}=0,
\end{array}\right.
$$

for the unknown $\eta_{k} \in \mathbb{R}^{n}$, where

$$
P_{x_{k}}=\left(I-x_{k} x_{k}^{T}\right) .
$$

2. Set

$$
x_{k+1}:=\frac{x_{k}+\eta_{k}}{\left\|x_{k}+\eta_{k}\right\|} .
$$

Geometric Newton for Rayleigh quotient optimization: block case

Iteration $\operatorname{col}\left(Y_{k}\right) \in \operatorname{Grass}(p, n) \mapsto \operatorname{col}\left(Y_{k+1}\right) \in \operatorname{Grass}(p, n)$ defined by

1. Solve the linear system

$$
\left\{\begin{array}{l}
\mathrm{P}_{Y_{k}}^{h}\left(A Z_{k}-Z_{k}\left(Y_{k}^{T} Y_{k}\right)^{-1} Y_{k}^{T} A Y_{k}\right)=-\mathrm{P}_{Y_{k}}^{h}\left(A Y_{k}\right) \\
Y_{k}^{T} Z_{k}=0
\end{array}\right.
$$

for the unknown $Z_{k} \in \mathbb{R}^{n \times p}$, where

$$
\mathrm{P}_{Y_{k}}^{h}=\left(I-Y_{k}\left(Y_{k}^{T} Y_{k}\right)^{-1} Y_{k}^{T}\right)
$$

2. Set

$$
Y_{k+1}=\left(Y_{k}+Z_{k}\right) N_{k}
$$

where N_{k} is a nonsingular $p \times p$ matrix chosen for normalization.

Convergence of the EVP algorithm

Theorem

Let $Y_{*} \in \mathbb{R}^{n \times p}$ be such that $\operatorname{col}\left(Y_{*}\right)$ is a spectral invariant subspace of $B^{-1} A$. Then there exists a neighborhood \mathcal{U} of $\operatorname{col}\left(Y_{*}\right)$ in $\operatorname{Grass}(p, n)$ such that, for all $Y_{0} \in \mathbb{R}^{n \times p}$ with $\operatorname{col}\left(Y_{0}\right) \in \mathcal{U}$, Newton's method generates an infinite sequence $\left(Y_{k}\right)_{k=0,1, \ldots}$ such that $\left(\operatorname{col}\left(Y_{k}\right)\right)_{k=0,1, \ldots}$ converges superlinearly (at least quadratically) to $\operatorname{col}\left(Y_{*}\right)$ on $\operatorname{Grass}(p, n)$.

Other optimization methods

- Trust-region methods: PAA, C. G. Baker, K. A. Gallivan, Trust-region methods on Riemannian manifolds, Foundations of Computational Mathematics, 2007.
- "Implicit" trust-region methods: PAA, C. G. Baker, K. A. Gallivan, submitted.

Manifolds

Manifolds, submanifolds, quotient manifolds

Submanifolds of \mathbb{R}^{n}

The set $\mathcal{M} \subset \mathbb{R}^{n}$ is termed a submanifold of \mathbb{R}^{n} if the situation described above holds for all $x \in \mathcal{M}$.

Submanifolds of \mathbb{R}^{n}

The manifold structure on \mathcal{M} is defined in a unique way as the manifold structure generated by the atlas $\left\{\left.\left[\begin{array}{c}e_{1}^{T} \\ \vdots \\ e_{d}^{T}\end{array}\right] \varphi_{(x)}\right|_{\mathcal{M}}: x \in \mathcal{M}\right\}$.

Back to the basics: partial derivatives in \mathbb{R}^{n}

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$.
Define $\partial_{i} F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ by

$$
\partial_{i} F(x)=\lim _{t \rightarrow 0} \frac{F\left(x+t e_{i}\right)-F(x)}{t}
$$

If $\partial_{i} F$ is defined and continuous on \mathbb{R}^{n}, then F is termed continuously differentiable, denoted by $F \in C^{1}$.

Back to the basics: (Fréchet) derivative in \mathbb{R}^{n}

If $F \in C^{1}$, then

$$
\mathrm{DF}(x): \mathbb{R}^{n} \xrightarrow{\operatorname{lin}} \mathbb{R}^{q}: z \mapsto \mathrm{D} F(x)[z]:=\lim _{t \rightarrow 0} \frac{F(x+t z)-F(x)}{t}
$$

is the derivative (or differential) of F at x.
We have $\mathrm{DF}(x)[z]=\mathrm{J}_{F}(x) z$, where the matrix

$$
\mathrm{J}_{F}(x)=\left[\begin{array}{ccc}
\partial_{1}\left(e_{1}^{T} F\right)(x) & \cdots & \partial_{n}\left(e_{1}^{T} F\right)(x) \\
\vdots & \ddots & \vdots \\
\partial_{1}\left(e_{q}^{T} F\right)(x) & \cdots & \partial_{n}\left(e_{q}^{T} F\right)(x)
\end{array}\right]
$$

is the Jacobian matrix of F at x.

Submanifolds of \mathbb{R}^{n} : sufficient condition

$y \in \mathbb{R}^{q}$ is a regular value of F if, for all $x \in F^{-1}(y), \mathrm{D} F(x)$ is an onto function (surjection).
Theorem (submersion theorem): If $y \in \mathbb{R}^{q}$ is a regular value of F, then $F^{-1}(y)$ is a submanifold of \mathbb{R}^{n}.

Submanifolds of \mathbb{R}^{n} : sufficient condition: application

The unit sphere

$$
S^{n-1}:=\left\{x \in \mathbb{R}^{n}: x^{T} x=1\right\}
$$

is a submanifold of \mathbb{R}^{n}.
Indeed, for all $x \in S^{n-1}$, we have that

$$
\mathrm{D} F(x): \mathbb{R}^{n} \rightarrow \mathbb{R}: z \mapsto \mathrm{D} F(x)[z]=x^{T} z+z^{T} x
$$

is an onto function.

Manifolds, submanifolds, quotient manifolds

Manifolds, submanifolds, quotient manifolds

A simple quotient set: the projective space

A slightly less simple quotient set: $\mathbb{R}_{*}^{n \times p} / \mathrm{GL}_{p}$

Abstract quotient set $\overline{\mathcal{M}} / \sim$

Abstract quotient manifold $\overline{\mathcal{M}} / \sim$

The set $\overline{\mathcal{M}} / \sim$ is termed a quotient manifold if the situation described above holds for all $x \in \overline{\mathcal{M}}$.

Abstract quotient manifold $\overline{\mathcal{M}} / \sim$

The manifold structure on $\overline{\mathcal{M}} / \sim$ is defined in a unique way as the manifold structure generated by the atlas $\left\{\left[\begin{array}{c}e_{1}^{T} \\ \vdots \\ e_{q}^{T}\end{array}\right] \varphi_{(x)} \circ \pi^{-1}: x \in \overline{\mathcal{M}}\right\}$.

Manifolds, submanifolds, quotient manifolds

Manifolds, and where they appear

- Stiefel manifold $\operatorname{St}(p, n)$ and orthogonal group $O_{p}=\operatorname{St}(n, n)$

$$
\operatorname{St}(p, n)=\left\{X \in \mathbb{R}^{n \times p}: X^{\top} X=I_{p}\right\}
$$

Applications: computer vision; principal component analysis; independent component analysis...

- Grassmann manifold $\operatorname{Grass}(p, n)$

$$
\text { Set of all } p \text {-dimensional subspaces of } \mathbb{R}^{n}
$$

Applications: various dimension reduction problems...

- $\mathbb{R}_{*}^{n \times p} / O_{p}$

$$
X \sim Y \Leftrightarrow \exists Q \in O_{p}: Y=X Q
$$

Applications: Low-rank approximation of symmetric matrices; low-rank approximation of tensors...

Manifolds, and where they appear

- Shape manifold $O_{n} / \mathbb{R}_{*}^{n \times p}$

$$
Y \sim Y \Leftrightarrow \exists U \in O_{n}: Y=U X
$$

Applications: shape analysis

- Oblique manifold $\mathbb{R}_{*}^{n \times p} / \mathcal{S}_{\text {diag+ }}$

$$
\mathbb{R}_{*}^{n \times p} / \mathcal{S}_{\text {diag+ }} \simeq\left\{Y \in \mathbb{R}_{*}^{n \times p}: \operatorname{diag}\left(Y^{T} Y\right)=I_{p}\right\}
$$

Applications: independent component analysis; factor analysis (oblique Procrustes problem)...

- Flag manifold $\mathbb{R}_{*}^{n \times p} / \mathcal{S}_{\text {upp } *}$

Elements of the flag manifold can be viewed as a p-tuble of linear subspaces $\left(\mathcal{V}_{1}, \ldots, \mathcal{V}_{p}\right)$ such that $\operatorname{dim}\left(\mathcal{V}_{i}\right)=i$ and $\mathcal{V}_{i} \subset \mathcal{V}_{i+1}$. Applications: analysis of QR algorithm...

Steepest-descent methods on manifolds

Steepest-descent in \mathbb{R}^{n}

Steepest-descent: from \mathbb{R}^{n} to manifolds

Steepest-descent: from \mathbb{R}^{n} to manifolds

Update directions: tangent vectors

Let γ be a curve in the manifold \mathcal{M} with $\gamma(0)=x$.
For an abstract manifold, the definition $\dot{\gamma}(0)=\frac{\mathrm{d} \gamma}{\mathrm{d} t}(0)=\lim _{t \rightarrow 0} \frac{\gamma(t)-\gamma(0)}{t}$ is meaningless.
Instead, define: $\operatorname{Df}(x)[\dot{\gamma}(0)]:=\left.\frac{\mathrm{d}}{\mathrm{d} t} f(\gamma(t))\right|_{t=0}$
If $\mathcal{M} \subset \mathbb{R}^{n}$ and $f=\left.\bar{f}\right|_{\mathcal{M}}$, then

$$
\mathrm{D} f(x)[\dot{\gamma}(0)]=\mathrm{D} \bar{f}(x)\left[\frac{\mathrm{d} \gamma}{\mathrm{~d} t}(0)\right]
$$

The application $\dot{\gamma}(0): f \mapsto \operatorname{D} f(x)[\dot{\gamma}(0)]$ is a tangent vector at x.

