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Abstract

This paper formulates and solves a sequential detection problem that involves the mutual information

(stochastic observability) of a Gaussian process observed in noise with missing measurements. The

main result is that the optimal decision is characterized by a monotone policy on the partially ordered

set of positive definite covariance matrices. This monotone structure implies that numerically efficient

algorithms can be designed to estimate and implement monotone parametrized decision policies. The

sequential detection problem is motivated by applications in radar scheduling where the aim is to

maintain the mutual information of all targets within a specified bound. We illustrate the problem

formulation and performance of monotone parametrized policies via numerical examples in fly-by and

persistent-surveillance applications involving a GMTI (Ground Moving Target Indicator) radar.
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I. INTRODUCTION

Consider the following sequential detection problem. L targets (Gaussian processes) are allo-

cated priorities ν1, ν2, . . . , νL. A sensor obtains measurements of these L evolving targets with

signal to noise ratio (SNR) for target l proportional to priority νl. A decision maker has two

choices at each time k: If the decision maker chooses action uk = 2 (continue) then the sensor

takes another measurement and accrues a measurement cost cν . If the decision maker chooses

action uk = 1 (stop), then a stopping cost proportional to the mutual information (stochastic

observability) of the targets is accrued and the problem terminates. What is the optimal time

for the decision maker to apply the stop action? Our main result is that the optimal decision

policy is a monotone function of the target covariances (with respect to the positive definite partial

ordering). This facilitates devising numerically efficient algorithms to compute the optimal policy.

The sequential detection problem addressed in this paper is non-trivial since the decision to

continue or stop is based on Bayesian estimates of the targets’ states. In addition to Gaussian noise

in the measurement process, the sensor has a non-zero probability of missing observations. Hence,

the sequential detection problem is a partially observed stochastic control problem. Targets with

high priority are observed with higher SNR and the uncertainty (covariance) of their estimates

decreases. Lower priority targets are observed with lower SNR and their relative uncertainty

increases. The aim is to devise a sequential detection policy that maintains the stochastic

observability (mutual information or conditional entropy) of all targets within a specified bound.

Why stochastic observability? As mentioned above, the stopping cost in our sequential detec-

tion problem is a function of the mutual information (stochastic observability) of the targets. The

use of mutual information as a measure of stochastic observability was originally investigated in

[1]. In [2], determining optimal observer trajectories to maximize the stochastic observability of

a single target is formulated as a stochastic dynamic programming problem – but no structural

results or characterization of the optimal policy is given; see also [3]. We also refer to [4] where

a nice formulation of sequential waveform design for MIMO radar is given using a Kullback-

Leibler divergence based approach. As described in Section III-C, another favorable property

of stochastic observability is that its monotonicity with respect to covariances does not require

stability of the state matrix of the target (eigenvalues strictly inside the unit circle). In target

models, the state matrix for the dynamics of the target has eigenvalues at 1 and thus is not stable.

Organization and Main Results:

(i) To motivate the sequential detection problem, Section II presents a GMTI (Ground moving
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target indicator) radar with macro/micro-manager architecture and a linear Gaussian state space

model for the dynamics of each target. A Kalman filter is used to track each target over the

time scale at which the micro-manager operates. Due to the presence of missed detections,

the covariance update via the Riccati equation is measurement dependent (unlike the standard

Kalman filter where the covariance is functionally independent of the measurements).

(ii) In Section III, the sequential detection problem is formulated. The cost of stopping is the

stochastic observability which is based on the mutual information of the targets. The optimal

decision policy satisfies Bellman’s dynamic programming equation. However, it is not possible

to compute the optimal policy in closed form.1 Despite this, our main result (Theorem 1) shows

that the optimal policy is a monotone function of the target covariances. This result is useful

for two reasons: (a) Algorithms can be designed to construct policies that satisfy this monotone

structure. (b) The monotone structural result holds without stability assumptions on the linear

dynamics. So there is an inherent robustness of this result since it holds even if the underlying

model parameters are not exactly specified.

(iii) Section IV exploits the monotone structure of the optimal decision policy to construct finite

dimensional parametrized policies. Then a simulation-based stochastic approximation (adaptive

filtering) algorithm (Algorithm 1) is given to compute these optimal parametrized policies. The

practical implication is that, instead of solving an intractable dynamic programming problem,

we exploit the monotone structure of the optimal policy to compute such parametrized policies

in polynomial time.

(iv) Section V presents a detailed application of the sequential detection problem in GMTI radar

resource management. By bounding the magnitude of the nonlinearity in the GMTI measurement

model, we show that for typical operating values, the system can be approximated by a linear

time invariant state space model. Then detailed numerical examples are given that use the above

monotone policy and stochastic approximation algorithm to demonstrate the performance of the

radar management algorithms. We present numerical results for two important GMTI surveillance

problems, namely, the target fly-by problem and the persistent surveillance problem. In both

cases, detailed numerical examples are given and the performance is compared with periodic

1For stochastic control problems with continuum state spaces such as considered in this paper, apart from special cases such

as linear quadratic control and partially observed Markov decision processes, there are no finite dimensional characterizations

of the optimal policy [5]. Bellman’s equation does not translate into practical solution methodologies since the state space is a

continuum. Quantizing the space of covariance matrices to a finite state space and then formulating the problem as a finite-state

Markov decision process is infeasible since such quantization typically would require an intractably large state space.
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stopping policies. Persistent surveillance has received much attention in the defense literature

[6], [7], since it can provide critical, long-term surveillance information. By tracking targets for

long periods of time using aerial based radars, such as DRDC-Ottawa’s XWEAR radar [6] or the

U.S. Air Force’s Gorgon Stare Wide Area Airborne Surveillance System, operators can “rewind

the tapes” in order to determine the origin of any target of interest [7].

(v) The appendix presents the proof of Theorem 1. It uses lattice programming and supermodu-

larity. A crucial step in the proof is that the conditional entropy described by the Riccati equation

update is monotone. This involves use of Theorem 2 which derives monotone properties of the

Riccati and Lyapunov equations. The idea of using lattice programming and supermodularity

to prove the existence of monotone policies is well known in stochastic control, see [8] for a

textbook treatment of the countable state Markov decision process case. However, in our case

since the state space comprises covariance matrices that are only partially ordered, the optimal

policy is monotone with respect to this partial order. The structural results of this paper allow

us to determine the nature of the optimal policy without brute force numerical computation.

Motivation – GMTI Radar Resource Management: This paper is motivated by GMTI radar

resource management problems [9], [10], [11]. The radar macro-manager deals with priority

allocation of targets, determining regions to scan, and target revisit times. The radar micro-

manager controls the target tracking algorithm and determines how long to maintain a priority

allocation set by the macro-manager. In the context of GMTI radar micro-management, the

sequential detection problem outlined above reads: Suppose the radar macro-manager specifies

a particular target priority allocation. How long should the micro-manager track targets using

the current priority allocation before returning control to the macro-manager? Our main result,

that the optimal decision policy is a monotone function of the targets’ covariances, facilitates

devising numerically efficient algorithms for the optimal radar micro-management policy.

II. RADAR MANAGER ARCHITECTURE AND TARGET DYNAMICS

This section motivates the sequential detection problem by outlining the macro/micro-manager

architecture of the GMTI radar and target dynamics. (The linear dynamics of the target model

are justified in Section V-A where a detailed description is given of the GMTI kinematic model).

A. Macro- and Micro-manager Architecture

(The reader who is uninterested in the radar application can skip this subsection.) Consider a

GMTI radar with an agile beam tracking L ground moving targets indexed by l ∈ {1, . . . , L}.
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In this section we describe a two-time-scale radar management scheme comprised of a micro-

manager and a macro-manager.

a) Macro-manager: At the beginning of each scheduling interval n, the radar macro-

manager allocates the target priority vector νn = (ν1
n, . . . , ν

L
n ). Here the priority of target l

is νln ∈ [0, 1] and
∑L

l=1 ν
l
n = 1. The priority weight νln determines what resources the radar

devotes to target l. This affects the track variances as described below. The choice νn is typically

rule-based, depending on several extrinsic factors. For example, in GMTI radar systems, the

macro-manager picks the target priority vector νn+1 based on the track variances (uncertainty)

and threat levels of the L targets. The track variances of the L targets are determined by the

Bayesian tracker as discussed below.

b) Micro-manager: Once the target priority vector ν is chosen (we omit the subscript n

for convenience), the micro-manager is initiated. The clock on the fast time scale k (which is

called the decision epoch time scale in Section V-A) is reset to k = 0 and commences ticking.

