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Abstract—In this paper, we study the behavior of pulse- Popular oscillator models include the L(eaky)IF model and
coupled integrate-and-fire oscillators. Each oscillator $ char-  the Q(uadratic)IF model. Our previous study [8] has rewkale
acterized by a state evolving between two threshold valueés an interesting dichotomy of the LIF model since only two

the state reaches the upper threshold, it is reset to the lowe . . . . .
threshold and emits a pulse which increments by a constant asymptotic behaviors are possible. Either the scalar firing

value the state of every other oscillator. map is contracting and all oscillators asymptotically cange
The behavior of the system is described by the so-called to a phase-locked clustering behavior, or the scalar firiag m

fiing map: depending on the stability of the firing map, s expanding and all oscillators eventually synchronize.

an important dichotomy characterizes the behavior of the In contrast to the LIF model, more general models (in-

oscillators (synchronization or clustering). The firing map is . . .
the composition of a linear map with a scalar nonlinearity. cluding the QIF model) have a scalar firing map that is

After briefly discussing the case of the scalar fiing map contracting over some phase intery@l¢] and expanding
(corresponding to two oscillators), the stability analyss is over the complementary intervgp, 1]. Interestingly, numer-
extended to the generaln-dimensional firing map (for n+1 jcal simulations suggest that the behavior is still dicihaito
oscillators). Different models are considered (leaky ositators, for most of the models: phase-locked clustering when the
guadratic oscillators,...), with a particular emphasis onthe . . S A
persistence of the dichotomy in higher dimensions. f|r|ng map 1S C(_)ntractmg_ on average” and synchrony when

the firing map is expanding “on average”.

. INTRODUCTION The present paper reports on current progresses to char-

Populations of interacting oscillators have attracted- cor®cterize the dichotomic behavior from the global analy$is o
tinuing interest among the scientific community for the lasi1® fiing map. We establish the dichotomy for the scalar
decades. While the behavior of a single oscillator is simpldfing map @ = 1) but we show that its extension to higher
the nonlinear nature of the interactions may trigger confdimensions depends on finer properties of the scalar firing
plex behaviors of the whole system. Beyond their practical'@P: _ _ _
interest, such systems have led to numerous exciting open! € paper is organized as follows. In Section Il, the pulse-
problems [1], [2], [3]. coupled model is described and the firing map is introduced.

In the present paper, we focus on systems of integrate-ar{B-partiC‘ﬂlar' th_e existence apd uniqgenes; of the fixedtpoin
fire oscillators [4] characterized by an impulsive coupling'S estabhshed_ in full generallty_. _Sectlon ll'is devptedtllm
Although the model was first described to study pacemak8foPal analysis of the scalar firing map. In Section IV, the
cells of the heart [5], it applies to other contexts. In martar, 9eneran-dimensional firing map is considered. Whereas the
pulse-coupled oscillators are used to simulate neurons [6]dichotomy is shown for some particular firing maps in IV-A,

The seminal work of Mirollo and Strogatz [7] reduces? co_u.nterexample is presented in IV—A_. |I.’l Secpon V., a local
the analysis ofn-+1 coupled integrate-and-fire oscillatorsStability result complements the analysis in thdimensional

to the analysis of the firing map, a map describing th€3S€: It is established with the help of a technical result,
n phase differences at successive’ firing times. Thel- whose proof is performed in Section VI. We conclude with

dimensional firing map has a very special structure: it is the€ction VII.

composition of a linear (isome_tric) map an_d_ a nonlinear map|; A FIRING MAP TO STUDY PULSE-COUPLED
deriving from th_e corresponding scalar firing map c_ieflned OSCILLATORS

over the phase intervdD,1]. The latter can be analytically
computed from the scalar differential equation modelirgy th
(integrating) behavior of a single phase oscillator.