Update directions: tangent spaces

The set

$$
T_{x} \mathcal{M}=\{\dot{\gamma}(0): \gamma \text { curve in } \mathcal{M} \text { through } x \text { at } t=0\}
$$

is the tangent space to \mathcal{M} at x.
With the definition

$$
\alpha \dot{\gamma}_{1}(0)+\beta \dot{\gamma}_{2}(0): f \mapsto \alpha \mathrm{D} f(x)\left[\dot{\gamma}_{1}(0)\right]+\beta \mathrm{D} f(x)\left[\dot{\gamma}_{2}(0)\right]
$$

the tangent space $T_{x} \mathcal{M}$ becomes a linear space.
The tangent bundle $T \mathcal{M}$ is the set of all tangent vectors to \mathcal{M}.

Tangent vectors: submanifolds of Euclidean spaces

If \mathcal{M} is a submanifold of \mathbb{R}^{n} and $f=\left.\bar{f}\right|_{\mathcal{M}}$, then

$$
\mathrm{D} f(x)[\dot{\gamma}(0)]=\mathrm{D} \bar{f}(x)\left[\frac{\mathrm{d} \gamma}{\mathrm{~d} t}(0)\right]
$$

Proof: The left-hand side is equal to $\left.\frac{\mathrm{d}}{\mathrm{d} t} f(\gamma(t))\right|_{t=0}$. This is equal to $\left.\frac{\mathrm{d}}{\mathrm{d} t} \bar{f}(\gamma(t))\right|_{t=0}$ because $\gamma(t) \in \mathcal{M}$ for all t. The classical chain rule yields the right-hand side.

Tangent vectors: quotient manifolds

Let $\overline{\mathcal{M}} / \sim$ be a quotient manifold. Then $[x]$ is a submanifold of $\overline{\mathcal{M}}$. The tangent space $T_{x}[x]$ is the vertical space \mathcal{V}_{x}. A horizontal space is a subspace of $T_{x} \overline{\mathcal{M}}$ complementary to \mathcal{V}_{x}.
Let $\xi_{\pi(x)}$ be a tangent vector to $\overline{\mathcal{M}} / \sim$ at $\pi(x)$.
Theorem: In \mathcal{H}_{x} there is one and only one $\bar{\xi}_{x}$ such that

$$
\mathrm{D} \pi(x)\left[\bar{\xi}_{x}\right]=\xi_{\pi(x)} .
$$

Steepest-descent: norm of tangent vectors

The steepest ascent direction is along

$$
\underset{\substack{ \\\xi \in T_{x} \mathcal{M} \\\|\xi\|=1}}{\arg \max } \operatorname{D} f(x)[\xi] .
$$

To this end, we need a norm on $T_{x} \mathcal{M}$.
For all $x \in \mathcal{M}$, let g_{x} denote an inner product in $T_{x} \mathcal{M}$, and define

$$
\left\|\xi_{x}\right\|:=\sqrt{g_{x}\left(\xi_{x}, \xi_{x}\right)}
$$

When g_{x} "smoothly" depends on x, we say that (\mathcal{M}, g) is a Riemannian manifold.

Steepest-descent: gradient

There is a unique grad $f(x)$, called the gradient of f at x, such that

$$
\left\{\begin{array}{l}
\operatorname{grad} f(x) \in T_{x} \mathcal{M} \\
g_{x}\left(\operatorname{grad} f(x), \xi_{x}\right)=\operatorname{Df}(x)\left[\xi_{x}\right], \quad \forall \xi_{x} \in T_{x} \mathcal{M}
\end{array}\right.
$$

We have

$$
\frac{\operatorname{grad} f(x)}{\|\operatorname{grad} f(x)\|}=\underset{\substack{\xi \in T_{x} \mathcal{M} \\\|\xi\|=1}}{\arg \max } \operatorname{D} f(x)[\xi]
$$

and

$$
\|\operatorname{grad} f(x)\|=\operatorname{D} f(x)\left[\frac{\operatorname{grad} f(x)}{\|\operatorname{grad} f(x)\|}\right]
$$

Steepest-descent: Riemannian submanifolds

Let $(\overline{\mathcal{M}}, \bar{g})$ be a Riemannian manifold and \mathcal{M} be a submanifold of $\overline{\mathcal{M}}$. Then

$$
g_{x}\left(\xi_{x}, \zeta_{x}\right):=\bar{g}_{x}\left(\xi_{x}, \eta_{x}\right), \forall \xi_{x}, \zeta_{x} \in T_{x} \mathcal{M}
$$

defines a Riemannian metric g on \mathcal{M}. With this Riemannian metric, \mathcal{M} is a Riemannian submanifold of $\overline{\mathcal{M}}$.
Every $z \in T_{x} \overline{\mathcal{M}}$ admits a decomposition $z=\underbrace{\mathrm{P}_{x} z}_{\in T_{x} \mathcal{M}}+\underbrace{\mathrm{P}_{x}^{\perp} z}_{\in T_{x}^{\perp} \mathcal{M}}$.
If $\bar{f}: \overline{\mathcal{M}} \rightarrow \mathbb{R}$ and $f=\left.\bar{f}\right|_{\mathcal{M}}$, then

$$
\operatorname{grad} f(x)=\mathrm{P}_{x} \operatorname{grad} \bar{f}(x)
$$

Steepest-descent: Riemannian quotient manifolds

Let \tilde{g} be a Riemannian metric on $\overline{\mathcal{M}}$. Suppose that, for all $\xi_{\pi(x)}$ and $\zeta_{\pi(x)}$ in $T_{\pi(x)} \overline{\mathcal{M}} / \sim$, and all $\tilde{x} \in \pi^{-1}(\pi(x))$, we have

$$
\bar{g}_{\tilde{x}}\left(\bar{\xi}_{\tilde{x}}, \bar{\zeta}_{\tilde{x}}\right)=\bar{g}_{x}\left(\bar{\xi}_{x}, \bar{\zeta}_{x}\right)
$$

Steepest-descent: Riemannian quotient manifolds

Then

$$
g_{\pi(x)}\left(\xi_{\pi(x)}, \zeta_{\pi(x)}\right):=\bar{g}_{x}\left(\bar{\xi}_{x}, \bar{\zeta}_{x}\right)
$$

defines a Riemannian metric on $\overline{\mathcal{M}} / \sim$. This turns $\overline{\mathcal{M}} / \sim$ into a Riemannian quotient manifold.

Steepest-descent: Riemannian quotient manifolds

Let $f: \overline{\mathcal{M}} / \sim \rightarrow \mathbb{R}$. Let $\mathrm{P}_{x}^{h, \bar{g}}$ denote the orthogonal projection onto \mathcal{H}_{x}.

$$
\overline{\operatorname{grad}}_{x}=\mathrm{P}_{x}^{h, \bar{g}_{g}} \operatorname{grad}(f \circ \pi)(x)
$$

If \mathcal{H}_{x} is the orthogonal complement of \mathcal{V}_{x} in the sense of $\bar{g}(\pi$ is a Riemannian submersion), then $\operatorname{grad}(f \circ \pi)(x)$ is already in \mathcal{H}_{x}, and thus

$$
\overline{\operatorname{grad}}_{x}=\operatorname{grad}(f \circ \pi)(x) .
$$

Steepest-descent: choosing the search curve

It remains to choose a curve γ through x at $t=0$ such that

$$
\dot{\gamma}(0)=-\operatorname{grad} f(x) .
$$

Let $R: T \mathcal{M} \rightarrow \mathcal{M}$ be a retraction on \mathcal{M}, that is

1. $R\left(0_{x}\right)=x$, where 0_{x} denotes the origin of $T_{x} \mathcal{M}$;
2. $\frac{\mathrm{d}}{\mathrm{d} t} R\left(t \xi_{x}\right)=\xi_{x}$.

Then choose $\gamma: t \mapsto R(-\operatorname{tgrad} f(x))$.

Steepest-descent: line-search procedure

Find t such that $f(\gamma(t))$ is "sifficiently smaller" than $f(\gamma(0))$. Since $t \mapsto f(\gamma(t))$ is just a function from \mathbb{R} to \mathbb{R}, we can use the step selection techniques that are available for classical line-search methods.
For example: exact minimization, Armijo backtracking,...

