Optimisation on Manifolds

K. Hüper

MPI Tübingen \& Univ. Würzburg

Contents

- 2 Examples
- Essential matrix estimation
- Stereo matching without correspondence
- Which manifolds are involved?
- Parameterizations
- Newton-type methods
- Algorithm as differentiable map
- Convergence properties

Essential Matrix Estimation

Assumption: Identical pin hole cameras.
Task: Recover Euclidean transformation between two cameras.

Epipolar Constraint

- Camera centers $C_{1}, C_{2} \in \mathbb{R}^{3}$.
- Attached frames $F_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $F_{2}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$.
- Euclidean transformation $(R, t): F_{1} \mapsto F_{2}$.
- Let $M_{i}=\left[X_{i}, Y_{i}, Z_{i}\right]^{\top}, i=1,2$ denote coords. of M w.r.t. F_{i}. Then

$$
M_{1}=R M_{2}+t
$$

- Camera image points (pixel coords) $m_{i}=\left[u_{i}, v_{i}, 1\right]^{\top}$. Then

$$
m_{1}^{\top} \hat{t} R m_{2}=0
$$

(Epipolar Constraint)

- Essential matrix $E:=\hat{t} R$, with R orthonormal, $\operatorname{det} R=1$ and skew-symmetric $\hat{t}=-\hat{t}^{\top}$ with $\|t\|=1$.

Essential Matrix Estimation

Facts: The set of essential matrices \mathcal{E} is

- a compact connected 5-dimensional manifold diffeomorphic to

$$
\mathbb{R P}^{2} \times S O_{3} \cong\left\{E \in \mathbb{R}^{3 \times 3} \left\lvert\, E=U\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] V^{\top}\right. ; U, V \in S O_{3}\right\}
$$

(an orbit! "SVD action"),

- NOT a vector space,
- NOT easily described by equality constraints without redundancy,
- NOT diffeomorphic to the product of Stiefel manifolds $\mathrm{S}^{2} \times \mathrm{SO}_{3}$.
- a reductive homogeneous space diffeomorphic to $\mathrm{SO}_{3} \times \mathrm{SO}_{3} / \mathrm{O}_{2}$

Essential Matrix Estimation

Task: Given a set of N point correspondences $\left(m_{i}, m_{i}^{\prime}\right)_{i=1}^{N}$, estimate E encapsulating the relative pose.

Ideas:

- In the noise free case every pair has to fullfil the epipolar constraint $m_{i}^{\top} \hat{t} R m_{i}^{\prime}=0$.
- Choose suitable cost to be minimised over \mathcal{E}. Simplest choice (least squares) is

$$
f: \mathcal{E} \rightarrow \mathbb{R}, \quad E \mapsto \sum_{i=1}^{N}\left(m_{i}^{\top} E m_{i}^{\prime}\right)^{2}
$$

- Global minimisation of f over \mathcal{E}.
- Choose suitable family of parameterisations for $\mathcal{E}(\operatorname{dim} \mathcal{E}=5)$.

Tangent space of \mathcal{E}

Fact: The tangent space at the essential matrix $E=U E_{0} V^{\top}$ is

$$
\begin{aligned}
T_{E} \mathcal{E} & =\left\{U\left(\Omega E_{0}-E_{0} \Psi\right) V^{\top} \mid \Omega, \Psi \in \mathfrak{s o}_{3}\right\} \\
& =\left\{\left.U\left[\begin{array}{ccc}
0 & \omega_{12}-\psi_{12} & -\psi_{13} \\
\psi_{12}-\omega_{12} & 0 & -\psi_{23} \\
-\omega_{13} & -\omega_{23} & 0
\end{array}\right] V^{\top} \right\rvert\, \omega_{i j}, \psi_{i j} \in \mathbb{R}, i, j \in\{1,2,3\}\right\}
\end{aligned}
$$

with $\Omega=\left(\omega_{i j}\right)$ and $\psi=\left(\psi_{i j}\right)$.

Useful Parameterisations for \mathcal{E}

Let $E_{0}:=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 0\end{array}\right]$ and

$$
\begin{aligned}
& \Omega_{1}(x)=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right], \quad \Omega_{2}(x)=\left[\begin{array}{ccc}
0 & x_{3} & x_{5} \\
-x_{3} & 0 & -x_{4} \\
-x_{5} & x_{4} & 0
\end{array}\right] . \\
& \mu_{(U, V)}^{\exp }: \mathbb{R}^{5} \rightarrow \mathcal{E}, \quad x \mapsto U \mathrm{e}^{\Omega_{1}(x)} E_{0} \mathrm{e}^{-\Omega_{2}(x)} V^{\top}, \\
& \mu_{(U, V)}^{\mathrm{GS}}: \mathbb{R}^{5} \rightarrow \mathcal{E}, \quad x \mapsto U\left(I+\Omega_{1}(x)\right)_{\mathrm{GS}} E_{0}\left(I-\Omega_{2}(x)\right)_{\mathrm{GS}} V^{\top}, \\
& \mu_{(U, V)}^{\mathrm{SVD}}: \mathbb{R}^{5} \rightarrow \mathcal{E}, \quad x \mapsto U\left(E_{0}+\Omega_{1}(x) E_{0}-E_{0} \Omega_{2}(x)\right)_{\mathrm{SVD}} V^{\top} .
\end{aligned}
$$