An integrate-and-fire oscillator is described by a scalar
state variable;, which monotonically increases between two
thresholdsx and x according to the dynamics = F(x),
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For the sake of simplicity, a phageec [0,1] is introduced, nx n matrix

which is determined from the state of oscillatdny rescaling o .. 0 1
in such a way thatg = 1 corresponds to the high-threshold 1 0 0 1
and@ =1/T, whereT is the natural period of the oscillator. L= , (6)
The evolution of a single — uncoupled — oscillator is then 0 - 0
described by the function 0 0 -11
xi=f(@) 2P LTql, Q) with a repeated static nonlinearit({) = [h({1)---h({n)]-

The linear map. provides the firing map with a particular
with P(x) defined as the time required by the statét), chain structure, which implies that the firing map has a

solution ofX; = F(x;), x(0) = x, to reach the value : unique fixed poinid*, as stated in the following result.
X
P(x) :/ i/d)(, P(X)=T. ) Proposition 1: Provided thatn < (X — x)/e, the n-
x F(X) dimensional firing map (4), which satisfies the phase orderin

The impulsive coupling only occurs at the precise fir(5), has a unique fixed point.
ing times, where the oscillators receive a phase advance Proof: See Appendix. u
and jump from phasep to phase miaf—1[f(q@)+¢],X). The upper-bound onensures that+ 1 distinct oscillators
Between two firings, every phase evolves with a constaf@n coexist over the rangge [0,1]. If nwas larger than the
velocity @ =1/T, without any coupling. The firing map bound given, no fixed point for the-dimensional firing map
introduced in [7] is the app“cation that maps the (Sorte(ﬁomd exist since there would always be an absorption within
oscillator phases from one firing instant to their (sorted) steps. The unique fixed point of the firing map represents
phases at the next firing instant. Even though it “omitsthe unique phase-locked configuration of the- 1 distinct
the continuous time evolution of the oscillators betwean thoscillators spread over the ranf1]. This situation, called
firings, the firing map provides a full characterization of th clustering, is studied in [8].
system evolution. N . , ~11l. GLOBAL ANALYSIS OF THE SCALAR FIRING

For two oscillators, the firing map is a one-dimensional MAP

map which expresses as . . .
P P We make the following assumption on the integrate-and-

" =h(p) 2 Hf(1-g)+el. (3) fire modelx = F(x).

. : . . Assumption 1: ) :[-1,1] — R is continuous positive,
Given the phasep of oscillator 1 when oscillator 2 fires, even, smooth, and strictly monotone (9 1].

the firing map expresses the phage of oscillator 2 at the ) .

next firing (of oscillator 1), and vice versa. At each itevati |1 the sequel, we assume without loss of generality that

the phase of the firing oscillatop(= 0) is omitted: the map %X < [~1,1], so thatF () is always defined ofx,X]. Most

is scalar. In additionh(-) is strictly decreasing since the °f the usual integrate-and-fire models satisfy Assumption 1

evolution f is strictly increasing. A rep_resentauve model of_thls class is the quadratic na?gr
For n+ 1 distinct oscillatorsi{ > 1), the firing map is the and-fire (QIF) model, which corresponds Fdx) = S+,

n-dimensional generalization of the scalar firing nfdp. It S>0. A so-cglledpiecewise lineamodel is characterized
by the dynamics= (x) = S+ y|x|, S,y > 0. The well-known

's given by leaky integrate-and-fire (LIF) model, with(x) = S+ yx and
@ = h(m) [x,X] =[0,1], appears to be equivalent to the piecewise linear
¢ = hgm—a) model. (The casg < 0 is actually equivalent to the piecewise
H(®) = . : (4)  linear model with threshold, X] = [—1,0].) In addition, the

o _ h(gh—gh 1) exponential modeF (x) = Sexp(x?), S> 0, is also in the
. class of considered models. (See Fig. 1).
Whenever an oscillator fires, it receives the index 1 — With the dynamics defined above, the scalar firing map
its phaseg, 1 = 0 is omitted in (4) — and th@ remaining has an important property. A well-chosen translation of the
oscillators receive the indéxaccording to the phase orderingscalar firing map, i.eh(¢+ d), has a reflection symmetry
with respect to the bisectrix (Fig. 2). This property of the
Hi=0<@<@p<---<@<l (5)  scalar firing map is summarized in the following proposition

The successive iterations of the firing mejg®) describe P ition 2: Under A ton 1. th di
the evolution of the phases at each firing instant. When an |r0p]93_' lon = r31 er i ?sun:E lon %, te corresponding
absorption occurs, it can be noted that thelimensional scalar firing map (3) satisfies the property
vector is sent onto aV-dimensional space, wit' < n. h(-+8)=h"1()-3, 7
The evolution of then + 1 remaining distinct oscillators is
subsequently described by thedimensional firing map.
The firing map (4) has remarkable properties. It is the @ —h(gs) =0 )
compositionH = AoL of a linear map, characterized by the W (@s)| =1 ‘

where (9, @s) is the unique solution of



It follows from (1) and (2) that
-1
=T (d—P) =TF
dx
From the expression of the scalar firing map (3), one obtains
the derivative