At this decision epoch time scale, k = 0, 1, . . ., the L targets are tracked/estimated by a Bayesian

tracker. Target l with priority νl is allocated the fraction νl of the total number of observations

(by integrating νl∆ observations on the fast time scale, see Section V-A) so that the observation

noise variance is scaled by 1/(νl∆). The question we seek to answer is: How long should the

micro-manager track the L targets with priority vector ν before returning control to the macro-

manager to pick a new priority vector? We formulate this as a sequential decision problem.

Note that the priority allocation vector ν and track variances of the L targets capture the

interaction between the micro- and macro-managers.

B. Target Kinematic Model and Tracker

We now describe the target kinematic model at the epoch time scale k: Let slk =
[
xlk, ẋ

l
k, y

l
k, ẏ

l
k

]T
denote the Cartesian coordinates and velocities of the ground moving target l ∈ {1, . . . , L}.
Section V-A shows that on the micro-manager time scale, the GMTI target dynamics can be

approximated as the following linear time invariant Gaussian state space model

slk+1 = Fslk +Gwlk,

zlk =

Hslk + 1√
νl∆

vlk, with probability pld,

∅, with probability 1− pld.
(1)

The parameters F , G, H are defined in Section V. They can be target (l) dependent; to simplify

notation we have not done this. In (1), zlk denotes a 3-dimensional observation vector of target l
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at epoch time k. The noise processes wlk and vlk/
√
νl∆ are mutually independent, white, zero-

mean Gaussian random vectors with covariance matrices Ql and Rl(νl), respectively. (Q and

R are defined in Section V). Finally, pld denotes the probability of detection of target l, and ∅
represents a missed observation that contains no information about state s.2

Define the one-step-ahead predicted covariance matrix of target l at time k as

P l
k = E

{(
slk − E{slk|zl1:k−1}

)(
slk − E{slk|zl1:k−1}

)T}
.

Here the superscript T denotes transpose. Based on the priority vector ν and model (1), the co-

variance of the state estimate of target l ∈ {1, . . . , L} is computed via the following measurement

dependent Riccati equation

P l
k+1 = R(P l

k, zk)
def
=FP l

kF
T +Ql − I(zlk 6= ∅)FP l

kH
T
(
HP l

kH
T +Rl(νl)

)−1
HP l

kF
T . (2)

Here I(·) denotes the indicator function. In the special case when a target l is allocated zero

priority (ν(l) = 0), or when there is a missing observation (zlk = ∅), then (2) specializes to the

Kalman predictor updated via the Lyapunov equation

P l
k|k−1 = L(P l

k)
def
=FP l

k−1F
T +Ql. (3)

III. SEQUENTIAL DETECTION PROBLEM

This section presents our main structural result on the sequential detection problem. Section

III-A formulates the stopping cost in terms of the mutual information of the targets being

tracked. Section III-B formulates the sequential detection problem. The optimal decision policy

is expressed as the solution of a stochastic dynamic programming problem. The main result

(Theorem 1 in Section III-C) states that the optimal policy is a monotone function of the

target covariance. As a result, the optimal policy can be parametrized by monotone policies and

estimated in a computationally efficient manner via stochastic approximation (adaptive filtering)

algorithms. This is described in Section IV.

Notation: Given the priority vector ν allocated by the macro-manager, let a ∈ {1, . . . , L}
denote the highest priority target, i.e, a = arg maxl ν

l. Its covariance is denoted P a. We use

the notation P−a to denote the set of covariance matrices of the remaining L − 1 targets. The

sequential decision problem below is formulated in terms of (P a, P−a).

2With suitable notational abuse, we use ‘∅’ as a label to denote a missing observation. When a missing observation is

encountered, the track estimate is updated by the Kalman predictor with covariance update (3).
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A. Formulation of Mutual Information Stopping Cost

As mentioned in Section II-A, once the radar macro-manager determines the priority vector ν,

the micro-manager switches on and its clock k = 1, 2, . . . begins to tick. The radar micro-manager

then solves a sequential detection problem involving two actions: At each slot k, the micro-

manager chooses action uk ∈ {1 (stop) , 2 (continue) }. To formulate the sequential detection

problem, this subsection specifies the costs incurred with these actions.

Radar Operating cost: If the micro-manager chooses action uk = 2 (continue), it incurs the

radar operating cost denoted as cν . Here cν > 0 depends on the radar operating parameters,

Stopping cost – Stochastic Observability: If the micro-manager chooses action uk = 1 (stop),

a stopping cost is incurred. In this paper, we formulate a stopping cost in terms of the stochastic

observability of the targets, see also [1], [2]. Define the stochastic observability of each target

l ∈ {1, , . . . , L} as the mutual information

I(slk; z
l
1:k) = αlh(slk)− βlh(slk|zl1:k). (4)

In (4), αl and βl are non-negative constants chosen by the designer. Recall from information

theory [12], that h(slk) denotes the differential entropy of target l at time k. Also h(slk|zl1:k)

denotes the conditional differential entropy of target l at time k given the observation history

zl1:k. The mutual information I(slk; z
l
1:k) is the average reduction in uncertainty of the target’s

coordinates slk given measurements zl1:k. In the standard definition of mutual information αl =

βl = 1. However, we are also interested in the special case when αl = 0, in which case, we are

considering the conditional entropy for each target (see Case 4 below).

Consider the following stopping cost if the micro-manager chooses action uk = 1 at time k:

C̄(sk, z1:k) = −I(sak; z
a
1:k) + F({I(slk, z

l
1:k); l 6= a}). (5)

Recall a denotes the highest priority target. In (5), F(·) denotes a function chosen by the designer

to be monotone increasing in each of its L− 1 variables (examples are given below).

The following lemma follows from straightforward arguments in [12].

Lemma 1: Under the assumption of linear Gaussian dynamics (1) for each target l, the mutual

information of target l defined in (4) is

I(slk, z
l
1:k) = αl log |P̄ l

k| − βl log |P l
k|, (6)

where P̄ l
k = E{(slk − E{slk})(slk − E{slk})T}, P l

k = E{(slk − E{slk|z1:k})(slk − E{slk|z1:k})T}.
Here P̄ l

k denotes the predicted (a priori) covariance of target l at epoch k given no observations.
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It is computed using the Kalman predictor covariance update (3) for k iterations. Also, P l
k is

the posterior covariance and is computed via the Kalman filter covariance update (2). �

Using Lemma 1, the stopping cost C̄(·, ·) in (5) can be expressed in terms of the Kalman

filter and predictor covariances. Define the four-tuple of sets of covariance matrices

Pk = (P a
k , P̄

a
k , P

−a
k , P̄−ak ). (7)

Therefore the stopping cost (5) can be expressed as

C̄(Pk) = −αa log |P̄ a
k |+ βa log |P a

k |+ F
(
{αl log |P̄ l

k| − βl log |P l
k|; l 6= a

}
). (8)

Examples: We consider the following examples of F(·) in (8) :

Case 1. Maximum mutual information difference stopping cost: C̄(sk, z1;k) = −I(sak, z
a
1:k) +

maxl 6=a I(slk, z
l
1:k) in which case,

C̄(Pk) = −αa log |P̄ a
k |+ βa log |P a

k |+ max
l 6=a

[
αl log |P̄ l

k| − βl log |P l
k|
]
. (9)

The stopping cost is the difference in mutual information between the target with highest mutual

information and the target with highest priority. This can be viewed as a stopping cost that

discourages stopping too soon.

Case 2. Minimum mutual information difference stopping cost: C̄(sk, z1;k) = −I(sak, z
a
1:k) +

minl 6=a I(slk, z
l
1:k) in which case,

C̄(Pk) = −αa log |P̄ a
k |+ βa log |P a

k |+ min
l 6=a

[
αl log |P̄ l

k| − βl log |P l
k|
]
. (10)

The stopping cost is the difference in mutual information between the target with lowest mutual

information and the target with highest priority. This can be viewed as a conservative stopping

cost in the sense that preference is given to stop sooner.