Steepest-descent: Rayleigh quotient on unit sphere

Let the manifold be the unit sphere

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n}: x^{\top} x=1\right\}=F^{-1}(1)
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}: x \mapsto x^{\top} x$.
Let $A=A^{T} \in \mathbb{R}^{n \times n}$ and let the cost function be the Rayleigh quotient

$$
f: S^{n-1} \rightarrow \mathbb{R}: x \mapsto x^{T} A x
$$

The tangent space to S^{n-1} at x is

$$
T_{x} S^{n-1}=\operatorname{ker}(\operatorname{DF}(x))=\left\{z \in \mathbb{R}^{n}: x^{T} z=0\right\}
$$

Derivation formulas

If F is linear, then

$$
\mathrm{D} F(x)[z]=F(z)
$$

Chain rule: If range $(F) \subseteq \operatorname{dom}(G)$, then

$$
\mathrm{D}(G \circ F)(x)[z]=\mathrm{D} G(F(x))[\mathrm{D} F(x)[z]] .
$$

Product rule: If the ranges of F and G are in matrix spaces of compatible dimension, then

$$
\mathrm{D}(F G)(x)[z]=\mathrm{D} F(x)[z] G(x)+F(x) \mathrm{D} G(x)[z] .
$$

Steepest-descent: Rayleigh quotient on unit sphere

Rayleigh quotient:

$$
f: S^{n-1} \rightarrow \mathbb{R}: x \mapsto x^{T} A x
$$

The tangent space to S^{n-1} at x is

$$
T_{x} S^{n-1}=\operatorname{ker}(\operatorname{DF}(x))=\left\{z \in \mathbb{R}^{n}: x^{T} z=0\right\}
$$

Product rule:

$$
\mathrm{D}(F G)(x)[z]=\mathrm{D} F(x)[z] G(x)+F(x) \mathrm{D} G(x)[z]
$$

Differential of f at $x \in S^{n-1}$:

$$
\mathrm{D} f(x)[z]=x^{T} A z+z^{T} A x=2 z^{T} A x, \quad z \in T_{x} S^{n-1}
$$

Steepest-descent: Rayleigh quotient on unit sphere

"Natural" Riemannian metric on S^{n-1} :

$$
g_{x}\left(z_{1}, z_{2}\right)=z_{1}^{T} z_{2}, \quad z_{1}, z_{2} \in T_{x} S^{n-1}
$$

Differential of f at $x \in S^{n-1}$:

$$
\mathrm{D} f(x)[z]=2 z^{T} A x=2 g_{x}(z, A x), \quad z \in T_{x} S^{n-1}
$$

Gradient:

$$
\operatorname{grad} f(x)=2 \mathrm{P}_{x} A x=2\left(I-x x^{\top}\right) A x
$$

Check:

$$
\left\{\begin{array}{l}
\operatorname{grad} f(x) \in T_{x} S^{n-1} \\
\operatorname{Df}(x)[z]=g_{x}(\operatorname{grad} f(x), z), \forall z \in T_{x} S^{n-1}
\end{array}\right.
$$

Steepest-descent: Rayleigh quotient on unit sphere

$$
\begin{gathered}
f: S^{n-1} \rightarrow \mathbb{R}: x \mapsto x^{T} A x \\
\bar{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}: x \mapsto x^{T} A x \\
\operatorname{grad} \bar{f}(x)=2 A x \\
\operatorname{grad} f(x)=2 \mathrm{P}_{x} A x=2\left(I-x x^{T}\right) A x .
\end{gathered}
$$

Newton's method on manifolds

Newton in \mathbb{R}^{n}

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Recall $\operatorname{grad} f(x)=\left[\begin{array}{lll}\partial_{1} f(x) & \cdots & \partial_{n} f(x)\end{array}\right]^{T}$.
Newton's iteration:

1. Solve, for the unknown $z \in \mathbb{R}^{n}$,

$$
\mathrm{D}(\operatorname{grad} f)(x)[z]=-\operatorname{grad} f(x)
$$

2. Set

$$
x_{+}=x+z
$$

Newton in \mathbb{R}^{n} : how it may fail

Let $f: \mathbb{R}_{0}^{n} \rightarrow \mathbb{R}: x \mapsto \frac{x^{\top} A x}{x^{\top} x}$.
Newton's iteration:

1. Solve, for the unknown $z \in \mathbb{R}^{n}$,

$$
\mathrm{D}(\operatorname{grad} f)(x)[z]=-\operatorname{grad} f(x)
$$

2. Set

$$
x_{+}=x+z
$$

Proposition: For all x such that $f(x)$ is not an eigenvalue of A, we have

$$
x_{+}=2 x
$$

Newton: how to make it work for RQ

Let $f: S^{n-1} \rightarrow \mathbb{R}: x \mapsto \frac{x^{\top} A x}{x^{\top} x}$.
Newton's iteration:

1. Solve, for the unknown $z \in \mathbb{R}^{n} \leadsto \eta_{x} \in T_{x} S^{n-1}$

$$
D(\operatorname{grad} f)(x)[z]=-\operatorname{grad} f(x) \leadsto ?(\operatorname{grad} f)(x)\left[\eta_{x}\right]=-\operatorname{grad} f(x)
$$

2. Set

$$
x_{+}=x+z \quad \leadsto x_{+}=R\left(\eta_{x}\right)
$$

Newton's equation on an abstract manifold

Let \mathcal{M} be a manifold and let $f: \mathcal{M} \rightarrow \mathbb{R}$ be a cost function. The mapping $x \in \mathcal{M} \mapsto \operatorname{grad} f(x) \in T_{x} \mathcal{M}$ is a vector field.

$$
\mathrm{D}(\operatorname{grad} f)(x)[z]=-\operatorname{grad} f(x) \leadsto ?(\operatorname{grad} f)(x)\left[\eta_{x}\right]=-\operatorname{grad} f(x)
$$

The new object has to be such that

- $\ln \mathbb{R}^{n}$, ? reduces to the classical derivative
- ? $(\operatorname{grad} f)(x)\left[\eta_{x}\right]$ belongs to $T_{x} \mathcal{M}$
- ? has the same linearity properties and multiplication rule as the classical derivative.
Differential geometry offers a concept that matches these conditions: the concept of an affine connection.

Newton: affine connections

Let $\mathfrak{X}(\mathcal{M})$ denote the set of smooth vector fields on \mathcal{M} and $\mathfrak{F}(\mathcal{M})$ the set of real-valued functions on \mathcal{M}.
An affine connection ∇ on a manifold \mathcal{M} is a mapping

$$
\nabla: \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M})
$$

which is denoted by $(\eta, \xi) \xrightarrow{\nabla} \nabla_{\eta} \xi$ and satisfies the following properties:
i) $\mathfrak{F}(\mathcal{M})$-linearity in $\eta: \quad \nabla_{f \eta+g \chi} \xi=f \nabla_{\eta} \xi+g \nabla_{\chi} \xi$,
ii) \mathbb{R}-linearity in $\xi: \quad \nabla_{\eta}(a \xi+b \zeta)=a \nabla_{\eta} \xi+b \nabla_{\eta} \zeta$,
iii) Product rule (Leibniz' law): $\quad \nabla_{\eta}(f \xi)=(\eta f) \xi+f \nabla_{\eta} \xi$, in which $\eta, \chi, \xi, \zeta \in \mathfrak{X}(\mathcal{M}), f, g \in \mathfrak{F}(\mathcal{M})$, and $a, b \in \mathbb{R}$.

Newton's method on abstract manifolds

Cost function: $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \leadsto f: \mathcal{M} \rightarrow \mathbb{R}$. Newton's iteration:

1. Solve, for the unknown $z \in \mathbb{R}^{n} \leadsto \eta_{x} \in T_{x} \mathcal{M}$

$$
\mathrm{D}(\operatorname{grad} f)(x)[z]=-\operatorname{grad} f(x) \leadsto \nabla(\operatorname{grad} f)(x)\left[\eta_{x}\right]=-\operatorname{grad} f(x)
$$

2. Set

$$
x_{+}=x+z \quad \leadsto x_{+}=R\left(\eta_{x}\right)
$$

In the algorithm above, ∇ is an affine connection on \mathcal{M} and R is a retraction on \mathcal{M}.

Newton's method on S^{n-1}

If \mathcal{M} is a Riemannian submanifold of \mathbb{R}^{n}, then ∇ defined by

$$
\nabla_{\eta_{x}} \xi=\mathrm{P}_{x} \mathrm{D} \xi(x)\left[\eta_{x}\right], \quad \eta_{x} \in T_{x} \mathcal{M}, \quad \xi \in \mathfrak{X}(\mathcal{M})
$$

is a particular affine connection, called Riemannian connection.
For the unit sphere S^{n-1}, this yields

$$
\nabla_{\eta_{x}} \xi=\left(I-x x^{\top}\right) \mathrm{D} \xi(x)\left[\eta_{x}\right], \quad x^{T} \eta_{x}=0
$$

Newton's method for Rayleigh quotient on S^{n-1}

Let $f:\left\{\begin{array}{l}\mathbb{R}^{n} \\ \mathcal{M} \\ S^{n-1}\end{array} \rightarrow \mathbb{R}: x \mapsto\left\{\begin{array}{l}f(x) \\ f(x) \\ \frac{x^{\top} A x}{x^{\top} x}\end{array}\right.\right.$.
Newton's iteration:

1. Solve, for the unknown $z \in \mathbb{R}^{n} \leadsto \eta_{x} \in T_{x} \mathcal{M} \leadsto x^{T} \eta_{x}=0$

$$
\begin{gathered}
\mathrm{D}(\operatorname{grad} f)(x)[z]=-\operatorname{grad} f(x) \\
\leadsto \nabla(\operatorname{grad} f)(x)\left[\eta_{x}\right]=-\operatorname{grad} f(x) \\
\leadsto\left(I-x x^{T}\right)(A-f(x) I) \eta_{x}=-\left(I-x x^{T}\right) A x
\end{gathered}
$$

2. Set

$$
x_{+}=x+z \quad \leadsto x_{+}=R\left(\eta_{x}\right) \leadsto x_{+}=\frac{x+\eta_{x}}{\left\|x+\eta_{x}\right\|}
$$

Newton for RQ on S^{n-1} : a closer look

$$
\begin{gathered}
\left(I-x x^{\top}\right)(A-f(x) I) \eta_{x}=-\left(I-x x^{T}\right) A x \\
\Rightarrow\left(I-x x^{T}\right)(A-f(x) I)\left(x+\eta_{x}\right)=0 \\
\quad \Rightarrow(A-f(x) I)\left(x+\eta_{x}\right)=\alpha x
\end{gathered}
$$

Therefore, x_{+}is collinear with $(A-f(x) I)^{-1} x$, which is the vector computed by the Rayleigh quotient iteration.

Newton method on quotient manifolds

Affine connection: choose ∇ defined by

$$
\bar{\nabla}_{\eta} \bar{\xi}_{x}=\mathrm{P}_{x}^{h} \bar{\nabla}_{\bar{\eta}_{x}} \bar{\xi},
$$

provided that this really defines a horizontal lift. This requires special choices of $\bar{\nabla}$.