: 5 f'(1-9) F[f(1-9)]
—F(z)=S + 22 : H hl = — = — . 13
SRR | )~ Fa-e e Y
==r(x) = Sexp(x P ) ! . .
o o5 & 05 = 1 Equations (8) and (12) lead to the equality

& flgs— 1+ f1(—x)] = f(1— @) +¢&. According to the
property (11), one obtains f(1—¢@s) = f(1—@s) + € and

Fig. 1. Three models (quadratic, piecewise linear, and mapial) / o .
satisfying Assumption 1. The behavior of the correspondingg map it follows that |n'(¢5)| = 1. SincedF/dx> 0 for x>0, (13)

differs whenx+xX> 0 or x+X < 0. implies that|h'(¢)| < 1 for ¢ < ¢s. u
The property (7) is of paramount importance since the
conditiond > 0 determines the global stability of the scalar

. firing map. The following proposition summarizes the result

Proposition 3: If the scalar firing map (3) satisfies (7) and
(9) with 6 > 0 (resp.d < 0), then its fixed point is globally
attracting (resp. repelling).

Proof: We proceed in two steps.

Step 1:We show that the firing map(-) has no nontrivial

2-periodic orbits, that is

x S h(g) =h*(¢) (14)
5
o admits no other solution but the fixed poigt = h(¢*). In

L . » .
Fig. 2. The scalar firing map has an important property: thp hig-+ ) the plane(e, ¢ )_’ a rotation of—71/4 of the axes results in
has a reflection symmetry with respect to the bisectrix. a change of variables

- 2
(@.0") — (0.0") = - (0—¢",0+0").
The valued has the same sign as+ X and is a continuous

function of x-+, for a givenF(-). Moreover It turns the bisectrix into thep™-axis — that is,p =0 —

and the scalar firing map(¢) becomes the maf)(qb). The

IN(@) <1 Vo< gs. (9) assumption (7) expresses as
o | Wﬁ+@—ﬂﬁ—@ v
Proof: Since F is even, it follows from (2) that N V2
P(—x) = —P(x) + P(—x). Consequently, one has and (9) is rewritten as
fL(—x) = —f1(x) + fL(—x 10 B )
(=X) )+ 77 (=x) (10) H(@)>0 o<
and . These two properties imply that the equathip) = h(— @),
(@) = —fl-p+ 7 (=x)]. (1) \which is equivalent to (14), has no other solution But 0

(which corresponds to the fixed poipt). Hence, the return
mapR(-) £ h[h(-)] has a unique fixed point.

h™l(@) =1—f[f(¢p)—g], Step 2: We consider the cas& > 0 without loss of
generality, since the proof fod < 0 follows on similar

Properties (10) and (11) lead to

[
-1 -1

=1 ffl( X+ ffl[ fo) +£Ji lines. The fixed pointg* = h(¢*) cannot be larger than

=1- 17 (=X + 7 [f(—o+ (%) +¢g], @5 = h(gs) + & becaused > 0 andh < 0. Then, ¢* < @5
=1—fY—x) +hle+1-f1{—x). implies that|h'(¢*)| < 1, according to (9). It follows that the

_ derivative of the return map satisfi&d(¢*) = [ (¢)]? < 1.

Setting Moreover, it holds thaR (@) = W [h(¢)]W (@) > 0. Since, in

d=1—f"Y(—x)=1-P(—x)/T, (12)  addition, the return map has only one fixed pdp*) = ¢*,

. I . it can be written that
one obtains (7) and the continuity éfwith respect tax and ) ) §
{fp <R@) <@ if o>,

x follows from the continuity of P. In addition, the value
d is positive ifP(—x) < T = P(X), or equivalently ifx+X > 0. o<R(p) <@ if p< o



This leads to The contraction property and the dichotomy shown
. . . . above forn =1 persist in higher dimensions, under an
IR(p) —R(¢")| =IR(p) —¢*| < lo—@"| Yo#¢ additional assumption oh”. This result is summarized in

and the fixed point oRR is globally attracting. For every the following theorem [8].

e > 0, there exist integersh andN, such that, for allp,
Theorem 1:Provided thah”(¢) > 0 for all g or h”(¢) <0

IRN(@) — | = [N (@) —¢| < e for N > Ny, for all @, the n-dimensional firing map (4) is contracting
IRN(h()) — @| = [PPN*1(@) — @*| < e for N> Np. (resp. expanding) with respect to the 1-norm
It follows that, for everye > 0, there exists an integer 1P| =@+ |o— @+ -+ |th-1— @] +|@|  (15)

N3 = max(2N1, 2N, + 1) such that, for allp, it |(¢)] < 1 (resp.|H(@)] > 1) V@ & [0,1].