Gram-Schmidt:
Let $X=Q R$ unique $Q R$-dec of invertible X. Then $X_{\mathrm{GS}}:=Q$. SVD:
Let $X=\hat{U} \Sigma \hat{V}^{\top}$ ordered SVD, then $X_{\text {SVD }}:=\hat{U} E_{0} \hat{V}^{\top}$.

Algorithm

Let

$$
\mu: \mathcal{E} \times \mathbb{R}^{5} \rightarrow \mathcal{E}, \quad \mu(E, 0)=\mu_{(U, V)}(0)=E
$$

With the gradient of $f \circ \mu_{(U, V)}$ at 0

$$
\nabla_{f \circ \mu(E, \cdot)}(0),
$$

and the Hessian of $f \circ \mu_{(U, V)}$ at 0

$$
H_{f \circ \mu(E,)}(0)
$$

The algorithmic map to be iterated is then:

$$
\begin{aligned}
& s: \mathcal{E} \rightarrow \mathcal{E} \\
& s(E)=\mu\left(E,-\left(H_{f \circ \mu(E, \cdot)}(0)\right)^{-1} \cdot \nabla_{f \circ \mu(E, \cdot)}(0)\right)
\end{aligned}
$$

Discussion

- For GS or SVD based parameterizations $\operatorname{D} f(E)=0 \Longleftrightarrow E$ is fixed point of algorithm.
- For EXP this is not true due to finite injectivity radius.
- Locally all three algorithms are smooth maps $\mathcal{E} \rightarrow \mathcal{E}$ around minima with nondegenerate Hessian.
- For all three algorithms:
$\mathrm{D} s\left(E_{*}\right)=0 \Longrightarrow\left\|s\left(E_{k}-E_{*}\right)\right\| \leq \sup \left\|D^{2} s(\bar{E})\right\| \cdot\left\|E_{k}-E_{*}\right\|^{2}$. That is, we have local quadratic convergence.

Discussion

- For GS or SVD based parameterizations $\operatorname{D} f(E)=0 \Longleftrightarrow E$ is fixed point of algorithm.
- For EXP this is not true due to finite injectivity radius.
- Locally all three algorithms are smooth maps $\mathcal{E} \rightarrow \mathcal{E}$ around minima with nondegenerate Hessian.
- For all three algorithms:
$\mathrm{D} s\left(E_{*}\right)=0 \Longrightarrow\left\|s\left(E_{k}-E_{*}\right)\right\| \leq \sup \left\|D^{2} s(\bar{E})\right\| \cdot\left\|E_{k}-E_{*}\right\|^{2}$. That is, we have local quadratic convergence.

Some details (we might discuss off-line)

- Why are our algorithms well defined? As there exist orthogonal $U_{1} \neq U_{2}$ and $V_{1} \neq V_{2}$ with $\mu_{\left(U_{1}, V_{1}\right)}=\mu_{\left(U_{2}, V_{2}\right)}$.
- Why is \mathcal{E} not globally diffeomorphic to a product of Stiefel manifolds? Any consequences?
- Are our algorithms intrinsic Newton methods, i.e. can we find a corresponding Riemannian metric?

References

- Multiple View Geometry in Computer Vision by R. Hartley, A. Zisserman; Cambridge University Press 2004.
- An Invitation to 3-D Vision by Y. Ma et al.; Springer 2005.
- Essential Matrix Estimation Using Gauss-Newton Iterations on a Manifold by U. Helmke et al.; Int. J. of Computer Vision 74(2), 2007.
- Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation by Y. Ma et al.; Int. J. of Computer Vision 44(3), 2001.
- Pose Estimation of a Moving Humanoid Using Gauss-Newton Optimization on a Manifold by M. Sarkis et al.; Humanoids 2007.

Stereo Matching

Two coplanar cameras observe a planar patch.
Task: Recover Euclidean transformation between two cameras.