Newton method on quotient manifolds

If $\pi: \overline{\mathcal{M}} \rightarrow \overline{\mathcal{M}} / \sim$ is a Riemannian submersion, then the Riemannian connection on $\overline{\mathcal{M}} / \sim$ is given by

$$
\bar{\nabla}_{\eta} \bar{\xi}_{x}=\mathrm{P}_{x}^{h} \bar{\nabla}_{\bar{\eta}_{x}} \bar{\xi}
$$

where $\bar{\nabla}$ denotes the Riemannian connection on $\overline{\mathcal{M}}$.

A detailed exercise

Newton's method for the Rayleigh quotient on the Grassmann manifold

Manifold: Grassmann

The manifold is the Grassmann manifold of p-planes in \mathbb{R}^{n} :

$$
\operatorname{Grass}(p, n) \simeq \operatorname{ST}(p, n) / \mathrm{GL}_{p}
$$

The one-to-one correspondence is

$$
\operatorname{Grass}(p, n) \ni \mathcal{Y} \leftrightarrow Y \mathrm{GL}_{p} \in \mathrm{ST}(p, n) / \mathrm{GL}_{p}
$$

such that \mathcal{Y} is the column space of Y.
The quotient map

$$
\pi: \mathrm{ST}(p, n) \rightarrow \operatorname{Grass}(p, n)
$$

is the "column space" or "span" operation.

Grassmann and its quotient representation

Total space: the noncompact Stiefel manifold

The total space of the quotient is

$$
\operatorname{ST}(p, n)=\left\{Y \in \mathbb{R}^{n \times p}: \operatorname{rank}(Y)=p\right\} .
$$

This is an open submanifold of the Euclidean space $\mathbb{R}^{n \times p}$. Tangent spaces: $T_{Y} \mathrm{ST}(p, n) \simeq \mathbb{R}^{n \times p}$.

Riemannian metric on the total space

Define a Riemannian metric \bar{g} on $\operatorname{ST}(p, n)$ by

$$
\bar{g}_{Y}\left(Z_{1}, Z_{2}\right)=\operatorname{trace}\left(\left(Y^{\top} Y\right)^{-1} Z_{1}^{\top} Z_{2}\right) .
$$

This is not the canonical Riemannian metric, but it will allow us to turn the quotient map $\pi: \operatorname{ST}(p, n) \rightarrow \operatorname{Grass}(p, n)$ into a Riemannian submersion.

Vertical and horizontal spaces

The vertical spaces are the tangent spaces to the equivalence classes:

$$
\mathcal{V}_{Y}:=T_{Y}\left(Y \mathrm{GL}_{p}\right)=Y T_{Y} \mathrm{GL}_{p}=Y \mathbb{R}^{p \times p}
$$

Choice of horizontal space:

$$
\begin{aligned}
\mathcal{H}_{Y} & :=\left(\mathcal{V}_{Y}\right)^{\perp} \\
& =\left\{Z \in T_{Y} \mathrm{ST}(p, n): \bar{g}_{Y}(Z, V)=0, \forall V \in \mathcal{V}_{Y}\right\} \\
& =\left\{Z \in \mathbb{R}^{n \times p}: Y^{T} Z=0\right\} .
\end{aligned}
$$

Horizontal projection:

$$
\mathrm{P}_{Y}^{h}=\left(I-Y\left(Y^{T} Y\right)^{-1} Y^{T}\right) .
$$

Compatibility equation for horizontal lifts

Given $\xi \in T_{\pi}(Y) \operatorname{Grass}(p, n)$, we have

$$
\bar{\xi}_{Y M}=\bar{\xi}_{Y} M .
$$

To see this, observe that $\bar{\xi}_{Y} M$ is in $\mathcal{H}_{Y M}$; moreover, since $Y M+t \bar{\xi}_{Y} M$ and $Y+t \bar{\xi}_{Y}$ have the same column space for all t, one has

$$
\mathrm{D} \pi(Y M)\left[\bar{\xi}_{Y} M\right]=\mathrm{D} \pi(Y)\left[\bar{\xi}_{Y}\right]=\xi_{\pi(Y)}
$$

Thus $\bar{\xi}_{Y} M$ satisfies the conditions to be $\bar{\xi}_{Y M}$.

Riemannian metric on the quotient

On $\operatorname{Grass}(p, n) \simeq \operatorname{ST}(p, n) / \mathrm{GL}_{p}$, define the Riemannian metric g by

$$
g_{\pi(Y)}\left(\xi_{\pi(Y)}, \zeta_{\pi(Y)}\right)=\bar{g}_{Y}\left(\bar{\xi}_{Y}, \bar{\zeta}_{Y}\right)
$$

This is well defined, because for all $\tilde{Y} \in \pi^{-1}(\pi(Y))=Y \mathrm{GL}_{p}$, we have $\tilde{Y}=Y M$ for some invertible M, and

$$
\bar{g}_{Y M}\left(\bar{\xi}_{Y M}, \bar{\zeta}_{Y M}\right)=\bar{g}_{Y}\left(\bar{\xi}_{Y}, \bar{\zeta}_{Y}\right)
$$

This definition of g turns

$$
\pi:(\mathrm{ST}(p, n), \bar{g}) \rightarrow(\operatorname{Grass}(p, n), g)
$$

into a Riemannian submersion.

Cost function: Rayleigh quotient

Consider the cost function

$$
f: \operatorname{Grass}(p, n) \rightarrow \mathbb{R}: \operatorname{span}(Y) \mapsto \operatorname{trace}\left(\left(Y^{\top} Y\right)^{-1} Y^{T} A Y\right)
$$

This is the projection of

$$
\bar{f}: \mathrm{ST}(p, n) \rightarrow \mathbb{R}: Y \mapsto \operatorname{trace}\left(\left(Y^{T} Y\right)^{-1} Y^{T} A Y\right)
$$

That is, $\bar{f}=f \circ \pi$.

Gradient of the cost function

For all $Z \in \mathbb{R}^{n \times p}$,

$$
\mathrm{D} \bar{f}(Y)[Z]=2 \operatorname{trace}\left(\left(Y^{T} Y\right)^{-1} Z^{T}\left(A Y-Y\left(Y^{T} Y\right)^{-1} Y^{T} A Y\right)\right)
$$

Hence

$$
\operatorname{grad} \bar{f}(Y)=2\left(A Y-Y\left(Y^{T} Y\right)^{-1} Y^{T} A Y\right)
$$

and

$$
\overline{\operatorname{grad}}_{Y}=2\left(A Y-Y\left(Y^{T} Y\right)^{-1} Y^{T} A Y\right)
$$

Riemannian connection

The quotient map is a Riemannian submersion. Therefore

$$
\overline{\nabla_{\eta} \xi}=\mathrm{P}_{Y}^{h}\left(\bar{\nabla}_{\bar{\eta}_{\gamma}} \bar{\xi}\right)
$$

It turns out that

$$
\overline{\nabla_{\eta} \xi}=\mathrm{P}_{Y}^{h}\left(\mathrm{D} \bar{\xi}(Y)\left[\bar{\eta}_{Y}\right]\right)
$$

(This is because the Riemanian metric \bar{g} is "horizontally invariant".) For the Rayleigh quotient f, this yields

$$
\begin{aligned}
\overline{\nabla_{\eta} \operatorname{grad} f} & =\mathrm{P}_{Y}^{h}\left(\overline{\operatorname{grad} f}(Y)\left[\bar{\eta}_{Y}\right]\right) \\
& =2 \mathrm{P}_{Y}^{h}\left(A \bar{\eta}_{Y}-\bar{\eta}_{Y}\left(Y^{T} Y\right)^{-1} Y^{T} A Y\right) .
\end{aligned}
$$

Newton's equation

Newton's equation at $\pi(Y)$ is

$$
\nabla_{\eta_{\pi(Y)}} \operatorname{grad} f=-\operatorname{grad} f(\pi(Y))
$$

for the unknown $\eta_{\pi(Y)} \in T_{\pi(Y)} \operatorname{Grass}(p, n)$.
To turn this equation into a matrix equation, we take its horizontal lift. This yields

$$
\mathrm{P}_{Y}^{h}\left(A \bar{\eta}_{Y}-\bar{\eta}_{Y}\left(Y^{T} Y\right)^{-1} Y^{T} A Y\right)=-\mathrm{P}_{Y}^{h} A Y, \quad \bar{\eta}_{Y} \in \mathcal{H}_{Y}
$$

whose solution $\bar{\eta}_{Y}$ in the horizontal space \mathcal{H}_{Y} is the horizontal lift of the solution η of the Newton equation.

Retraction

Newton's method sends $\pi(Y)$ to \mathcal{Y}_{+}according to

$$
\begin{gathered}
\nabla_{\eta_{\pi(Y)}} \operatorname{grad} f=-\operatorname{grad} f(\pi(Y)) \\
\mathcal{Y}_{+}=R_{\pi(Y)}\left(\eta_{\pi(Y)}\right)
\end{gathered}
$$

It remains to pick the retraction R.
Choice: R defined by

$$
R_{\pi(Y)} \xi_{\pi(Y)}=\pi\left(Y+\bar{\xi}_{Y}\right)
$$

(This is a well-defined retraction.)

Newton's iteration for RQ on Grassmann

Require: Symmetric matrix A.
Input: Initial iterate $Y_{0} \in \mathrm{ST}(p, n)$.
Output: Sequence of iterates $\left\{Y_{k}\right\}$ in $\operatorname{ST}(p, n)$.
1: for $k=0,1,2, \ldots$ do
2: Solve the linear system

$$
\left\{\begin{array}{l}
\mathrm{P}_{Y_{k}}^{h}\left(A Z_{k}-Z_{k}\left(Y_{k}^{T} Y_{k}\right)^{-1} Y_{k}^{T} A Y_{k}\right)=-\mathrm{P}_{Y_{k}}^{h}\left(A Y_{k}\right) \\
Y_{k}^{T} Z_{k}=0
\end{array}\right.
$$

for the unknown Z_{k}, where P_{Y}^{h} is the orthogonal projector onto \mathcal{H}_{Y}. (The condition $Y_{k}^{T} Z_{k}$ expresses that Z_{k} belongs to the horizontal space $\mathcal{H}_{Y_{k}}$.
3: Set

$$
Y_{k+1}=\left(Y_{k}+Z_{k}\right) N_{k}
$$

where N_{k} is a nonsingular $p \times p$ matrix chosen for normalization purposes.
4: end for

A new tool for Optimization On Manifolds:

Vector Transport

Filling a gap

	Purely Riemannian way	Pragmatic way
Update	Search along the geodesic tan- gent to the search direction	Search along any curve ta to the search direction scribed by a retraction)
Displacement of tgt vectors	Parallel translation induced by g	??