(@) — | <e for N> Na. One notes that the LIF mod&l(x) = S+ yx satisfies the

Then, one has ling_... [iN(®) — @*| = 0, which concludes the assumptions of Theorem 1. Indeed, it is equivalent to the
proof o [1(0) = ¢ b ! piecewise linear model, with,X] = [0, 1] (or [x,X] = [—1,0]),

The stability of the fixed point leads to an interesting"jlnd the scalar firing map has the property
dichotomy. The scalar firing map dictates the evolution of W'(g) = Ty FIf(1-9)] S
n+1=2 pulse-coupled oscillators. Stability of the fixed ()= FIf(1—9)+€]?
point thereby means that the two oscillators are asymptot- ,
ically phase-locked: they have a constant phase differenceTh,e proof of Theorem 1 makgs a parallel with the con-
@ —0= ¢ at each firing. Anti-stability of the fixed point traction property_ of the sca_lar f|r|_ng map. More pre_useﬂy, i
corresponds to asymptotic synchronization: the phasereiff S1OWS that the linear malp is an isometry for the distance

ence grows at each firing, leading to an eventual absorptidfduced by the above norm while the contraction property
after which the two oscillators remain synchronized. of the firing map is determined ,by the .nonllnearﬁy_-)_. It
can be noted that the assumption ldhis only sufficient

IV. GLOBAL ANALYSIS OF N-DIMENSIONAL (and not necessary) to prove the contraction property with
FIRING MAPS respect to the norm (15). In addition, we suspect that every

The scalar firing map is characterized by an importarﬁrm_g map characteriz_ed by ,< 1 (or|n|>1) k?Ut without
dichotomy and it results that the oscillators, after a tiemts verifying the assumptions oh” has a contraction property

period, are either phased-locked or synchronized. In thYg'th respect to a well-chosen ”O”'.‘- .
section, we discuss the generalization of this dichotomy to 1h€ fact that the global contraction property of the firing

arbitrary dimensions. If the dichotomy persists with the Map is established by means of a 1-norm rather than a 2-

dimensional firing map, the behavior of+ 1 oscillators norm points t_o_ a potential limitation in ;tudymg (4) as an

is simply characterized. Global stability of the fixed pointapso!Ute,Stab'“ty prob_lgm [91, [10]. For |_ns.tance, thectar

corresponds to the asymptotic phase-locked clustering b@iterion imposes additional slopes restrictionstgn.

ha\{ior of.t_he oscillatolrs, whic_h fire periodically, whileapal 'B. A counterexample for a 2

anti-stability of the fixed point corresponds to asymptotic ) )

synchronization of all oscillators. The value @5 in (9) separates the intervd0, gs] over
When considering the decompositiod = Ao L of which the scalar firing map is contractive from the interval

[@s,1] over which it is expanding. Numerical simulations

the n-dimensional firing map, the linear mdp (6) acts _ A i
ith many models satisfying Assumption 1 suggest that

as a mixing map while the repeated static nonIinearitY’ ) > - OVYYE
A(2) = [h(Z1) - --h(Zn)] provides the firing map with stability he d|cf_10t0my establ{shed for=1 dogs persist in higher
properties. The properties of the scalar firing map are therdimensions: the oscillators asymptotically converge to a
fore intimately linked to the stability of the-dimensional Phase-locked conflgulra'uon féws > ¢*, 5 > 0) (contraction
firing map. In the sequel, we show that conditions (7) ang®" @verage” or{0,h™=(0)]) z_;md“asymptotlca’lllly syn(ihromze
(9) are in general not sufficient to ensure the stability @f th!oF (% < ¢*,5 < 0) (expansion “on average” df,h™~(0)]).

n-dimensional firing map, although they still imply stahjlit 'S iS not true, however, without extra assumption on the
under some additional simple assumptions. firing map. This will be illustrated by an explicit constrigst

in the casen = 2. We will construct an example where
A. Global analysis of firing maps with a contraction property(@s = ¢*, 0 2 0) and where the fixed point is unstable.