Stereo Matching

Assumption: Two sets of image points $\left\{X_{1, i}\right\}$, and $\left\{X_{2, i}\right\}$, $X_{1, i}, X_{2, i} \in \mathbb{R}^{3}$ are unordered, i.e. the pointwise correspondence between both sets is unknown. The only available information then is the Euclidian displacement $(R, \tau), R \in \mathrm{SO}_{3}$ and $\tau \in \mathbb{R}^{3}$ between the cameras.

Typical tasks:

(i) recover the geometry of the observed patch from the two images,
(ii) establish a pointwise correspondence of both sets of image points,
(iii) find a homographic transformation from the points of one image to the points of the other.

Stereo Matching without Correspondence

Idea (Zhou/Ghosh CDC 1996): From normalized image points form the Gramians $N, Q \in \mathbb{R}^{n \times n}$

$$
N=\frac{1}{k} \sum_{i=1}^{k} X_{1, i} X_{1, i}^{\top}, \quad Q=\frac{1}{k} \sum_{i=1}^{k} X_{2, i} X_{2, i}^{\top},
$$

and find a transformation A via following a gradient flow which minimises the cost $\left\|Q-A N A^{\top}\right\|^{2}$.

Questions:

- What kind of transformations are the A matrices?
- What is the structure of the set of critical points?
- Can one do better than following a gradient flow?
- Are there closed form solutions available in the noise free case?

Stereo Matching without Correspondence

Fact:

The set of A-matrices forms a noncompact 3-dim. Lie group

$$
G=\left\{I_{3}+e_{1} a^{\top} \in \mathbb{R}^{3 \times 3} \mid 1+e_{1}^{\top} a>0, a \in \mathbb{R}^{3}\right\} .
$$

with Lie algebra

$$
\mathfrak{g}:=\left\{e_{1} b^{\top} \mid b \in \mathbb{R}^{3}\right\}
$$

and Lie bracket the matrix commutator.

Stereo Matching without Correspondence

Parameterization:

By exponentiating Lie algebra elements we obtain for any $A \in G$ the parameterization map

$$
\begin{equation*}
\nu: \mathbb{R}^{3} \rightarrow G, \quad \nu(b):=\exp \left(e_{1} b^{\top}\right)=I_{3}+h\left(e_{1}^{\top} b\right) e_{1} b^{\top} \tag{1}
\end{equation*}
$$

with

$$
h\left(b_{1}\right)=\left\{\begin{array}{cc}
\frac{\mathrm{e}^{b_{1}}-1}{b_{1}} & b_{1} \neq 0 \tag{2}\\
1 & b_{1}=0
\end{array} .\right.
$$

Note that ν satisfies $\nu(0)=I_{3}$ and ν defines a global diffeomorphism onto the group G.

Stereo Matching without Correspondence

For convenience:

Lemma

Given an $\left(n \times n\right.$)-matrix $N=N^{\top}>0$ and let $M=\left\{A N A^{\top} \mid A \in G\right\}$. Then M is a smooth and connected 3 -dimensional manifold. The map

$$
\phi: G \rightarrow M, \quad \phi(A):=A N A^{\top}
$$

is a global diffeomorphism. The tangent space of M at $X \in M$ is
$T_{X} M=\left\{B X+X B^{\top} \mid B \in \mathfrak{g}\right\}$
Correspondingly, we obtain a family of global parameterizations of the manifold M as

$$
\mu_{X}: \mathbb{R}^{3} \rightarrow M, \quad \mu_{X}(b):=\mathrm{e}^{e_{1} b^{\top}} X\left(\mathrm{e}^{e_{1} b^{\top}}\right)^{\top} .
$$

Thus μ_{X} satisfies $\mu_{X}(0)=X$ and μ_{X} defines a global diffeomorphism onto the manifold M.

Stereo Matching without Correspondence

Lemma

Let $N=N^{\top}$ be positive definite. The function
$f: M \rightarrow \mathbb{R}, \quad f(X)=\|Q-X\|^{2}$ with $f(X)=\|Q-X\|^{2}$ has a unique critical point $X_{c} \in M$. The critical point X_{c} is characterized by the property that the first column coincides with that of Q.

Idea:
Minimise f over M via Newton-on-manifold approach to find the unique global minimum.