Case 3. Average mutual information difference stopping cost: C̄(sk, z1;k) = −I(sak, z
a
1:k) +∑

l 6=a I(slk, z
l
1:k) in which case,

C̄(Pk) = −αa log |P̄ a
k |+ βa log |P a

k |+
∑
l 6=a

[
αl log |P̄ l

k| − βl log |P l
k|
]
. (11)

This stopping cost is the difference between the average mutual information of the L− 1 targets

(if αl and βl include a 1/(L− 1) term) and the highest priority target.

Case 4. Conditional differential entropy difference stopping cost: We are also interested in the

following special case which involves scheduling between a Kalman filter and L−1 measurement-

free Kalman predictors, see [13]. Suppose the high priority target a is allocated a Kalman

May 20, 2011 DRAFT



9

filter and the remaining L − 1 targets are allocated measurement-free Kalman predictors. This

corresponds to the case where νa = 1 and νl = 0 for l 6= a in (1), that is, the radar assigns

all its resources to target a and no resources to any other target. Then solving the sequential

detection problem is equivalent to posing the following question: What is the optimal stopping

time τ when the radar should decide to start tracking another target? In this case, the mutual

information of each target l 6= a is zero (since P̄ l
k = P l

k in (6)). So it is appropriate to choose

αl = 0 for l 6= a in (8). Note from (4), that when αl = 0, the stopping cost of each individual

target becomes the negative of its conditional entropy. That is, the stopping cost is the difference

in the conditional differential entropy instead of the mutual information.

B. Formulation of Sequential Decision Problem

With the above stopping and continuing costs, we are now ready to formulate the sequential

detection problem that we wish to solve. Let µ denote a stationary decision policy of the form

µ : Pk → uk+1 ∈ {1 (stop) , 2 (continue) }. (12)

Recall from (7) that Pk is a 4-tuple of sets of covariance matrices. Let µ denote the family of

such stationary policies. For any prior 4-tuple P0 (recall notation (7)) and policy µ ∈ µ chosen

by the micro-manager, define the stopping time τ = inf{k : uk = 1}. The following cost is

associated with the sequential decision procedure:

Jµ(P ) = Eµ{(τ − 1)cν + C̄(Pτ )|P0 = P}. (13)

Here cν is the radar operating cost and C̄ the stopping cost introduced in Section III-A. Also,

Eµ denotes expectation with respect to stopping time τ and initial condition P . (A measure-

theoretic definition of Eµ, which involves an absorbing state to deal with stopping time τ , is

given in [14]).

The goal is to determine the optimal stopping time τ with minimal cost, that is, compute the

optimal policy µ∗ ∈ µ to minimize (13). Denote the optimal cost as

Jµ∗(P ) = inf
µ∈µ

Jµ(P ). (14)

The existence of an optimal stationary policy µ∗ follows from [5, Prop.1.3, Chapter 3]. Since cν
is non-negative, for the conditional entropy cost function of Case 4 in Section III-A, stopping

is guaranteed in finite time, i.e., τ is finite with probability 1. For Cases (1) to (3), in general

τ is not necessarily finite – however, this does not cause problems from a practical point of
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view since the micro-manager has typically a pre-specified upper time bound at which it always

chooses uk = 1 and reverts back to the macro-manager. Alternatively, for Cases (1) to (3), if

one truncates C̄(P ) to some upper bound, then again stopping is guaranteed in finite time.

Considering the above cost (13), the optimal stationary policy µ∗ ∈ µ and associated value

function V̄ (P ) = Jµ∗(P ) are the solution of the following “Bellman’s dynamic programming

equation” [8] (Recall our notation P = (P a, P̄ a, P−a, P̄−a).)

V̄ (P ) = min
{
C̄(P ), cν + Ez

[
V
(
R(P a, za),L(P̄ a),R(P−a, z−a),L(P̄−a)

)]}
,

µ∗(P ) = arg min
{
C̄(P ), cν + Ez

[
V
(
R(P a, za),L(P̄ a),R(P−a, z−a),L(P̄−a)

)]}
, (15)

where R and L were defined in (2) and (3). Here R(P−a, z−a) denotes the Kalman filter

covariance update for the L−1 lower priority targets according to (2). Our goal is to characterize

the optimal policy µ∗ and optimal stopping set defined as

Sstop = {(P a, P̄ a, P−a, P̄−a) : µ∗(P a, P̄ a, P−a, P̄−a) = 1}. (16)

In the special Case 4 of Section III-A, when αl = 0, then Sstop = {(P a, P−a) : µ∗(P a, P−a) = 1}.
The dynamic programming equation (15) does not translate into practical solution method-

ologies since the space of P , 4-tuples of sets of positive definite matrices, is uncountable, and

it is not possible to compute the optimal decision policy in closed form.

C. Main Result: Monotone Optimal Decision Policy

Our main result below shows that the optimal decision policy µ∗ is a monotone function of

the covariance matrices of the targets. To characterize µ∗ in the sequential decision problem

below, we introduce the following notation:

Let m denote the dimension of the state s in (1). (In the GMTI radar example m = 4).

Let M denote the set of all m×m real-valued, symmetric positive semi-definite matrices. For

P,Q ∈ M define the positive definite partial ordering � as P � Q if xTPx ≥ xTQx for all

x 6= 0, and P � Q if xTPx > xTQx for x 6= 0. Define � with the inequalities reversed. Notice

that [M,�] is a partially ordered set (poset).

Note that ordering positive definite matrices also orders their eigenvalues. Let x = (x1, . . . , xm)

and y = (y1, . . . , ym) denote vectors with elements in R+. Then define the componentwise partial

order on Rm (denoted by �l) as x �l y (equivalently, y �l x) if xi ≤ yi for all i = 1, . . . ,m.

For any matrix P ∈ M, let λP ∈ Rm
+ denote the eigenvalues of P arranged in decreasing

order as a vector. Note P � Q implies λP �l λQ. Clearly, [Rm
+ ,�l] is a poset.
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Define scalar function f to be increasing3 if λP �l λQ implies f(λP ) ≤ f(λQ), or equivalently,

if P � Q implies f(P ) < f(Q). Finally we say that f(P−a) is increasing in P−a if f(·) is

increasing in each component P l of P−a, l 6= a.

The following is the main result of this paper regarding the policy µ∗(P a, P̄ a, P−a, P̄−a).

Theorem 1: Consider the sequential detection problem (13) with stochastic observability

cost (8) and stopping set (16).

1) The optimal decision policy µ∗(P a, P̄ a, P−a, P̄−a) is increasing in P a, decreasing in

P̄ a, decreasing in P−a, and increasing in P̄−a on the poset [M,�]. Alternatively,

µ∗(P a, P̄ a, P−a, P̄−a) is increasing in λPa , decreasing in λP̄a , decreasing in λP−a and

increasing in λP̄−a on the poset [Rm
+ ,�l]. Here λP−a denotes the L − 1 vectors of

eigenvalues λP l , l 6= a (and similarly for λP̄a).

2) In the special case when αl = 0 for all l ∈ {1, . . . , L}, (i.e., Case 4 in Section III-A

where stopping cost is the conditional entropy) the optimal policy µ∗(P a, P−a) is

increasing in P a and decreasing in P−a on the poset [M,�]. Alternatively, µ∗(P a, P−a)

is increasing in λPa , and decreasing in λP−a on the poset [Rm
+ ,�l]. �

The proof is in Appendix B. The monotone property of the optimal decision policy µ∗ is useful

since (as described in Section IV) parametrized monotone policies are readily implementable

at the radar micro-manager level and can be adapted in real time. Note that in the context of

GMTI radar, the above policy is equivalent to the radar micro-manager opportunistically deciding

when to stop looking at a target: If the measured quality of the current target is better than some

threshold, then continue; otherwise stop.

To get some intuition, consider the second claim of Theorem 1 when each state process has

dimension m = 1. Then the covariance of each target is a non-negative scalar. The second claim

of Theorem 1 says that there exists a threshold switching curve P a = g(P a), where g(·) is

increasing in each element of P a, such that for P a < g(P−a) it is optimal to stop, and for

P a ≥ g(P−a) it is optimal to continue. This is illustrated in Figure 1. Moreover, since g is

monotone, it is differentiable almost everywhere (by Lebesgue’s theorem).