For dynamics verifying Assumption 1 and defined on Forn=2, the 2x2 Jacobian matrix of (4) evaluated at
X,X C [0,1] (resp.C [~1,0]), it follows from (13) that the the fixed pointis given by(®") = —DL, where
scalar firing map satisfies the propeity(@)| < 1 (resp. i TN
W ()] > 1) Ve € [0,1]. The scalar firing map is therefore D = diag{[n(¢5)! (@2 — ¢1)}
contracting (resp. expanding) d0,1], which implies that and with the isometric matrix corresponding to (6). One
the fixed point (of the scalar firing map) is globally stablefirst considers the conservative situation X = 0 character-
(resp. anti-stable). ized by a scalar firing map satisfying (7) withd =0, i.e.



h(p) = h~(¢). The fixed point verifie:ﬁg —(ﬁf = h(@‘) and For o = 0, populations of oscillators characterized by the

the product of the entries d is piecewise linear moddt (x) = S+ y|x| do not exhibit phase-
P P locked clustering configurations, but more complex (even
since () = [h (@) = [(h ()]t = [V(h(p))] 2. The above counterexample clearly shows that additional

Consider now a system with the sarffeand x but with conditions onh(-) must be added to ensure that the di-
a slightly largerx, so thatx-+X > 0 andd > 0. One focuses chotomy persists with tha-dimensional firing maps.
on the effect on the product, which writes V. A LOCAL STABILITY RESULT
I (@) IN (@5 — )| = Ff(g)—¢] F[f(g)—¢€] A local analysis has highlighted that the dichotomy does
' Flf(e)] Flf(@)] ’ not hold for some models satisfying Assumption 1. In this
. . . - section, we consider the local stability of the fixed point
since the fixed point satisfies ; . - : .
of the n-dimensional firing maps in order to determine the
flof)—e=f(1-@), conditions for the dichotomy to persist. It has been seen tha
f(@)—e=Ff(1+¢ —@). (18)  the fixed point stability, for valued close to 0, depends on
) . ) the derivative (20). In particular, the fixed point (of the 2-
Given (1) and (2), the equalities (18) are equivalentto  gimensjonal firing map) is stable for all> 0 (resp. unstable
PIf(@)—&] =T —P[f()], for all & < 0) if (20) is strictly negative for alk € [—1,1].
PIf (@) — £] — PLF(@)] =T — P[f(@})]. (19)  In this case, it follows that the second derivativé @) is in
turn negative, according to (13). The additional condition
If X increases, theil increases. Using the fact thBfx) is

/!
increasing with respect to, one can deduce from (19) that (@) <0 vo (22)
both valuesf(¢;) and f(¢@;) increase. Depending on the appears to be a sufficient condition to ensure the dichotomy

(17)

derivative of the behaviors. When (22) is satisfied, local stability of
E {F(x—e)} (20) the n-dimensional firing map can actually be established,
dx | F(x) which is the statement of Theorem 2. As a preliminary to

this important result, we need the following proposition,

and on the valuesf(¢/) and f(¢g;) of the case
values f(¢;) (@) whose proof is performed in Section VI.

(X+X=0, 5 =0), it is possible that a slight increase of

increases the product (17) such that .
Proposition 4: Let

/0 % /o x S s N ok N
(@)W (2 — )| > W (@) ][N (@2 — 1) =1 P(2) = anbnZ" + an_1bn 12"+ - -+ agho.

when d 2 0. In this case, at least one eigenvalue verifieﬁ the following conditions hold

|Ai| > 1 and the fixed point is locally unstable, in spite of N > > a0 0

the positive valued characterizing the scalar firing map. As * E“ 3”61 vk % ’

an example of this situation, we propose the following model : T?;(; ;ecl;lijen;:e(b b bw) is positive and convex
Example: Let the oscillators be characterized by the — . =" "o ¢, gl’l t’ and ”b b 1< b —be for

piecewise linear dynamicg = F(x) = S+ y|x|, S,y > 0. K kT Pkl = Pl Rk

. ; o o R k=1,...,n—1
Assumption 1 is satisfied and Proposition 2 implies that th o ' . . - B
scalar firing map has the properties (7) and (9). The deviwati Eez f” roots of? are strictly in the unit-diskP(z) = 0=

(20) satisfies the inequality
: The local stability ofn-dimensional firing maps satisfying
d [F(x— <0 if 0
ax [ g(x)g)] {_ It xel0.el, (22) is established with the help of Proposition 4.