Gradient and Hessian

$$
\begin{gathered}
\quad \nabla\left(f \circ \mu_{X}\right)(0)=4 X(X-Q) e_{1} \\
\mathrm{H}_{f \circ \mu_{X}}(0)=4\left(X^{2}+X e_{1} e_{1}^{\top} X+e_{1}^{\top}(X-Q) e_{1} X\right) \\
\left.\quad+\frac{1}{2}\left(X(X-Q) e_{1} e_{1}^{\top}+e_{1} e_{1}^{\top}(X-Q) X\right)\right)
\end{gathered}
$$

Note that the Hessian at the unique critical point X_{c} simplifies to

$$
\mathrm{H}_{f \circ \mu X_{c}}(0)=4\left(X_{c}^{2}+X_{c} e_{1} e_{1}^{\top} X_{c}\right)
$$

Newton's Method

Iterate the map

$$
s: M \rightarrow M
$$

Let $x^{\mathrm{opt}}(X)$ denote the solution of

$$
\widehat{\mathrm{H}}_{f \circ \mu_{X}}(0) x=-\nabla\left(f \circ \mu_{X}\right)(0)
$$

where for any $X \in M$

$$
\widehat{\mathrm{H}}_{f \circ \mu_{X}}(0)=4\left(X^{2}+X e_{1} e_{1}^{\top} X\right)
$$

Thus

$$
x^{\mathrm{opt}}(X)=X^{-1}\left(I_{n}-\frac{1}{2} e_{1} e_{1}^{\top}\right)(Q-X) e_{1}
$$

is well-defined for any $X \in M$. The algorithmic map s is given as

$$
s(X)=\mu_{X}\left(x^{\mathrm{opt}}(X)\right)
$$

Convergence Properties

Lemma
The algorithm $s(X)=\mu_{X}\left(x^{\mathrm{opt}}(X)\right)$ converges locally quadratically fast.

Proof:

The mapping is smooth. The first derivative of the mapping at the critical point is equal to zero.

Alternative Approach: Cholesky Factorisation

Unique Cholesky factors

$$
N=U_{N} U_{N}^{\top}, \quad Q=U_{Q} U_{Q}^{\top}
$$

with upper triangular matrices U_{N}, U_{Q} with positive diagonal entries. Thus for group elements

$$
A\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \tag{3}\\
& 1 & \\
& & 1
\end{array}\right]
$$

we introduce

$$
\begin{aligned}
\widetilde{f}: \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\widetilde{f}\left(x_{1}, x_{2}, x_{3}\right) & :=\left\|A\left(x_{1}, x_{2}, x_{3}\right) U_{N}-U_{Q}\right\|^{2}
\end{aligned}
$$

to be minimized. The function \widetilde{f} is convex and its gradient and Hessian can be easily computed.

Alternative Approach: Cholesky Factorisation

$$
\begin{gathered}
U_{N}=\left[\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & g
\end{array}\right], \quad U_{Q}=\left[\begin{array}{lll}
r & s & t \\
0 & u & v \\
0 & 0 & w
\end{array}\right] . \\
\nabla \tilde{f}(x, y, z)=2 U_{N}\left(A(x, y, z) U_{N}-U_{Q}\right)^{\top} e_{1} \\
H_{\tilde{f}(x, y, z)}=2 U_{N} U_{N}^{\top}=2 N=2\left[\begin{array}{ccc}
a^{2}+b^{2}+c^{2} & b d+c e & c g \\
b d+c e & d^{2}+e^{2} & e g \\
c g & e g & g^{2}
\end{array}\right] .
\end{gathered}
$$

Clearly, $\mathrm{H}_{\tilde{f}(x, y, z)} \succ 0$. A Newton iteration step for this problem then moves right into the minimum

$$
\left[\begin{array}{l}
x_{t+1} \tag{4}\\
y_{t+1} \\
z_{t+1}
\end{array}\right]=\left[\begin{array}{c}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right]-\mathrm{H}_{\tilde{f}\left(x_{t}, y_{t}, z_{t}\right)}^{-1} \nabla \widetilde{f}\left(x_{t}, y_{t}, z_{t}\right)=\left[\begin{array}{c}
\frac{r}{\frac{r}{2}} \\
\frac{a s-r b}{d a d} \\
\frac{\text { aatt-cod-astber }}{a d g}
\end{array}\right] .
$$

Alternative Approach: Cholesky Factorisation

Thus, $A(x, y, z) \in G$ with

$$
x=\frac{r}{a}, y=\frac{a s-r b}{a d}, z=\frac{a d t-c d r-a e s+b e r}{a d g}
$$

is the unique group element minimizing \widetilde{f}.
In the noise free case at the minimum

$$
d=u, \quad e=v, \quad g=w
$$

$A U_{N}=U_{Q}$ and therefore the minimal value is equal to zero.

Numerical Examples

Outlook

- Cholesky updating (learning approach).
- Cholesky based solution seems to be more sensitive to noise than Newton's method.
- Generalisation to non-planar patches?
- Non-coplanar cameras, possibly different ones?

References

- A Gradient Algorithm for Stereo Matching without Correspondence by J. Zhou, B.K. Ghosh; IEEE TAC 41(11) 1996.
- Stereo Matching for Calibrated Cameras without Correspondence by U. Helmke et al.; IEEE CDC 2008.

End

Thanks!