To prove Theorem 1 we will require the following monotonicity result regarding the Riccati

3Throughout this paper, we use the term “increasing” in the weak sense. That is “increasing” means non-decreasing. Similarly,

the term “decreasing” means non-increasing.
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P a

P−a

u = 2

u = 1

P a = g(P−a)

Fig. 1. Threshold switching curve for optimal decision policy µ∗(P a, P−a). Claim 2 of Theorem 1 says that the optimal

decision policy is characterized by a monotone increasing threshold curve g(·) when each target has state dimension m = 1.

and Lyapunov equations of the Kalman covariance update. This is proved in Appendix C. Below

det(·) denotes determinant.

Theorem 2: Consider the Kalman filter Riccati covariance update, R(P, z), defined in (2)

with possibly missing measurements, and Lyapunov covariance update, L(P ), defined in (3).

The following properties hold for P ∈ M and z ∈ Rmz (where mz denotes the dimension

of the observation vector z in (1)) :

(i) det(L(P ))
det(P )

and (ii) det(R(P,z))
det(P )

are monotone decreasing in P on the poset [M,�]. �

Discussion: An important property of Theorem 2 is that stability of the target system matrix F

(see (24)) is not required. In target tracking models (such as (1)), F has eigenvalues at 1 and is

therefore not stable. By using Theorem 2, Lemma 4 (in Appendix A) shows that the stopping

cost involving stochastic observability is a monotone function of the covariances. This monotone

property of the stochastic observability of a Gaussian process is of independent interest.

Instead of stochastic observability (which deals with log-determinants), suppose we had chosen

the stopping cost in terms of the trace of the covariance matrices. Then, in general, it is not true

that trace(R(P, z)) − trace(P ) is decreasing in P on the poset [M,�]. Such a result typically

requires stability of F .
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IV. PARAMETRIZED MONOTONE POLICIES AND STOCHASTIC OPTIMIZATION ALGORITHMS

Theorem 1 shows that the optimal sequential decision policy µ∗(P ) = arg infµ∈µ Jµ(P ) is

monotone in P . Below, we characterize and compute optimal parametrized decision policies

of the form µθ∗(P ) = arg infθ∈Θ Jµθ(P ) for the sequential detection problem formulated in

Section III-B. Here θ ∈ Θ denotes a suitably chosen finite dimensional parameter and Θ is a

subset of Euclidean space. Any such parametrized policy µθ∗(P ) needs to capture the essential

feature of Theorem 1: it needs to be decreasing in P−a, P̄ a and increasing in P a, P̄−a. In

this section, we derive several examples of parametrized policies that satisfy this property. We

then present simulation-based adaptive filtering (stochastic approximation) algorithms to estimate

these optimal parametrized policies. To summarize, instead of attempting to solve an intractable

dynamic programming problem (15), we exploit the monotone structure of the optimal decision

policy (Theorem 1) to estimate a parametrized optimal monotone policy (Algorithm 1 below).

A. Parametrized Decision Policies

Below we give several examples of parametrized decision policies for the sequential detection

problem that are monotone in the covariances. Because such parametrized policies satisfy the

conclusion of Theorem 1, they can be used to approximate the monotone optimal policy of

the sequential detection problem. Lemma 2 below shows that the constraints we specify are

necessary and sufficient for the parametrized policy to be monotone implying that such policies

µθ∗(P ) are an approximation to the optimal policy µ∗(P ) within the appropriate parametrized

class Θ.

First we consider 3 examples of parametrized policies that are linear in the vector of eigen-

values λ (defined in Section III-C). Recall that m denotes the dimension of state s in (1). Let

θl and θl ∈ Θ = Rm
+ denote the parameter vectors that parametrize the policy µθ defined as

µθ(λ
a, λ−a) =

1 (stop), if − θaTλPa + θaTλP̄a + maxl 6=a

[
θl
T
λP l − θl

T
λP̄ l
]
≥ 1,

2 (continue), otherwise.
(17)

µθ(λ
a, λ−a) =

1 (stop), if − θaTλPa + θaTλP̄a + minl 6=a

[
θl
T
λP l − θl

T
λP̄ l
]
≥ 1,

2 (continue), otherwise.
(18)

µθ(λ
a, λ−a) =

1 (stop), if − θaTλPa + θaTλP̄a +
∑

l 6=a

[
θl
T
λP l − θl

T
λP̄ l
]
≥ 1,

2 (continue), otherwise.
(19)

May 20, 2011 DRAFT



14

As a fourth example, consider the parametrized policy in terms of covariance matrices. Below

θl and θl ∈ Rm are unit-norm vectors, i.e, θlT θl = 1 and θl
T
θl = 1 for l = 1, . . . , L. Let U

denote the space of unit-norm vectors. Define the parametrized policy µθ, θ ∈ Θ = U as

µθ(P
a, P−a) =

1 (stop), if − θaTP aθa + θaT P̄ aθa +
∑

l 6=a θ
lTP lθl − θlT P̄ lθl ≥ 1,

2 (continue), otherwise.
(20)

The following lemma states that the above parametrized policies satisfy the conclusion of

Theorem 1 that the policies are monotone. The proof is straightforward and hence omitted.

Lemma 2: Consider each of the parametrized policies (17), (18), (19). Then θl, θl ∈ Θ = Rm
+

is necessary and sufficient for the parametrized policy µθ to be monotone increasing in P a, P̄−a

and decreasing in P−a, P̄ a. For (20), θ ∈ Θ = U (unit-norm vectors) is necessary and sufficient

for the parametrized policy µθ to be monotone increasing in P a, P̄−a and decreasing in P−a, P̄ a.

�

Lemma 2 says that since the constraints on the parameter vector θ are necessary and sufficient

for a monotone policy, the classes of policies (17), (18), (19) and (20) do not leave out any

monotone policies; nor do they include any non monotone policies. Therefore optimizing over

Θ for each case yields the best approximation to the optimal policy within the appropriate class.

Remark: Another example of a parametrized policy that satisfies Lemma 2 is obtained by

replacing λX with log det(X) in (17), (18), (19). In this case, the parameters θa, θa, θl, θl are

scalars. However, numerical studies (not presented here) show that this scalar parametrization is

not rich enough to yield useful decision policies.

B. Stochastic Approximation Algorithm to estimate θ∗

Having characterized monotone parameterized policies above, our next goal is to compute the

optimal parametrized policy µθ∗ for the sequential detection problem described in Section III-B.

This can be formulated as the following stochastic optimization problem:

Jµθ∗ = inf
θ∈Θ

Jθ(P
a, P̄ a, P−a, P̄−a),

where Jθ(P a, P̄ a, P−a, P̄−a) = Eµθ{(τ − 1)cν + C̄(P a
τ , P̄

a
τ , P

−a
τ , P̄−aτ |P0 = P, P̄0 = P̄}. (21)

Recall that τ is the stopping time at which stop action u = 1 is applied, i.e. τ = inf{k : uk = 1}.
The optimal parameter θ∗ in (21) can be computed by simulation-based stochastic optimization

algorithms as we now describe. Recall that for the first three examples above (namely, (17),

(18) and (19)), there is the explicit constraint that θl and θl ∈ Θ = Rm
+ . This constraint can be
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eliminated straightforwardly by choosing each component of θl as θl(i) =
[
φl(i)

]2 where φl(i) ∈
R. The optimization problem (21) can then be formulated in terms of this new unconstrained

parameter vector φl ∈ Rm.

In the fourth example above, namely (20), the parameter θl is constrained to the boundary set

of the m-dimensional unit hypersphere U . This constraint can be eliminated by parametrizing

θl in terms of spherical coordinates φ as follows: Let

θl(1) = cosφl(1), θl(i) =
i−1∏
j=1

sinφl(j) cosφl(i), i = 2, . . . ,m− 1, θl(m) =
m∏
j=1

sinφl(j).

(22)

where φl(i) ∈ R, i = 1, . . . ,m denote a parametrization of θ. Then it is trivially verified that

θl ∈ U . Again the optimization problem (21) can then be formulated in terms of this new

unconstrained parameter vector φl ∈ Rm.

Algorithm 1 Policy Gradient Algorithm for computing optimal parametrized policy
Step 1: Choose initial threshold coefficients φ0 and parametrized policy µθ0 .

Step 2: For iterations n = 0, 1, 2, . . .