>0 elsewhere

Theorem 2:If the scalar firing map (3) satisfies (7) and
(9) with 6 > 0 (resp.d < 0) and if () < 0 Vg, then the
Sfixed point of then-dimensional firing map (4) is locally

stable (resp. unstable).
Proof: We consider the casé > 0 without loss of
flo)—e=f(1—@)=—f(g). (21) generality, since the proof fa¥ < O follows on similar lines.

Th Jacobi trix of (4 luated at the fixed point
On the other hand, the second equation in (19) in’rS gicexnnbyii%*lfiTaDEX\?vh(er)eevauae atthe fixed poin

We then show that, in the situatiod = 0, neitherf((ﬁl*)
nor f(g) can lie in[0,€]. It follows from (12) thaté =0
implies f~1(—x) = 1. The property (11) thereby become
f(¢) = —f(1— @) and equation (18) leads to

plies that f(g}) — & > f(@f). Therefore, if f(¢}) € [0,€],

then f(g) > f(¢}) + & > &, which contradicts (21). And if D = diag{|W (¢)[IW (@ — @) W (@ — @1}
f(@;) €[0,¢], thenf(@) < () — £ <0, which again con-
tradicts (21). Hencell' (¢;)|.|In (@ — ¢)| > 1 whend > 0 .
and the fixed point is unstable. Numerical simulations re- P(z) = Z)Zk I_ij’ (23)
inforce these observations about the absence of dichotomy. Ko =

The corresponding characteristic polynomial is



with po = [W(&)l, pn =1, and pj = W' (g — ¢)| for One easily verifies that the exponential model
i=1,...,n—-1. x=F(x)=Sexpx?) has a scalar firing map which
First, one compares the fixed poid* of the firing satisfies the assumptions of Theorem 2. The dichotomy is
map with the fixed poin®* of a conservative firing map thus proved (locally) for this model, that is, the behavior
constructed with the scalar mdf@+ 6). The coordinates of the oscillators is dichotomic, at least for configuration

@ and qu* respectively solve the sets of equations close to the fixed point.
y y For a certain range of parameters, Theorem 2 also
(p& - h((p’l) y applies to the QIF modeF (x) = S+ x2, which is similar
% = hig—a) (24) to the exponential model (see Fig. 1). However, the
: scalar firing map does not satisfy the propenty{¢p) > 0
@ = hg-@ . Ve in full generality, so that the coefficients in the
and characteristic polynomial (23) cannot be decomposed as
o = h(@+0) (26), with 0< aj < 1. It follows that Theorem 2 does
@ _ h(éﬁ—é’f-i-& not characterize the behavior of the QIF model in full

(25) generality. However, numerical simulations suggest great
: L evidence of the dichotomy in QIF model. It leads to the
g = higi—g _,+9) following conjecture.
Let B1(¢) = ¢ and Bi(¢) = ¢ — h[Bi_1(®)] for i=2,...,n. _ )
The special structure of (24) and (25) implies that Conjecture 1:For the QIF modeF (x) = S+x2, the fixed
@& = h[Bn(@;)] and (fﬁ _ h[Bn(q?f{ +5)]. Next, suppose that point is locally stable (resp. unstable)af> 0 (resp.d < 0)

@ > @ +0. Sincel' <0 andB/ > 0 (see Appendix), it in (7). In other words, ik+X> 0 (resp.x+X < 0), then all
follows that the roots of the polynomial (23), with

@ = hBn(@)] < hBa(@ + )] = &, LA Y

IO

which contradicts the previous assumption. Then, one 1+1
has @ < (fﬁ + 0 and the recursive comparison ofand p, = 1, are inside (resp. outside) the unit-disk:
(24) and (25), starting from the first line, leads toP(z) =0= |7 <1 (resp.|Z > 1).
o >¢ and ¢ — @ <@g —¢+0 for j:l,...A,n—l.
Given the assumptioh” < 0, one hasY(¢;) > W (¢; +90) The length of interval = {¢ € [0,1]|h"(¢p) > 0} seems
and W (g — @) >N (@ —¢ +3). This can be rewrit- to be an appropriate criterion to determine whether the
ten as pj<pj for j=0,---,n—1, where we denote dichotomy holds. An intervall = @ corresponds to the
Po = [N (¢ +J)| and pj = | (@ — ¢ + 6)|. Each valuep;  exponential model and Theorem 2 implies the dichotomy.
can therefore be expressed as the decomposition Conversely, for the dynamicB(x) = S+ y|x|, the interval
| is quite large and the dichotomy does not hold. The QIF
model, characterized by a short intervatorresponds to an
with 0 < aj < 1. intermediate situation between the two previous models.