Where do we use parallel translation?

In CG. Quoting (approximately) Smith (1994):

1. Select $x_{0} \in \mathcal{M}$, compute $H_{0}=-\operatorname{grad} f\left(x_{0}\right)$, and set $k=0$
2. Compute t_{k} such that $f\left(\operatorname{Exp}_{x_{k}}\left(t_{k} H_{k}\right)\right) \leq f\left(\operatorname{Exp}_{x_{k}}\left(t H_{k}\right)\right)$ for all $t \geq 0$.
3. Set $x_{k+1}=\operatorname{Exp}_{x_{k}}\left(t_{k} H_{k}\right)$.
4. Set $H_{k+1}=-\operatorname{grad} f\left(x_{k+1}\right)+\beta_{k} \tau H_{k}$, where τ is the parallel translation along the geodesic from x_{k} to x_{k+1}.

Where do we use parallel translation?

In BFGS. Quoting (approximately) Gabay (1982):
$x_{k+1}=\operatorname{Exp}_{x_{k}}\left(t_{k} \xi_{k}\right)$ (update along geodesic)
$\operatorname{grad} f\left(x_{k+1}\right)-\tau_{0}^{t_{k}} \operatorname{grad} f\left(x_{k}\right)=B_{k+1} \tau_{0}^{t_{k}}\left(t_{k} \xi_{k}\right)$ (requirement on approximate Jacobian B)
This leads to the a generalized BFGS update formula involving parallel translation.

Where else could we use parallel translation?

In finite-difference quasi-Newton.
Let ξ be a vector field on a Riemannian manifold \mathcal{M}. Exact Jacobian of ξ at $x \in \mathcal{M}: J_{\xi}(x)[\eta]=\nabla_{\eta} \xi$.
Finite difference approximation to J_{ξ} : choose a basis $\left(E_{1}, \cdots, E_{d}\right)$ of $T_{x} \mathcal{M}$ and define $\tilde{J}(x)$ as the linear operator that satisfies

$$
\tilde{J}(x)\left[E_{i}\right]=\frac{\tau_{h}^{0} \xi_{\operatorname{Exp}_{x}\left(h E_{i}\right)}-\xi_{x}}{h}
$$

Filling a gap

	Purely Riemannian way	Pragmatic way
Update	Search along the geodesic tan- gent to the search direction	Search along any pres curve tangent to the sear rection
Displacement of tgt vectors	Parallel translation induced by g	$? ?$
$?$		

Parallel translation can be tough

Edelman et al (1998): We are unaware of any closed form expression for the parallel translation on the Stiefel manifold (defined with respect to the Riemannian connection induced by the embedding in $\mathbb{R}^{n \times p}$). Parallel transport along geodesics on Grassmannians:
$\overline{\xi(t)}_{Y(t)}=-Y_{0} V \sin (\Sigma t) U^{T} \overline{\xi(0)}_{Y_{0}}+U \cos (\Sigma t) U^{T} \overline{\xi(0)}_{Y_{0}}+\left(I-U U^{T}\right) \overline{\xi(0)}_{Y_{0}}$.
where $\overline{\mathcal{Y}}(0)_{Y_{0}}=U \Sigma V^{T}$ is a thin SVD.

Alternatives found in the literature

Edelman et al (1998): "extrinsic" CG algorithm. "Tangency of the search direction at the new point is imposed via the projection $I-Y Y^{T}$ " (instead of via parallel translation).
Brace \& Manton (2006), An improved BFGS-on-manifold algorithm for computing weighted low rank approximation. "The second change is that parallel translation is not defined with respect to the Levi-Civita connection, but rather is all but ignored."

Filling a gap

	Purely Riemannian way	Pragmatic way
Update	Search along the geodesic tan- gent to the search direction	Search along any curve ta to the search direction scribed by a retraction)
Displacement of tgt vectors	Parallel translation induced by g	??

Filling a gap: Vector Transport

	Purely Riemannian way	Pragmatic way
Update	Search along the geodesic tan- gent to the search direction	Search along any curve ta to the search direction scribed by a retraction $)$
Displacement of tgt vectors	Parallel translation induced by g	Vector Transport

Still to come

- Vector transport in one picture
- Formal definition
- Particular vector transports
- Applications: finite-difference Newton, BFGS, CG.

The concept of vector transport

Retraction

A retraction on a manifold \mathcal{M} is a smooth mapping

$$
R: T \mathcal{M} \rightarrow \mathcal{M}
$$

such that

1. $R\left(0_{x}\right)=x$ for all $x \in \mathcal{M}$, where 0_{x} denotes the origin of $T_{x} \mathcal{M}$;
2. $\left.\frac{d}{d t} R\left(t \xi_{x}\right)\right|_{t=0}=\xi_{x}$ for all $\xi_{x} \in T_{x} \mathcal{M}$.

Consequently, the curve $t \mapsto R\left(t \xi_{x}\right)$ is a curve on \mathcal{M} tangent to ξ_{x}.

The concept of vector transport - Whitney sum

Whitney sum

Let $T \mathcal{M} \oplus T \mathcal{M}$ denote the set

$$
T \mathcal{M} \oplus T \mathcal{M}=\left\{\left(\eta_{x}, \xi_{x}\right): \eta_{x}, \xi_{x} \in T_{x} \mathcal{M}, x \in \mathcal{M}\right\}
$$

This set admits a natural manifold structure.

The concept of vector transport - definition

Vector transport: definition

A vector transport on a manifold \mathcal{M} on top of a retraction R is a smooth map

$$
T \mathcal{M} \oplus T \mathcal{M} \rightarrow T \mathcal{M}:\left(\eta_{x}, \xi_{x}\right) \mapsto \mathcal{I}_{\eta_{x}}\left(\xi_{x}\right) \in T \mathcal{M}
$$

satisfying the following properties for all $x \in \mathcal{M}$:

1. (Underlying retraction) $\mathcal{T}_{\eta_{x}} \xi_{x}$ belongs to $T_{R_{x}\left(\eta_{x}\right)} \mathcal{M}$.
2. (Consistency) $\mathcal{T}_{0_{x}} \xi_{x}=\xi_{x}$ for all $\xi_{x} \in T_{x} \mathcal{M}$;
3. (Linearity) $\mathcal{T}_{\eta_{x}}\left(a \xi_{x}+b \zeta_{x}\right)=a \mathcal{T}_{\eta_{x}}\left(\xi_{x}\right)+b \mathcal{T}_{\eta_{x}}\left(\zeta_{x}\right)$.

Inverse vector transport

When it exists, $\left(\mathcal{T}_{\eta_{x}}\right)^{-1}\left(\xi_{R_{x}\left(\eta_{x}\right)}\right)$ belongs to $T_{x} \mathcal{M}$. If η and ξ are two vector fields on \mathcal{M}, then $\left(\mathcal{T}_{\eta}\right)^{-1} \xi$ is naturally defined as the vector field satisfying

$$
\left(\left(\mathcal{T}_{\eta}\right)^{-1} \xi\right)_{x}=\left(\mathcal{T}_{\eta_{x}}\right)^{-1}\left(\xi_{R_{x}\left(\eta_{x}\right)}\right)
$$

Still to come

- Vector transport in one picture
- Formal definition
- Particular vector transports
- Applications: finite-difference Newton, BFGS, CG.

Parallel translation is a vector transport

Proposition

If ∇ is an affine connection and R is a retraction on a manifold \mathcal{M}, then

$$
\begin{equation*}
\mathcal{T}_{\eta_{x}}\left(\xi_{x}\right):=P_{\gamma}^{1 \leftarrow 0} \xi_{x} \tag{1}
\end{equation*}
$$

is a vector transport with associated retraction R, where P_{γ} denotes the parallel translation induced by ∇ along the curve $t \mapsto \gamma(t)=R_{x}\left(t \eta_{x}\right)$.

Vector transport on Riemannian submanifolds

If \mathcal{M} is an embedded submanifold of a Euclidean space \mathcal{E} and \mathcal{M} is endowed with a retraction R, then we can rely on the natural inclusion $T_{y} \mathcal{M} \subset \mathcal{E}$ for all $y \in \mathcal{N}$ to simply define the vector transport by

$$
\begin{equation*}
\mathcal{T}_{\eta_{x}} \xi_{x}:=\mathrm{P}_{R_{x}\left(\eta_{x}\right)} \xi_{x}, \tag{2}
\end{equation*}
$$

where P_{x} denotes the orthogonal projector onto $T_{x} \mathcal{N}$.

Still to come

- Vector transport in one picture
- Formal definition
- Particular vector transports
- Applications: finite-difference Newton, BFGS, CG.