• Evaluate sample cost Ĵn(µφ) = (τ − 1)cν + C̄(P a
τ , P̄

a
τ , P

−a
τ , P̄−aτ ).

Compute gradient estimate ∇̂φĴn(µφ) as:

∇̂φJn =
Jn(φn + ωndn)− Jn(φn − ωndn)

2ωn
dn, dn(i) =

−1, with probability 0.5,

+1, with probability 0.5.

Here ωn = ω
(n+1)γ

denotes the gradient step size with 0.5 ≤ γ ≤ 1 and ω > 0.

• Update threshold coefficients φn via (where εn below denotes step size)

φn+1 = φn − εn+1∇̂φĴn(µφ), εn = ε/(n+ 1 + s)ζ , 0.5 < ζ ≤ 1, and ε, s > 0. (23)

Several possible simulation based stochastic approximation algorithms can be used to estimate

µθ∗ in (21). In our numerical examples, we used Algorithm 1 to estimate the optimal parametrized

policy. Algorithm 1 is a Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm

[15]; see [16] for other more sophisticated gradient estimators. Algorithm 1 generates a sequence

of estimates φn and thus θn, n = 1, 2, . . . , that converges to a local minimum θ∗ of (21) with

policy µθ∗(P ). In Algorithm 1 we denote the policy as µφ since θ is parametrized in terms of

φ as described above.
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The SPSA algorithm [15] picks a single random direction dn (see Step 2) along which

the derivative is evaluated after each batch n. As is apparent from Step 2 of Algorithm 1,

evaluation of the gradient estimate ∇̂φJn requires only 2 batch simulations. This is unlike

the well known Kiefer-Wolfowitz stochastic approximation algorithm [15] where 2m batch

simulations are required to evaluate the gradient estimate. Since the stochastic gradient algorithm

(23) converges to a local optimum, it is necessary to retry with several distinct initial conditions.

V. APPLICATION: GMTI RADAR SCHEDULING AND NUMERICAL RESULTS

This section illustrates the performance of the monotone parametrized policy (21) computed via

Algorithm 1 in a GMTI radar scheduling problem. We first show that the nonlinear measurement

model of a GMTI tracker can be approximated satisfactorily by the linear Gaussian model (1)

that was used above. Therefore the main result Theorem 1 applies, implying that the optimal

radar micro-management decision policy is monotone. To illustrate these micro-management

policies numerically, we then consider two important GMTI surveillance problems – the target

fly-by problem and the persistent surveillance problem.

A. GMTI Kinematic Model and Justification of Linearized Model (1)

The observation model below is an abstraction based on approximating several underlying pre-

processing steps. For example, given raw GMTI measurements, space-time adaptive processing

(STAP) (which is a two-dimensional adaptive filter) is used for near real-time detection, see

[6] and references therein. Similar observation models can be used as abstractions of synthetic

aperture radar (SAR) based processing.

A modern GMTI radar manager operates on three time-scales (The description below is a

simplified variant of an actual radar system.):

• Individual observations of target l are obtained on the fast time-scale t = 1, 2, . . .. The

period at which t ticks is typically 1 milli-second. At this time-scale, ground targets can be

considered to be static.

• Decision epoch k = 1, 2, . . . , τ is the time-scale at which the micro-manager and target

tracker operate. Recall τ is the stopping time at which the micro-manager decides to stop

and return control to the macro-manager. The clock-period at which k ticks is typically

T = 0.1 seconds. At this epoch time-scale k, the targets move according to the kinematic

model (24), (25) below. Each epoch k is comprised of intervals t = 1, 2, . . . ,∆ of the fast
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time-scale, where ∆ is typically of the order of 100. So, 100 observations are integrated at

the t-time-scale to yield a single observation at the k-time-scale.

• The scheduling interval n = 1, 2 . . . , is the time-scale at which the macro-manager operates.

Each scheduling interval n is comprised of τn decision epochs. This stopping time τn is

determined by the micro-manager. τn is typically in the range 10 to 50 – in absolute time

it corresponds to the range 1 to 5 seconds. In such a time period, a ground target moving

at 50 km per hour moves approximately in the range 14 to 70 meters.

1) GMTI Kinematic Model: The tracker assumes that each target l ∈ {1, . . . , L} has kinematic

model and GMTI observations [9],

slk+1 = Fslk +Gwlk, (24)

zlk =

h(slk, ξk) + 1√
νl∆

vlk, with probability pld,

∅, with probability 1− pld.
(25)

Here zlk denotes a 3-dimensional (range, bearing and range rate) observation vector of target l

at epoch time k and ξk denotes the Cartesian coordinates and speed of the platform (aircraft)

on which the GMTI radar is mounted. The noise processes wlk and vlk/
√
νl∆ are zero-mean

Gaussian random vectors with covariance matrices Ql and Rl(νl), respectively. The observation

zk in decision epoch k is the average of the νl∆ measurements obtained at the fast time scale

t. Thus the observation noise variance in (25) is scaled by the reciprocal of the target priority

νl∆. In (24), (25) for a GMTI system,

F =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , G =


T 2/2 0

T 0

0 T 2/2

0 T

 , R(νl) =
1

νl∆


σ2
r 0 0

0 σ2
a 0

0 0 σ2
ṙ

 , (26)

Q =


1
4
T 4σ2

x
1
2
T 3σ2

x 0 0
1
2
T 3σ2

x T 2σ2
x 0 0

0 0 1
4
T 4σ2

y
1
2
T 3σ2

y

0 0 1
2
T 3σ2

y T 2σ2
y

 , h(s, ξ) =


√

(x− ξx)2 + (y − ξy)2 + ξ2
z

arctan ( y−ξy
x−ξx )

(x−ξx)(ẋ−ξ̇x)+(y−ξy)(ẏ−ξ̇y)√
(x−ξx)2+(y−ξy)2+ξ2z

 .
Recall that T is typically 0.1 seconds. The elements of h(s, ξ) correspond to range, azimuth,

and range rate, respectively. Also ξ = (ξx, ξ̇x, ξy, ξ̇y) denotes the x and y position and speeds,

respectively, and ξz denotes the altitude, assumed to be constant, of the aircraft on which the

GMTI radar is mounted.
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2) Approximation by Linear Gaussian State Space Model: Starting with the nonlinear state

space model (24), the aim below is to justify the use of the linearized model (1). We start with

linearizing the model (24) as follows; see [17, Chapter 8.3]. For each target l, consider a nominal

deterministic target trajectory s̄lk and nominal measurement z̄lk where s̄lk+1 = F s̄lk , z̄lk = h(s̄lk, ξ).

Defining s̃lk = slk− s̄lk and z̃lk = zlk− z̄lk, a first order Taylor series expansion around this nominal

trajectory yields,

s̃lk+1 = F s̃lk +Gwlk,

z̃lk =

∇sh(s̄lk, ξk)s̃
l
k +R1(sk, s̄

l
k, ξk) + 1√

νl∆
vlk, with probability pld,

∅, with probability 1− pld,
(27)

where ‖R1(sl, s̄l, ξ)‖ ≤ 1
2
‖(sl − s̄l)T∇2h(ζ, ξ)(sl − s̄l)‖ and ζ = γsl + (1 − γ)s̄l for some

γ ∈ [0, 1]. In the above equation, ∇sh(s, ξ) is the Jacobian matrix defined as (for simplicity we

omit the superscript l for target l),

∇sh(s, ξ)ij =


δx
r

0 δy
r

0
−δy
δ2x+δ2y

0 δx
δ2x+δ2y

0

δ̇x
r
− δxδy δ̇y+δ2xδ̇x

r3
δx
r

δ̇y
r
− δxδy δ̇x+δ2y δ̇y

r3
δy
r

 , r =
√
δ2
x + δ2

y + ξ2
z . (28)

where δx = x − ξx, δy = y − ξy denotes the relative position of the target with respect to

the platform and δ̇x, δ̇y denote the relative velocities. Since the target is ground based and the

platform is constant altitude, ξz is a constant.