According to (7), one hal/(¢+3) = 1/W[h~1(g)]. Sim-
ilarly to (16), some elementary computations in (25) then

pJ:aJpjv j:07"'7n_11 (26)

VI. PROOF OF PROPOSITION 4

lead to the equalities The proof of Proposition 4 relies on a geometric property.
PR ; Suppose that starting from an initial poigt in the plane,
pjpnflfj:]-a J:Oa"'an_l' (27) PP : g pﬂi P P
one moves by a distanag calls the arrival points, then
In addition, it follows from the assumptidn’ < 0 that rotates by an anglé, moves by a distance in the new
N . direction, callss, the arrival point, and keeps repeating these
0<Pi<Pi-1 J=1--n-1L (28) operations. It is well known that all poing lie in that case
Settinga, = b, =1 and on a same circle and are thus all at equal distance from
ne1 ne1 the centerg of that circle. The next Lemma states that if
a = I‘Laj, b = I‘Lm k=0,---,n—1, the distance traveled at each iteration varies, then peovid
= = that the sequence of distances is convex and increasing, the

the inequality 0< aj < 1 leads toa, > ay_1 > -+~ > ap > 0 sequence of distances betwegrand_g is npndec_reasing. Its
and (27) implies by, x = by. Finally, it follows from proof, omitted for space reasons, is available in [11].

(Px —1)?> > 0 andpy_1 > px (28) thatpyPx_1 +1— 2px > 0. Lemma 1:Let (cp,Ci,...,Cm) be a nonnegative non-
Since px = bx/bky1, one has the convexity condition decreasing convex sequence, and fixe (0,2m). Let
b — bk 1 <byxy1—by for k=1,--- ,n—1. The polynomial s ;= —cp/2, ands, = s_1+ c€*? for all otherk. Let then
(23) satisfies the assumptions of Proposition 4. This insplieg = iW' There holds

that the fixed point is locally stable, which concludes the

proof. n ss1—gl=0—9g/<|s1i—9g[ < <[sn—0l



To prove Proposition 4, we also need the notion oholds for everyk, and yAx = an = 1. We can then rewrite
strict convex hull. Thestrict convex hullof a set of points equation (31) as
S1,.--,% € RY is the set{TiAis : Ai > 0,5;A = 1}. The 0 = A (bne“ie)
following Lemma, proved in [11], is a consequence of the i0 (n-1)i0
convexity of the distance. An-1 (bne” +bn-se )
Lemma 2:Let sq,...,5, € RY be a set of points that are
not all equal and: a point in the same space. If there exists ' . o
g€ RY such that|z— g||, > ||sc— 9|, for everyk=1,...,n, + Ao (bne”'9+bn,1e<” l>'9—|—-~~+b0),
thenz does not belong to the strict convex hull®f....s.  or equivalently as 6 SP_oASe for the s, defined in (29).

We can now prove Proposition 4. This contradicts however the fact that O does not belong to
Proof: Fix a polynomial P. Clearly, P(rel®) # 0 if the strict convex hull of the. ThereforeP(re'”) #0ifr > 1
0 = 0. Fix then a8 € (0,27), and let and 6 € (0,2m), which achieves our proof. [ |
i0 VIl. CONCLUSIONS
$h = bpe" ; .

S.1 = b 4+ b, &1 In the present paper, we studied the behavior of pulse-
T bne“‘e " bnf en-Di6 | p o(n-2)i6 coupled integrate-and-fire oscillators. The evolution loé t
-2 = Dn n-1 n-2 (29)  oscillators is described by the so-called firing map, which

: has a very special structure. In particular, the stabilitthe
% = ... n-dimensional firing map is determined by the properties of

) i the corresponding scalar firing map.
We first prove that O does not belong to the strict convex g 1o oscillators, the unique fixed point of the scalar

hull of these points. Suppose thais even, and thus that  firjng map is either globally stable or anti-stable. It resul
in a dichotomic behavior of the oscillators, which are aithe

bn,bn—1,...bo) = (Cm,Cm-1,-.-,C Ci,...C
(bn, bn-1, . -Bo) = (Cm Cm-1.€1,C0, C1 - Cm), asymptotically phase-locked or perfectly synchronized.