Vector transport in finite differences

Let \mathcal{M} be a manifold endowed with a vector transport \mathcal{T} on top of a retraction R. Let $x \in \mathcal{M}$ and let $\left(E_{1}, \ldots, E_{d}\right)$ be a basis of $T_{x} \mathcal{M}$. Given a smooth vector field ξ and a real constant $h>0$, let
$\tilde{J}_{\xi}(x): T_{x} \mathcal{M} \rightarrow T_{x} \mathcal{M}$ be the linear operator that satisfies, for $i=1, \ldots, d$,

$$
\begin{equation*}
\tilde{J}_{\xi}(x)\left[E_{i}\right]=\frac{\left(\mathcal{T}_{h E_{i}}\right)^{-1} \xi_{R\left(h E_{i}\right)}-\xi_{x}}{h} . \tag{3}
\end{equation*}
$$

Lemma (finite differences)

Let x_{*} be a nondegenerate zero of ξ. Then there is $c>0$ such that, for all x sufficiently close to x_{*} and all h sufficiently small, it holds that

$$
\begin{equation*}
\left\|\tilde{J}_{\xi}(x)\left[E_{i}\right]-J(x)\left[E_{i}\right]\right\| \leq c\left(h+\left\|\xi_{x}\right\|\right) . \tag{4}
\end{equation*}
$$

Convergence of Newton's method with finite differences

Proposition

Consider the geometric Newton method where the exact Jacobian $J\left(x_{k}\right)$ is replaced by the operator $\tilde{J}_{\xi}\left(x_{k}\right)$ with $h:=h_{k}$. If

$$
\lim _{k \rightarrow \infty} h_{k}=0
$$

then the convergence to nondegenerate zeros of ξ is superlinear. If, moreover, there exists some constant c such that

$$
h_{k} \leq c\left\|\xi_{x_{k}}\right\|
$$

for all k, then the convergence is (at least) quadratic.

Vector transport in BFGS

With the notation

$$
\begin{aligned}
& s_{k}:=\mathcal{T}_{\eta_{k}} \eta_{k} \in T_{x_{k+1}} \mathcal{M} \\
& y_{k}:=\operatorname{grad} f\left(x_{k+1}\right)-\mathcal{T}_{\eta_{k}}\left(\operatorname{grad} f\left(x_{k}\right)\right) \in T_{x_{k+1}} \mathcal{M}
\end{aligned}
$$

we define the operator $A_{k+1}: T_{x_{k+1}} \mathcal{M} \mapsto T_{x_{k+1}} \mathcal{M}$ by

$$
A_{k+1} \eta=\tilde{A}_{k} \eta-\frac{\left\langle s_{k}, \tilde{A}_{k} \eta\right\rangle}{\left\langle s_{k}, \tilde{A}_{k} s_{k}\right\rangle} \tilde{A}_{k} s_{k}+\frac{\left\langle y_{k}, \eta\right\rangle}{\left\langle y_{k}, s_{k}\right\rangle} y_{k} \quad \text { for all } \eta \in T_{x_{k+1}} \mathcal{M}
$$

with

$$
\tilde{A}_{k}=\mathcal{T}_{\eta_{k}} \circ A_{k} \circ\left(\mathcal{T}_{\eta_{k}}\right)^{-1}
$$

Vector transport in CG

Compute a step size α_{k} and set

$$
\begin{equation*}
x_{k+1}=R_{x_{k}}\left(\alpha_{k} \eta_{k}\right) . \tag{5}
\end{equation*}
$$

Compute β_{k+1} and set

$$
\begin{equation*}
\eta_{k+1}=-\operatorname{grad} f\left(x_{k+1}\right)+\beta_{k+1} \mathcal{T}_{\alpha_{k} \eta_{k}}\left(\eta_{k}\right) . \tag{6}
\end{equation*}
$$

Filling a gap: Vector Transport

	Purely Riemannian way	Pragmatic way
Update	Search along the geodesic tan- gent to the search direction	Search along any curve ta to the search direction scribed by a retraction)
Displacement of tgt vectors	Parallel translation induced by g	Vector Transport

Ongoing work

- Use vector transport wherever we can.
- Extend convergence analyses.
- Develop recipies for building efficient vector transports.

Trust-region methods on Riemannian manifolds

Motivating application: Mechanical vibrations

Mass matrix M, stiffness matrix K. Equation of vibrations (for undamped discretized linear structures):

$$
K x=\omega^{2} M x
$$

were

- ω is an angular frequency of vibration
- x is the corresponding mode of vibration

Task: find lowest modes of vibration.

Generalized eigenvalue problem

Given $n \times n$ matrices $A=A^{T}$ and $B=B^{T} \succ 0$, there exist v_{1}, \ldots, v_{n} in \mathbb{R}^{n} and $\lambda_{1} \leq \ldots \leq \lambda_{n}$ in \mathbb{R} such that

$$
\begin{aligned}
& A v_{i}=\lambda_{i} B v_{i} \\
& v_{i}^{\top} B v_{j}=\delta_{i j}
\end{aligned}
$$

Task: find $\lambda_{1}, \ldots, \lambda_{p}$ and v_{1}, \ldots, v_{p}. We assume throughout that $\lambda_{p}<\lambda_{p+1}$.

Case $p=1$: optimization in \mathbb{R}^{n}

$$
A v_{i}=\lambda_{i} B v_{i}
$$

Consider the Rayleigh quotient

$$
\tilde{f}: \mathbb{R}_{*}^{n} \rightarrow \mathbb{R}: f(y)=\frac{y^{\top} A y}{y^{\top} B y}
$$

Invariance: $\tilde{f}(\alpha y)=\tilde{f}(y)$.
Stationary points of $\tilde{f}: \alpha v_{i}$, for all $\alpha \neq 0$.
Minimizers of $\tilde{f}: \alpha v_{1}$, for all $\alpha \neq 0$.
Difficulty: the minimizers are not isolated.
Remedy: optimization on manifold.

Case $p=1$: optimization on ellipsoid

$$
\tilde{f}: \mathbb{R}_{*}^{n} \rightarrow \mathbb{R}: f(y)=\frac{y^{\top} A y}{y^{\top} B y}
$$

Invariance: $\tilde{f}(\alpha y)=\tilde{f}(y)$.
Remedy 1:

- $\mathcal{M}:=\left\{y \in \mathbb{R}^{n}: y^{\top} B y=1\right\}$, submanifold of \mathbb{R}^{n}.
- $f: \mathcal{M} \rightarrow \mathbb{R}: f(y)=y^{\top} A y$.

Stationary points of $f: \pm v_{1}, \ldots, \pm v_{n}$. Minimizers of $f: \pm v_{1}$.

Case $p=1$: optimization on projective space

$$
\tilde{f}: \mathbb{R}_{*}^{n} \rightarrow \mathbb{R}: f(y)=\frac{y^{\top} A y}{y^{\top} B y}
$$

Invariance: $\tilde{f}(\alpha y)=\tilde{f}(y)$.
Remedy 2 :

- $[y]:=y \mathbb{R}:=\{y \alpha: \alpha \in \mathbb{R}\}$
- $\mathcal{M}:=\mathbb{R}_{*}^{n} / \mathbb{R}=\{[y]\}$
- $f: \mathcal{M} \rightarrow \mathbb{R}: f([y]):=\tilde{f}(y)$

Stationary points of $f:\left[v_{1}\right], \ldots,\left[v_{n}\right]$. Minimizer of f : $\left[v_{1}\right]$.

Case $p \geq 1$: optimization on the Grassmann manifold

$$
\tilde{f}: \mathbb{R}_{*}^{n \times p} \rightarrow \mathbb{R}: \tilde{f}(Y)=\operatorname{trace}\left(\left(Y^{\top} B Y\right)^{-1} Y^{\top} A Y\right)
$$

Invariance: $\tilde{f}(Y R)=\tilde{f}(Y)$.
Define:

- $[Y]:=\left\{Y R: R \in \mathbb{R}_{*}^{p \times p}\right\}, \quad Y \in \mathbb{R}_{*}^{n \times p}$
- $\mathcal{M}:=\operatorname{Grass}(p, n):=\{[Y]\}$
- $f: \mathcal{M} \rightarrow \mathbb{R}: f([Y]):=\tilde{f}(Y)$

Stationary points of $f: \operatorname{span}\left\{v_{i_{1}}, \ldots, v_{i_{p}}\right\}$.
Minimizer of $f:[Y]=\operatorname{span}\left\{v_{1}, \ldots, v_{p}\right\}$.

Optimization on Manifolds

- Luenberger [Lue73], Gabay [Gab82]: optimization on submanifolds of \mathbb{R}^{n}.
- Smith [Smi93, Smi94] and Udriște [Udr94]: optimization on general Riemannian manifolds (steepest descent, Newton, CG).
- PAA, Baker and Gallivan [ABG07]: trust-region methods on Riemannian manifolds.
- PAA, Mahony, Sepulchre [AMS08]:Optimization Algorithms on Matrix Manifolds, textbook.

The Problem: Leftmost Eigenpairs of Matrix Pencil

Given $n \times n$ matrix pencil $(A, B), A=A^{T}, B=B^{T} \succ 0$ with (unknown) eigen-decomposition

$$
A\left[v_{1}|\ldots| v_{n}\right]=B\left[v_{1}|\ldots| v_{n}\right] \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

$\left[v_{1}|\ldots| v_{n}\right]^{T} B\left[v_{1}|\ldots| v_{n}\right]=I, \quad \lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{n}$.
The problem is to compute the minor eigenvector $\pm v_{1}$.

The ideal algorithm

Given (A, B), $A=A^{T}, B=B^{T} \succ 0$ with (unknown) eigenvalues $0<\lambda_{1} \leq \ldots \lambda_{n}$ and associated eigenvectors v_{1}, \ldots, v_{n}.

1. Global convergence:

- Convergence to some eigenvector for all initial conditions.
- Stable convergence to the "leftmost" eigenvector $\pm v_{1}$ only.

2. Superlinear (cubic) local convergence to $\pm v_{1}$.
3. "Matrix-free" (no factorization of A, B) but possible use of preconditioner.
4. Minimal storage space required.

Strategy

- Rewrite computation of leftmost eigenpair as an optimization problem (on a manifold).
- Use a model-trust-region scheme to solve the problem. \leadsto Global convergence.
- Take the exact quadratic model (at least, close to the solution). $~$ Superlinear convergence.
- Solve the trust-region subproblems using the (Steihaug-Toint) truncated CG (tCG) algorithm.
\leadsto "Matrix-free", preconditioned iteration.
\leadsto Minimal storage of iteration vectors.