In (27), ∇2h(·, ·) denotes the 3× 4× 4 Hessian tensor. By evaluating this Hessian tensor for

typical operating modes and k ≤ 50, we show below that

‖R1(sl, s̄l, ξ)‖
‖∇sh(s̄l, ξ)s̃l‖

≤ 0.02,
‖∇sh(s̄lk, ξk)−∇sh(s̄l0, ξ0)‖

‖∇sh(s̄lk, ξk)‖
≤ 0.06. (29)

The first inequality above says that the model is approximately linear in the sense that the ratio

of linearization error R1(·) to linear term is small; the second inequality says that the model

is approximately time-invariant, in the sense that the relative magnitude of the error between

linearizing around s̄0 and s̄k is small. Therefore, on the micro-manager time scale, the target

dynamics can be viewed as a linear time invariant state space model (1).

Justification of (29): Using typical GMTI operating parameters, we evaluate the bounds

in (29). Denote the state of the platform (aircraft) on which the radar is situated as p0 =

[px,0, ṗx, py,0, ṗy] = [−35000m, 100m/s,−15000m, 20m/s]. Then the platform height is pz =√
p2
x,0 + p2

y,0 tan θd, where θd is the depression angle, typically between 10◦ to 25◦. We assume

May 20, 2011 DRAFT



19

a depression angle of θd = 15◦ below yielding pz = 10203.2m. Next, consider typical behaviour

of ground targets with speed 15m/s (54 km/h) and select the following significantly different

initial target state vectors (denoted by superscripts a− e)

sa0 =
[
100 3 40 7

]
, sb0 =

[
−20 −4 200 1

]
, sc0 =

[
50 2 95 10

]
, (30)

sd0 =
[
−70 5 −50 −6

]
, se0 =

[
150 −15 10 0

]
. (31)

Now, propagate these initial states using the target model with T = 0.1s, σx = σy = 0.5,

σr = 20m, σṙ = 5m/s, σa = 0.5◦ with a true track variability parameter σp = 1.5 (used for true

track simulation as σx and σy). Define (see (29) and recall that ζ = γs + (1 − γ)s̄ for some

γ ∈ [0, 1])

D(s̄k, ξk) ≡
‖∇sh(s̄k, ξk)−∇sh(s̄0, ξ0)‖

‖∇sh(s̄k, ξk)‖
, E(s, s̄, ξ, γ) =

1
2
‖(s− s̄)TD2h(ζ, ξ)(s− s̄)‖
‖∇sh(s̄, ξ)(s− s̄)‖

.

Tables I to III show how D(·) and E(·) evolve with iteration k = 10, 50, 100. The entries in the

tables are small, thereby justifying the linear time invariant state space model (1).

Remark: Since a linear Gaussian model is an accurate approximate model, most real GMTI

trackers use an extended Kalman filter. Approximate nonlinear filtering methods such as sequen-

tial Markov Chain Monte-Carlo methods (particle filters) are not required.

B. Numerical Example 1: Target Fly-by

With the above justification of the model (1), we present the first numerical example. Consider

L = 4 ground targets that are tracked by a GMTI platform, as illustrated in Figure 2. The nominal

range from the GMTI sensor to the target region is approximately r̃ = 30km. For this example,

the initial (at the start of the micro-manager cycle) estimated and true target states of the four

targets are given in Table IV.

We assume in this example that the most uncertain target is regarded as being the highest

priority. Based on the initial states and estimates in Table IV, the mean square error values are,

MSE(ŝ1
0) = 710.87, MSE(ŝ2

0) = 222.16, MSE(ŝ3
0) = 187.37, and MSE(ŝ4

0) = 140.15. Thus,

target l = 1 is the most uncertain and allocated the highest priority. So we denote a = 1.

The simulation parameters are as follows: sampling time T = 0.1s (see Section V-A1);

probability of detection pd = 0.75 (for all targets, so superscript l is omitted); track standard

deviations of target model σx = σy = 0.5m; measurement noise standard deviations σr = 20m,

σa = 0.5◦, σṙ = 5m/s; and platform states [px, ṗx, py, ṗy] = [10km, 53m/s,−30km, 85m/s]. We

assume a target priority vector of ν = [ν1, ν2, ν3, ν4] = [0.6, 0.39, 0.008, 0.002]. Recall from
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D(s̄10, ξ10) D(s̄50, ξ50) D(s̄100, ξ100)

sa0 0.0010 0.0052 0.0104

sb0 0.0009 0.0049 0.0104

sc0 0.0010 0.0059 0.0119

sd0 0.0007 0.0040 0.0080

se0 0.0010 0.0053 0.0112

TABLE I

RATE OF CHANGE OF JACOBIAN FOR VARIOUS RUNNING TIMES.

E(s10, s̄10, ξ10, 0.1) E(s50, s̄50, ξ50, 0.1) E(s100, s̄100, ξ100, 0.1)

sa0 0.00019091 0.0010597 0.01395

sb0 0.00020866 0.0011699 0.014375

sc0 0.00019165 0.0010813 0.01453

sd0 0.0002008 0.0011065 0.011844

se0 0.0002294 0.0012735 0.015946

TABLE II

RATIO OF SECOND-ORDER TO FIRST-ORDER TERM OF TAYLOR SERIES EXPANSION FOR α = 0.1.

E(s10, s̄10, ξ10, 0.8) E(s50, s̄50, ξ50, 0.8) E(s100, s̄100, ξ100, 0.8)

sa0 0.00019267 0.0011104 0.014211

sb0 0.00021104 0.0012164 0.014633

sc0 0.00019447 0.0011228 0.014838

sd0 0.00020148 0.0011386 0.012178

se0 0.00023083 0.0013596 0.016603

TABLE III

RATIO OF SECOND-ORDER TO FIRST-ORDER TERM OF TAYLOR SERIES EXPANSION FOR α = 0.8.

ŝ10 = [130, 5.5, 84, 8.1]T, s10 = [100, 3, 40, 7]T

ŝ20 = [−47.88,−2.38, 210.41, 0.418]T, s20 = [−20,−4, 200, 1]T

ŝ30 = [55.84, 2.37, 121.74, 9.56]T, s30 = [50, 2, 95, 10]T

ŝ40 = [−55.13, 5.75,−68.41,−6.10]T, s40 = [−70, 5,−50,−6]T

TABLE IV

INITIAL TARGET STATES AND ESTIMATES.
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(25) that the target priority scales the inverse of the covariance of the observation noise. We

chose an operating cost of cν = 0.8, and the stopping cost of C̄(P−a) specified in (11), with

constants α1,...,4 = β2,...,4 = 0.05, β1 = 5. The parametrized policy chosen for this example

was µθ(P a, P−a) defined in (20). We used the SPSA algorithm (Algorithm 1) to estimate the

parameter θ∗ that optimizes the objective (21). Since the SPSA converges to a local minimum,

several initial conditions were evaluated via a random search.

Figure 3 explores the sensitivity of the sample-path cost (achieved by the parametrized policy)

with respect to probability of detection, pd, and the operating cost, cν . The sample-path cost

increases with cν and decreases with pd. Larger values of the operating cost, cν , cause the radar

micro-manager to specify the “stop” action sooner than for lower values of cν . As can be seen

in the figure, neither the sample-path cost or the average stopping time is particularly sensitive

to changes in the probability of detection. However, as expected, varying the operating cost has

a large effect on both the sample-path cost and the associated average stopping time.

Figure 4 compares the optimal parametrized policy with periodic myopic policies. Such

periodic myopic policies stop at a deterministic pre-specified time (without considering state

information) and then return control to the macro-manager. The performance of the optimal

parametrized policy is measured using multiple initial conditions. As seen in Figure 4, the

optimal parametrized policy is the lower envelope of all possible periodic stopping times, for

each initial condition. The optimal periodic policy is highly dependent upon the initial condition.

The main performance advantage of the optimal parametrized policy is that it achieves virtually

the same cost as the optimal periodic policy for any initial condition.