with m = n/2, and where the sequeneg,cy,...,Cn IS The study is extended to thredimensional firing map. In
nonnegative, nondecreasing, and convex. Let some particular cases — such as the leaky integrate-and-fire
_ . . _ (LIF) oscillators — the firing map has a contraction property
0 = Cm€™0 + Gy 162 VIO gy eMHLI %em'e. and the dichotomic behavior shown for= 1 still persists in

_ higher dimensions. On the other hand, a counterexample is
For everyk, let thengx = e ™9 (s—¢'), with the con- considered, which shows that the dichotomy is not a general
vention thats,,;1 = 0. The inclusion relations are invariant property whem > 1. In spite of strong numerical evidence,
under rotations and translations, so 0 is in the strict conveestablishing the dichotomy of the quadratic integrate-fined
hull of s9,s1,...,5 only if gq 1 is in the strict convex (QIF) model remains an open question.
hull of qo,qs,...,qn. Observe thatyn 1 = —Cp/2, and that VIIl. ACKNOWLEDGMENTS
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the same imaginary part and opposite real parts. There

holds therefore|gmik — 9| = |Gm+1-k— 0| Since g has no APPENDIX
real part. Together with the inequality (30), this impliesProof of Proposition 1

that |gn1— 9| > [ak—g| for everyk. It follows then from  \ve proceed in three steps.
Lemma 2 thatg,; is not in the strict convex hull of the  gron 1 et By(@) = @ and Bi(@) — @ — h(B 1(9)]

Ok, and thus that 0 is not in the strict convex hull of thefor ) n+1. We proof the following property
s since the inclusion relations are invariant under rotation-, i _ 1 ""r;+1 t.here exists a value @ ¢f such that.

and translations. If is odd, a similar argument based on {(¢f) =0 and such thaB/(g) > 0 and 0< Bi(¢g) < 1

variation of Lemma 1 can be made, as described in [11]. vl(p € [¢°,1). This is trivial for B1(¢) = ¢, with ¢} = 0. Con-

Suppose now, to obtain a contradiction, ti4te'®) =0  sidering the property to be true fBr_; withi € {2...,n+1},
for somer > 1. Dividing P(re'®) = 0 by r", we obtain: we proceed by induction. One first obtains

anbn€® +an 1r b 1€ VO 4 rarhy=0. (31)  Bi(®) =1-h[Bi_1()B_1(¢) >0 Vec[g® 1] (32)

since h(-), evaluated onBj_1(¢) € [0,1], is strictly de-
creasing. Then, noting thag® ; < 1 and thath(0) > 1 by
construction, we have

Without loss of generality, assume thegt= 1. Observe that
sincer > 1 and 1=a, > an,_1 > ...a > 0, there holds
l=ap>an1r 1>--->ayr " Let A\g = agr ", and for

k=1,...,n, A= ar " —a_1r*1-". Clearly, A, € (0,1) Bi(@° 1) =¢"1—hBi_1(¢° 1) =¢°1—h(0) <0. (33)



Moreover, one easily computes that

Bi(1)=1—f !x+(i—1)¢ >0 (34)

sincei <n+1< (X—x)/e+1. As a consequence of (32),
(33), (34), and the continuity oB;, there exists a unique
¢, with ¢ ; < ¢ < 1, such thatB(¢°) = 0. Noting that
Bi(1) < 1, it follows that 0< Bj(¢) < 1 Vg € [¢°,1).

Step 2:A fixed point of the firing map (4) verifies

@ = hBi(a)],

One deduces that the condition (5) implies@; — ¢@* < 1,
or equivalently

(1]

i=1,...,n (35) [2

(3]

0<Bi(g) <1 i=1,...,n (36) 4
Moreover, it also holds [5]
Bni1(¢h) =0. 37) [

According to the above properties Bf, the valueg; = ¢f, ; [

exists and is the unique solution of (37) which verifies adl th
conditions (36). The valueg® are then explicitly determined
by (35).

Step 3:0ne verifies that the fixed point does not violate [9]
the ordering conditions (5). First, we have

@ = h[Bu(a)] = h(ex) > 0.

Furthermore, knowing that

h(B>(¢h)] = h{e@ — h[Ba(a)]} > h(eh) = h[B1(e)];

(8]

[10]

[11]

the
h[Bi(¢;)] < h[Bi+1(@})] fori=1,...,n, then

other relations follow induction.

by

h(Bit2(eh)] = h{@ —hBiya(en)]}
>h{g —h[Bi(¢)]} = h(Biia(eh)]-

At last, one hasg; < 1. This concludes the proof.
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