Iteration on the manifold

Manifold: ellipsoid $\mathcal{M}=\left\{y \in \mathbb{R}^{n}: y^{\top} B y=1\right\}$. Cost function: $f: \mathcal{M} \rightarrow \mathbb{R}: y \mapsto y^{\top} A y$

Tangent space and retraction (2D picture)

Tangent space: $T_{y} \mathcal{M}:=\left\{\eta \in \mathbb{R}^{n}: y^{\top} B \eta=0\right\}$. Retraction: $R_{y} \eta:=(y+\eta) /\|y+\eta\|_{B}$.
Lifted cost function: $\hat{f}_{y}(\eta):=f\left(R_{y} \eta\right)=\frac{(y+\eta)^{\top} A(y+\eta)}{(y+\eta)^{\top} B(y+\eta)}$.

Concept of retraction

Introduced by Shub [Shu86].

1. R_{x} is defined and one-to-one in a neighbourhood of 0_{x} in $T_{x} M$.
2. $R_{x}\left(0_{x}\right)=x$.
3. $\mathrm{D} R_{x}\left(0_{x}\right)=\mathrm{id}_{T_{x} M}$, the identity mapping on $T_{x} M$, with the canonical identification $T_{0_{x}} T_{x} M \simeq T_{x} M$.

Tangent space and retraction

Tangent space: $T_{y} \mathcal{M}:=\left\{\eta \in \mathbb{R}^{n}: y^{\top} B \eta=0\right\}$.
Retraction: $R_{y} \eta:=(y+\eta) /\|y+\eta\|_{B}$.
Lifted cost function: $\hat{f}_{y}(\eta):=f\left(R_{y} \eta\right)=\frac{(y+\eta)^{\top} A(y+\eta)}{(y+\eta)^{\top} B(y+\eta)}$.

Quadratic model

$$
\begin{aligned}
\hat{f}_{y}(\eta) & =\frac{y^{\top} A y}{y^{\top} B y}+2 \frac{y^{\top} A \eta}{y^{\top} B y}+\frac{1}{y^{\top} B y}\left(\eta^{\top} A \eta-\frac{y^{\top} A y}{y^{\top} B y} \eta^{\top} B \eta\right)+\ldots \\
& =f(y)+2\langle P A y, \eta\rangle+\frac{1}{2}\langle 2 P(A-f(y) B) P \eta, \eta\rangle+\ldots
\end{aligned}
$$

where $\langle u, v\rangle=u^{\top} v$ and $P=I-B y\left(y^{\top} B^{2} y\right)^{-1} y^{\top} B$.
Model:

$$
m_{y}(\eta)=f(y)+2\langle P A y, \eta\rangle+\frac{1}{2}\langle P(A-f(y) B) P \eta, \eta\rangle, \quad y^{\top} B \eta=0 .
$$

Quadratic model

$$
m_{y}(\eta)=f(y)+2\langle P A y, \eta\rangle+\frac{1}{2}\langle P(A-f(y) B) P \eta, \eta\rangle, \quad y^{T} B \eta=0
$$

Newton vs Trust-Region

Model:

$$
\begin{equation*}
m_{y}(\eta)=f(y)+2\langle P A y, \eta\rangle+\frac{1}{2}\langle P(A-f(y) B) P \eta, \eta\rangle, \quad y^{\top} B \eta=0 \tag{7}
\end{equation*}
$$

Newton method: Compute the stationary point of the model, i.e., solve

$$
P(A-f(y) B) P \eta=-P A y .
$$

Instead, compute (approximately) the minimizer of m_{y} within a trust-region

$$
\left\{\eta \in T_{x} \mathcal{M}: \eta^{\top} \eta \leq \Delta^{2}\right\}
$$

Trust-region subproblem

Minimize

$$
m_{y}(\eta)=f(y)+2\langle P A y, \eta\rangle+\frac{1}{2}\langle P(A-f(y) B) P \eta, \eta\rangle, \quad y^{\top} B \eta=0
$$

subject to $\eta^{T} \eta \leq \Delta^{2}$.

Truncated CG method for the TR subproblem (1)

Let $\langle\cdot, \cdot\rangle$ denote the standard inner product and let $\mathcal{H}_{x_{k}}:=P\left(A-f\left(x_{k}\right) B\right) P$ denote the Hessian operator.

Initializations:

Set $\eta_{0}=0, r_{0}=P_{x_{k}} A x_{k}=A x_{k}-B x_{k}\left(x_{k}^{T} B^{2} x_{k}\right)^{-1} x_{k}^{T} B A x_{k}, \delta_{0}=-r_{0}$; Then repeat the following loop on j :

Check for negative curvature

if $\left\langle\delta_{j}, \mathcal{H}_{x_{k}} \delta_{j}\right\rangle \leq 0$
Compute τ such that $\eta=\eta_{j}+\tau \delta_{j}$ minimizes $m(\eta)$ in (7) and
satisfies $\|\eta\|=\Delta$;
return η;

Truncated CG method for the TR subproblem (2)

Generate next inner iterate

Set $\alpha_{j}=\left\langle r_{j}, r_{j}\right\rangle /\left\langle\delta_{j}, \mathcal{H}_{x_{k}} \delta_{j}\right\rangle ;$
Set $\eta_{j+1}=\eta_{j}+\alpha_{j} \delta_{j}$;
Check trust-region
if $\left\|\eta_{j+1}\right\| \geq \Delta$
Compute $\tau \geq 0$ such that $\eta=\eta_{j}+\tau \delta_{j}$ satisfies $\|\eta\|=\Delta$; return η;

Truncated CG method for the TR subproblem (3)

Update residual and search direction

Set $r_{j+1}=r_{j}+\alpha_{j} \mathcal{H}_{x_{k}} \delta_{j}$;
Set $\beta_{j+1}=\left\langle r_{j+1}, r_{j+1}\right\rangle /\left\langle r_{j}, r_{j}\right\rangle$;
Set $\delta_{j+1}=-r_{j+1}+\beta_{j+1} \delta_{j}$;
$j \leftarrow j+1$;
Check residual
If $\left\|r_{j}\right\| \leq\left\|r_{0}\right\| \min \left(\left\|r_{0}\right\|^{\theta}, \kappa\right)$ for some prescribed θ and κ return η_{j};

Overall iteration

The outer iteration - manifold trust-region (1)

Data: symmetric $n \times n$ matrices A and B, with B positive definite. Parameters: $\bar{\Delta}>0, \Delta_{0} \in(0, \bar{\Delta})$, and $\rho^{\prime} \in\left(0, \frac{1}{4}\right)$.
Input: initial iterate $x_{0} \in\left\{y: y^{\top} B y=1\right\}$.
Output: sequence of iterates $\left\{x_{k}\right\}$ in $\left\{y: y^{\top} B y=1\right\}$. Initialization: $k=0$
Repeat the following:

- Obtain η_{k} using the Steihaug-Toint truncated conjugate-gradient method to approximately solve the trust-region subproblem

$$
\begin{equation*}
\min _{x_{k}^{T} B \eta=0} m_{x_{k}}(\eta) \quad \text { s.t. }\|\eta\| \leq \Delta_{k}, \tag{8}
\end{equation*}
$$

where m is defined in (7).

The outer iteration - manifold trust-region (3)

- Evaluate

$$
\begin{equation*}
\rho_{k}=\frac{\hat{f}_{x_{k}}(0)-\hat{f}_{x_{k}}\left(\eta_{k}\right)}{m_{x_{k}}(0)-m_{x_{k}}\left(\eta_{k}\right)} \tag{9}
\end{equation*}
$$

where $\hat{f}_{x_{k}}(\eta)=\frac{\left(x_{k}+\eta\right)^{\top} A\left(x_{k}+\eta\right)}{\left(x_{k}+\eta\right)^{\top} B\left(x_{k}+\eta\right)}$.

- Update the trust-region radius:
if $\rho_{k}<\frac{1}{4}$

$$
\Delta_{k+1}=\frac{1}{4} \Delta_{k}
$$

else if $\rho_{k}>\frac{3}{4}$ and $\left\|\eta_{k}\right\|=\Delta_{k}$

$$
\Delta_{k+1}=\min \left(2 \Delta_{k}, \bar{\Delta}\right)
$$

else

$$
\Delta_{k+1}=\Delta_{k}
$$

The outer iteration - manifold trust-region (4)

- Update the iterate:
if $\rho_{k}>\rho^{\prime}$

$$
\begin{equation*}
x_{k+1}=\left(x_{k}+\eta_{k}\right) /\left\|x_{k}+\eta_{k}\right\|_{B} ; \tag{10}
\end{equation*}
$$

else

$$
\begin{gathered}
\quad x_{k+1}=x_{k} ; \\
k \leftarrow k+1
\end{gathered}
$$

Strategy

- Rewrite computation of leftmost eigenpair as an optimization problem (on a manifold).
- Use a model-trust-region scheme to solve the problem. \leadsto Global convergence.
- Take the exact quadratic model (at least, close to the solution). $~$ Superlinear convergence.
- Solve the trust-region subproblems using the (Steihaug-Toint) truncated CG (tCG) algorithm.
\leadsto "Matrix-free", preconditioned iteration.
\leadsto Minimal storage of iteration vectors.

Summary

We have obtained a trust-region algorithm for minimizing the Rayleigh quotient over an ellipsoid.

Generalization to trust-region algorithms for minimizing functions on manifolds: the Riemannian Trust-Region (RTR) method [ABG07].