C. Numerical Example 2: Persistent Surveillance

As mentioned in Section I, persistent surveillance involves exhaustive surveillance of a region

over long time intervals, typically over the period of several hours or weeks [18] and is useful in

providing critical, long-term battlefield information. Figure 5 illustrates the persistent surveillance

setup. Here r̃ is the nominal range from the target region to the GMTI platform, assumed in

our simulations to be approximately 30km. The points on the GMTI platform track labeled

(1) – (72) correspond to locations4 where we evaluate the Jacobian (28). Assume a constant

platform orbit speed of 250m/s (or approximately 900km/h [19]) and a constant altitude of

approximately 5000m. Assuming 72 divisions along the 30km radius orbit, the platform sensor

4The platform state at location n ∈ {1, 2, ..., 72} is defined as p = [r̃ cos(n · 5◦),−ṽ sin(n · 5◦), r̃ sin(n · 5◦), ṽ cos(n · 5◦)]
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Fig. 2. Target Fly-by Scenario. The GMTI platform (aircraft) moves with constant altitude and velocity at nominal range

r = 30 km from the target region. (r is defined in (28)). Initial states of the four targets are specified in Table IV.
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Fig. 3. Dependence of the sample-path cost achieved by the parametrized policy on the probability of detection, pd, and the

operating cost, cν . The sample-path cost increases with the operating cost, but decreases with the probability of detection. Note

the stopping times associated with the labelled vertices above.
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Fig. 4. Plot of sample-path cost of periodic policies and the parametrized policy (thick-dashed line) versus initial conditions.

These initial conditions are ordered with respect to the cost achieved using the parametrized policy for that particular initial

condition. Notice that the sample-path cost is the lower envelope of all deterministic stopping times for any initial condition.

takes 10.4 seconds to travel between the track segments. Using a similar analysis to the Appendix,

the measurement model changes less than 5% in l2-norm in 10.4s, thus the optimal parameter

vector is approximately constant on each track segment.

Simulation parameters for this example are as follows: number of targets L = 4; sampling time

T = 0.1s; probability of detection pd = 0.9; track variances of target model σx = σy = 0.5m;

and measurement noise parameters σr = 20m, σa = 0.5◦, σṙ = 5m/s. The platform velocity is

now changing (assume a constant speed of ṽ = 250m/s), unlike the previous example, which

assumed a constant velocity platform. Since the linearized model will be different at each of

the pre-specified points, (1)–(72), along the GMTI track, we computed the optimal parametrized

policy at each of the respective locations. The radar manager then switches between these policies

depending on the estimated position of the targets.

We consider Case 4 of Section III-A where the radar devotes all its resources to one target,

and none to the other targets. That is, we assume a target priority vector of ν = [1, 0, 0, 0]. In this

case, the first target is allocated a Kalman filter, with all the other targets allocated measurement-

free Kalman predictors. Since the threshold parametrization vectors depend on the target’s state

and measurement models, the first target l = a has a unique parameter vector, where targets

l 6= a all have the same parameter vectors. Also, θl = θ, for all l ∈ {1, 2, ..., L}.
We chose α1 = 0.25, α2 = α3 = α4 = 0, β1 = 0.25, β2 = β3 = β4 = 1 in stopping cost (11)
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(average mutual information difference stopping cost). The parametrized policy considered was

µθ(P
a, P−a) in (20). The optimal parametrized policy was computed using Algorithm 1 at each

of the 72 locations on the GMTI sensor track. As the GMTI platform orbits the target region,

we switch between these parametrized policy vectors, thus continually changing the adopted

tracking policy. We implemented the following macro-manager: a = arg maxl=1,...,L

{
log |P l|

}
.

The priority vector was chosen as νa = 1 and νl = 0 for all l 6= a. Figure 6. shows log-

determinants of each of the targets’ error covariance matrices over multiple macro-management

tracking cycles.

VI. CONCLUSIONS

This paper considers a sequential detection problem with mutual information stopping cost.

Using lattice programming we prove that the optimal policy has a monotone structure in terms

of the covariance estimates (Theorem 1). The proof involved showing monotonicity of the

Riccati and Lyapunov equations (Theorem 2). Several examples of parametrized decision policies

that satisfy this monotone structure were given. A simulation-based adaptive filtering algorithm

(Algorithm (1)) was given to estimate the parametrized policy. The sequential detection problem

was illustrated in a GMTI radar scheduling problem with numerical examples.

APPENDIX

This appendix presents the proof of the main result Theorem 1. Appendix A presents the value

iteration algorithm and supermodularity that will be used as the basis of the inductive proof.

The proof of Theorem 1 in Appendix B uses lattice programming [20] and depends on certain

monotone properties of the Kalman filter Riccati and Lyapunov equations. These properties are

proved in Theorem 2 in Appendix C.

A. Preliminaries

We first rewrite Bellman’s equation (15) in a form that is suitable for our analysis. Define

C(P ) = cν − C̄(P ) +
∑
za,z−a

C̄(R(P a, za),L(P a),R(P−a, z−a),L(P−a))qzaqz−a ,

V (P ) = V̄ (P )− C̄(P ), where P = (P a, P̄ a, P−a, P̄−a), (32)

qzl =

pld, if zl 6= ∅,

1− pld, otherwise,
, l = 1, . . . , L.
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Fig. 5. Representation of the persistent surveillance scenario in GMTI systems. The GMTI platform (aircraft) orbits the target

region in order to obtain persistent measurements as long as targets remain within the target region. The nominal range from

the platform to the target region is assumed to be 30km.
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Fig. 6. Plot of log-determinants for each target over multiple scheduling intervals. On each scheduling interval, a Kalman filter

is deployed to track one target and Kalman predictors track the remaining 3 targets. The bold line corresponds to the target

allocated the Kalman filter by the micro-manager in each scheduling interval. Initially a Kalman filter is deployed on target

l = 1. Data points marked in red indicate missing observations.
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In (32) we have assumed that the missed observation events in (25) are statistically independent

between targets, and so qz−a =
∏

l 6=a qzl . Actually, the results below hold for any joint distribution

of missed observation events (and therefore allow these events to be dependent between targets).

For notational convenience we assume (25) and independent missed observation events.

Clearly V (·) and optimal decision policy µ∗(·) satisfy Bellman’s equation

V (P ) = min{Q(P, 1),Q(P, 2)}, µ∗(P ) = arg min
u∈{1,2}

{
Q(P, u)

}
, (33)

Q(P, 1) = 0, Q(P, 2) = C(P ) +
∑
za,z−a

V (
(
R(P a, z),L(P a),R(P−a, z−a),L(P−a)

)
qzaqz−a .

Our goal is to characterize the stopping set defined as

Sstop = {P : Q(P, 1) ≤ Q(P, 2)} = {P : Q(P, 2) ≥ 0} = {P : µ∗(P ) = 1}.

Since the arg min function is translation invariant (that is, arg minu f(P, u) = arg minu(f(P, u)+

h(P )) for any functions f and h), both the stopping set Sstop and optimal policy µ∗ in these new

coordinates are identical to those in the original coordinate system (16), (15).

Value Iteration Algorithm: The value iteration algorithm will be used to construct a proof of

Theorem 1 by mathematical induction. Let k = 1, 2, . . . , denote iteration number. The value

iteration algorithm is a fixed point iteration of Bellman’s equation and proceeds as follows:

V0(P ) = −C̄(P ), Vk+1(P ) = min
u∈{1,2}

Qk+1(P, u),

µ∗k+1(P ) = arg min
u∈{1,2}

Qk+1(P, u), where Qk+1(P, 1) = 0,

Qk+1(P, 2) = C(P ) +
∑
za,z−a

Vk
(
R(P a, za),R(P−a, z−a)

)
qzaqz−a . (34)

Submodularity: Next, we define the key concept of submodularity [20]. While it can be defined

on general lattices with an arbitrary partial order, here we restrict the definition to the posets

[M,�] and [Rm
+ ,�l], where the partial orders � and �l were defined above.

Definition 1 (Submodularity and Supermodularity [20]): A scalar function Q(P, u) is sub-

modular in P a if

Q(P a, P̄ a, P−a, P̄−a, 2)−Q(P a, P̄ a, P−a, P̄−a, 1) ≤ Q(Ra, P̄ a, P−a, P̄−a, 2)−Q(Ra, P̄ a, P−a, P̄−a, 1),

for P a � Ra.Q(·, ·, u) is supermodular if−Q(·, ·, u) is submodular. A scalar functionQ(P a, P̄ a, P−a, P̄−a, u)

is sub/supermodular in each component of P−a if it is sub/supermodular in each component P l,

l 6= a. An identical definition holds with respect to Q(λa, λ−a, u) on [Rm
+ ,�l].
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The most important feature of a supermodular (submodular) function f(x, u) is that arg minu f(x, u)

decreases (increases) in its argument x, see [20]. This is summarized in the following result.

Theorem 3 ([20]): SupposeQ(P a, P̄ a, P−a, P̄−a, u) is submodular in P a, submodular in P̄−a,

supermodular in P−a and supermodular in P̄ a. Then there exists a µ∗(P a, P̄ a, P−a, P̄−a) =

arg minu∈{1,2}Q(P a, P̄ a, P−a, P̄−a, u), that is increasing in P a, decreasing in P̄ a, increasing in

P−a and decreasing in P−a.

Next we state a well known result (see [21] for proof) that the evolution of the covariance

matrix in the Lyapunov and Riccati equation are monotone.

Lemma 3 ([21]): R(·) and L(·) are monotone operators on the poset [M,�]. That is, if

P1 � P2, then L(P1) � L(P2) and for all z, R(P1, z) � R(P2, z).

Finally, we present the following lemma which states that the stopping costs (stochastic

observability) are monotone in the covariance matrices. The proof of this lemma depends on

Theorem 2, the proof of which is given in Appendix C below.

Lemma 4: For C̄(P ) in Case 1 (9), Case 2 (10) and Case 3 (11), the cost C(P a, P̄ a, P−a, P̄−a)

defined in (32) is decreasing in P a, P̄−a, and increasing in P−a, P̄ a. (Case 4 is a special case

when αl = 0 for all l ∈ {1, . . . , L}.)
Proof: For Case 1 and Case 2 let l∗ = arg maxl 6=a

[
αl log |P̄ l

k| − βl log |P l
k|
]

or l∗ =

arg minl 6=a
[
αl log |P̄ l

k| − βl log |P l
k|
]
, respectively. From (32) with | · | denoting determinant,

C(P ) = cν−αa log
|L(P̄ a)|
|P̄ a|

+βa
∑
za

log
|R(P a, za)|
|P a|

q(za)+αl
∗

log
|L(P̄ l∗)|
|P̄ l∗|

−βl∗ log
|R(P l∗ , zl

∗
)|

|P l∗ |
q(zl

∗
).

(35)

For Case 3,

C(P ) = cν−αa log
|L(P̄ a)|
|P̄ a|

+βa
∑
za

log
|R(P a, za)|
|P a|

q(za)+
∑
l 6=a

αl log
|L(P̄ l)|
|P̄ l|

−
∑
l 6=a

βl log
|R(P l, zl)|
|P l|

q(zl).

(36)

Theorem 2 shows that |L(P̄ l)|
|P̄ l| and |R(P l,zl)|

|P l| are decreasing in P̄ l and P l for all l.

B. Proof of Theorem 1

Proof: The proof is by induction on the value iteration algorithm (34). Note V0(P ) defined

in (34) is decreasing in P a, P̄−a and increasing in P−a, P̄ a via Lemma 3.

Next assume Vk(P ) is decreasing in P a, P̄−a and increasing in P−a, P̄ a. Since R(P a, y),

L(P̄ a), R(P−a, y−a) and L(P̄−a) are monotone increasing in P a, P̄ a, P−a and P̄−a, it follows

that the term Vk
(
R(P a, za),L(P̄ a),R(P−a, z−a),L(P̄−a)

)
qzaqz−a is decreasing in P a, P̄−a and
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increasing in P−a, P̄ a in (34). Next, it follows from Lemma 4 that C(P a, , P̄ a, P−a, P̄−a) is

decreasing in P a, P̄−a and increasing in P−a, P̄ a. Therefore from (34), Qk+1(P, 2) inherits this

property. Hence Vk+1(P a, P−a) is decreasing in P a, P̄−a and increasing in P−a, P̄ a. Since value

iteration converges pointwise, i.e, Vk(P ) pointwise V (P ), it follows that V (P ) is decreasing in

P a, P̄−a and increasing in P−a, P̄ a.

Therefore, Q(P, 2) is decreasing in P a, P̄−a and increasing in P−a, P̄ a. This implies Q(P, u)

is submodular in (P a, u), submodular in (P̄−a, u), supermodular in (P−a, u) and supermodular

in (P̄ a, u). Therefore, from Theorem 3, there exists a version of µ∗(P ) that is increasing in

P a, P̄−a and decreasing in P−a, P̄ a.

C. Proof of Theorem 2

We start with the following lemma.

Lemma 5: If matrices X and Z are invertible, then for conformable matrices W and Y ,

det(Z)det(X + Y Z−1W ) = det(X)det(Z +WX−1Y ). (37)

Proof: The Schur complement formulae applied to
(
X
−W

Y
Z

)
yields,(

I Y Z−1

0 I

)(
X + Y Z−1W 0

0 Z

)(
I 0

−Z−1W I

)

=

(
I 0

−WX−1 I

)(
X 0

0 Z +WX−1Y

)(
I X−1Y

0 I

)
.

Taking determinants yields (37).

Theorem 2(i): Given positive definite matrices Q and P1 � P2 and arbitrary matrix F ,

det(L(P ))

det(P )
is decreasing in P, or equivalently,

det(FP1F
T +Q)

det(P1)
<

det(FP2F
T +Q)

det(P2)

Proof: Applying (37) with [X, Y,W,Z] = [Q,F, F T , P−1],

det(FPF T +Q)

det(P )
= det(P−1 + F TQ−1F )det(Q). (38)

Since P1 � P2 � 0, then 0 ≺ P−1
1 ≺ P−1

2 and thus 0 ≺ P−1
1 + F TQ−1F ≺ P−1

2 + F TQ−1F .

Since positive definite dominance implies dominance of determinants, it follows that

det(P−1
1 + F TQ−1F ) < det(P−1

2 + F TQ−1F ).

Using (38), the result follows.
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Theorem 2(ii): Given positive definite matrices Q,R and arbitrary matrix F , det(R(P,z))
det(P )

is

decreasing in P . That is for P1 � P2

det(FP1F
T − FP1H

T (HP1H
T +R)−1HP1F

T +Q)

det(P1)

<
det(FP2F

T − FP2H
T (HP2H

T +R)−1HP2F
T +Q)

det(P2)
(39)

Proof: Using the matrix inversion lemma (A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1,

(P−1 +HTR−1H)−1 = P − PHT (HPHT +R)−1HP,

F (P−1 +HTR−1H)−1F T +Q = FPF T − FPHT (HPHT +R)−1HPF T +Q

det(FPF T − FPHT (HPHT +R)−1HPF T +Q) = det(Q+ F (P−1 +HTR−1H)−1F T ).

(40)

Applying the identity (37) with [X, Y,W,Z] = [Q,F, F T , P−1 +HTR−1H] we have,

det(P−1+HTR−1H)det(Q+F (P−1+HTR−1H)−1F T ) = det(Q)det(P−1+HTR−1H+F TQ−1F ).

(41)

Further, using (37) with [X, Y,W,Z] = [P−1, HT , H,R], we have,

det(P−1 +HTR−1H) = det(P−1)det(R +HPHT )/det(R) (42)

Substituting (42) into (41),

det(P−1)det(R +HPHT )det(Q+ F (P−1 +HTR−1H)−1F T )

= det(Q)det(P−1 +HTR−1H + F TQ−1F )det(R) (43)

det(Q+ F (P−1 +HTR−1H)−1F T )

det(P )
=

det(Q)det(P−1 +HTR−1H + F TQ−1F )det(R)

det(R +HPHT )
. (44)

From (44) and (40)

det(FPF T − FPHT (HPHT +R)−1HPF T +Q)

det(P )
=

det(Q)det(P−1 +HTR−1H + F TQ−1F )det(R)

det(R +HPHT )
.

(45)

We are now ready to prove the result. Since P1 � P2 � 0,

• 0 ≺ P−1
1 +HTR−1H + F TQ−1F ≺ P−1

2 +HTR−1H + F TQ−1F ,

• det(P−1
1 +HTR−1H + F TQ−1F ) < det(P−1

2 +HTR−1H + F TQ−1F ),

• R +HP1H
T � R +HP2H

T � 0,
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• det(R +HP1H
T ) > det(R +HP2H

T ).

Therefore, (39) follows from the following inequality
det(Q)det(P−1

1 +HTR−1H + F TQ−1F )det(R)

det(R +HP1HT )
<

det(Q)det(P−1
2 +HTR−1H + F TQ−1F )det(R)

det(R +HP2HT )
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