Convergence analysis

Global convergence of Riemannian Trust-Region algorithms

Let $\left\{x_{k}\right\}$ be a sequence of iterates generated by the RTR algorithm with $\rho^{\prime} \in\left(0, \frac{1}{4}\right)$. Suppose that f is C^{2} and bounded below on the level set $\left\{x \in M: f(x)<f\left(x_{0}\right)\right\}$. Suppose that $\|\operatorname{grad} f(x)\| \leq \beta_{g}$ and $\|\operatorname{Hess} f(x)\| \leq \beta_{H}$ for some constants β_{g}, β_{H}, and all $x \in M$. Moreover suppose that

$$
\begin{equation*}
\left\|\frac{D}{d t} \frac{d}{d t} R t \xi\right\| \leq \beta_{D} \tag{11}
\end{equation*}
$$

for some constant β_{D}, for all $\xi \in T M$ with $\|\xi\|=1$ and all $t<\delta_{D}$, where $\frac{D}{d t}$ denotes the covariant derivative along the curve $t \mapsto R t \xi$. Further suppose that all approximate solutions η_{k} of the trust-region subproblems produce a decrease of the model that is at least a fixed fraction of the Cauchy decrease.

Global convergence (cont'd)

It then follows that

$$
\lim _{k \rightarrow \infty} \operatorname{grad} f\left(x_{k}\right)=0
$$

And only the local minima are stable (the saddle points and local maxima are unstable).

Local convergence of Riemannian Trust-Region algorithms

Consider the RTR-tCG algorithm. Suppose that f is a C^{2} cost function on M and that

$$
\begin{equation*}
\left\|\mathcal{H}_{k}-\operatorname{Hess} \hat{f}_{x_{k}}\left(0_{k}\right)\right\| \leq \beta_{\mathcal{H}}\left\|\operatorname{grad} f\left(x_{k}\right)\right\| . \tag{12}
\end{equation*}
$$

Let $v \in M$ be a nondegenerate local minimum of f, (i.e., $\operatorname{grad} f(v)=0$ and Hess $f(v)$ is positive definite). Further assume that Hess $\hat{f}_{x_{k}}$ is Lipschitz-continuous at 0_{x} uniformly in x in a neighborhood of v, i.e., there exist $\beta_{1}>0, \delta_{1}>0$ and $\delta_{2}>0$ such that, for all $x \in B_{\delta_{1}}(v)$ and all $\xi \in B_{\delta_{2}}\left(0_{x}\right)$, it holds

$$
\begin{equation*}
\| \text { Hess } \hat{f}_{x_{k}}(\xi)-\operatorname{Hess} \hat{f}_{x_{k}}\left(0_{x_{k}}\right)\left\|\leq \beta_{L 2}\right\| \xi \| \tag{13}
\end{equation*}
$$

Local convergence (cont'd)

Then there exists $c>0$ such that, for all sequences $\left\{x_{k}\right\}$ generated by the RTR-tCG algorithm converging to v, there exists $K>0$ such that for all $k>K$,

$$
\begin{equation*}
\operatorname{dist}\left(x_{k+1}, v\right) \leq c\left(\operatorname{dist}\left(x_{k}, v\right)\right)^{\min \{\theta+1,2\}} \tag{14}
\end{equation*}
$$

where θ governs the stopping criterion of the tCG inner iteration.

Convergence of trust-region-based eigensolver

Theorem:

Let (A, B) be an $n \times n$ symmetric/positive-definite matrix pencil with eigenvalues $\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{n-1} \leq \lambda_{n}$ and an associated B-orthonormal basis of eigenvectors $\left(v_{1}, \ldots, v_{n}\right)$.

Let $\mathcal{S}_{i}=\left\{y: A y=\lambda_{i} B y, y^{\top} B y=1\right\}$ denote the intersection of the eigenspace of (A, B) associated to λ_{i} with the set $\left\{y: y^{\top} B y=1\right\}$.

Convergence (global)

(i) Let $\left\{x_{k}\right\}$ be a sequence of iterates generated by the Algorithm. Then $\left\{x_{k}\right\}$ converges to the eigenspace of (A, B) associated to one of its eigenvalues. That is, there exists i such that $\lim _{k \rightarrow \infty} \operatorname{dist}\left(x_{k}, \mathcal{S}_{i}\right)=0$.
(ii) Only the set $\mathcal{S}_{1}=\left\{ \pm v_{1}\right\}$ is stable.

Convergence (local)

(iii) There exists $c>0$ such that, for all sequences $\left\{x_{k}\right\}$ generated by the Algorithm converging to \mathcal{S}_{1}, there exists $K>0$ such that for all $k>K$,

$$
\begin{equation*}
\operatorname{dist}\left(x_{k+1}, \mathcal{S}_{1}\right) \leq c\left(\operatorname{dist}\left(x_{k}, \mathcal{S}_{1}\right)\right)^{\min \{\theta+1,2\}} \tag{15}
\end{equation*}
$$

with $\theta>0$.

Strategy

- Rewrite computation of leftmost eigenpair as an optimization problem (on a manifold).
- Use a model-trust-region scheme to solve the problem. \leadsto Global convergence.
- Take the exact quadratic model (at least, close to the solution). $~$ Superlinear convergence.
- Solve the trust-region subproblems using the (Steihaug-Toint) truncated CG (tCG) algorithm.
\leadsto "Matrix-free", preconditioned iteration.
\leadsto Minimal storage of iteration vectors.

Numerical experiments: RTR vs Krylov [GY02]

Distance to target versus matrix-vector multiplications. Symmetric/positive-definite generalized eigenvalue problem.

Conclusion: A Three-Step Approach

- Formulation of the computational problem as a geometric optimization problem.
- Generalization of optimization algorithms on abstract manifolds.
- Exploit flexibility and additional structure to build numerically efficient algorithms.

A few pointers

- Optimization on manifolds: Luenberger [Lue73], Gabay [Gab82], Smith [Smi93, Smi94], Udriște [Udr94], Manton [Man02], Mahony and Manton [MM02], PAA et al. [ABG04, ABG07]...
- Trust-region methods: Powell [Pow70], Moré and Sorensen [MS83], Moré [Mor83], Conn et al. [CGT00].
- Truncated CG: Steihaug [Ste83], Toint [Toi81], Conn et al. [CGT00]...
- Retractions: Shub [Shu86], Adler et al. [ADM $\left.{ }^{+} 02\right]$...

THE END

Optimization Algorithms on Matrix Manifolds
P.-A. Absil, R. Mahony, R. Sepulchre

Princeton University Press, January 2008

1. Introduction
2. Motivation and applications
3. Matrix manifolds: first-order geometry
4. Line-search algorithms
5. Matrix manifolds: second-order geometry
6. Newton's method
7. Trust-region methods
8. A constellation of superlinear algorithms

圊 P.-A. Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Riemannian manifolds with applications in numerical linear algebra, Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS2004), Leuven, Belgium, 5-9 July 2004, 2004.
(Trust-region methods on Riemannian manifolds, Found. Comput. Math. 7 (2007), no. 3, 303-330.

Roy L. Adler, Jean-Pierre Dedieu, Joseph Y. Margulies, Marco Martens, and Mike Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal. 22 (2002), no. 3, 359-390.
(1) P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press, Princeton, NJ, January 2008.

回 Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint, Trust-region methods, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR MR1774899 (2003e:90002)
(1) Gabay, Minimizing a differentiable function over a differential manifold, J. Optim. Theory Appl. 37 (1982), no. 2, 177-219. MR MR663521 (84h:49071)

- Gene H. Golub and Qiang Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comput. 24 (2002), no. 1, 312-334.

Ragnus R. Hestenes and William Karush, A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix, J. Research Nat. Bur. Standards 47 (1951), 45-61.

囯 Uwe Helmke and John B. Moore, Optimization and dynamical systems, Communications and Control Engineering Series, Springer-Verlag London Ltd., London, 1994, With a foreword by R. Brockett. MR MR1299725 (95j:49001)
目 David G. Luenberger, Introduction to linear and nonlinear programming, Addison-Wesley, Reading, MA, 1973.
(i) Jonathan H. Manton, Optimization algorithms exploiting unitary constraints, IEEE Trans. Signal Process. 50 (2002), no. 3, 635-650. MR MR1895067 (2003i:90078)

Robert Mahony and Jonathan H. Manton, The geometry of the Newton method on non-compact Lie groups, J. Global Optim. 23 (2002), no. 3-4, 309-327, Nonconvex optimization in control. MR MR1923049 (2003g:90114)
(1) J. J. Moré, Recent developments in algorithms and software for trust region methods, Mathematical programming: the state of the art (Bonn, 1982) (Berlin), Springer, 1983, pp. 258-287.

围 Jorge J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput. 4 (1983), no. 3, 553-572. MR MR723110 (86b:65063)
(1). Mongeau and M. Torki, Computing eigenelements of real symmetric matrices via optimization, Comput. Optim. Appl. 29 (2004), no. 3, 263-287. MR MR2101850 (2005h:65061)
© M. J. D. Powell, A new algorithm for unconstrained optimization, Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970), Academic Press, New York, 1970, pp. 31-65.

雷 Michael Shub, Some remarks on dynamical systems and numerical analysis, Proc. VII ELAM. (L. Lara-Carrero and J. Lewowicz, eds.), Equinoccio, U. Simón Bolívar, Caracas, 1986, pp. 69-92.
Steven Thomas Smith, Geometric optimization methods for adaptive filtering, Ph.D. thesis, Division of Applied Sciences, Harvard University, Cambridge, MA, May 1993.

Steven T. Smith, Optimization techniques on Riemannian manifolds, Hamiltonian and gradient flows, algorithms and control, Fields Inst. Commun., vol. 3, Amer. Math. Soc., Providence, RI, 1994, pp. 113-136. MR MR1297990 (95g:58062)

Trond Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal. 20 (1983), no. 3, 626-637. MR MR701102 (84g:49047)
Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, Sparse Matrices and Their Uses (I. S. Duff, ed.), Academic Press, London, 1981, pp. 57-88.
(in Constantin Udriște, Convex functions and optimization methods on Riemannian manifolds, Mathematics and its Applications, vol. 297, Kluwer Academic Publishers Group, Dordrecht, 1994. MR MR1326607 (97a:49038)

