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Abstract: We present a new and simple method for the identification of a single transfer
function that is embedded in a dynamical network. In existing methods the consistent
identification of the desired transfer function relies on the positive definiteness of the spectral
density matrix of the vector of all node signals, and it typically requires knowledge of the
topology of the whole network. The positivity condition is on the internal signals and therefore
can not be guaranteed a priori; in addition it is far from necessary. The new method of this
paper provides simple conditions on which nodes to excite and which nodes to measure in order
to produce a consistent estimate of the desired transfer function. Just as importantly, it requires
knowledge of the local topology only.

1. INTRODUCTION

The present paper is devoted to the identification of a
particular transfer function (also called module or edge)
within a network. This problem is far from trivial be-
cause the interconnection structure creates feedback loops,
which may (and quite often do) lead to the module of
interest becoming unidentifiable from available signals.

A number of recent papers have addressed the problem
of identification of a specific module embedded within a
dynamical network Dankers et al. (2016); Everitt et al.
(2017); Gevers and Bazanella (2015); Van den Hof et al.
(2013). In Dankers et al. (2016); Van den Hof et al.
(2013) the focus has been on the identifiability of the
desired transfer function, and on the question of which
subset of node measurements will yield such identifiability.
The assumption is made in these papers that the vector
consisting of all the node signals in the network is infor-
mative, and this assumption is crucial for the consistent
estimation of the desired transfer function. This is a strong
persistence of excitation condition, which is sufficient to
identify the whole network, but which is far from necessary
for the identification of a single module. Moreover, it is
an assumption on the internal signals rather than on the
external excitation, which makes it difficult to enforce.

The question as to how to guarantee that the vector
of node signals is informative by appropriately choosing
the externally applied signals is an experiment design
problem. This problem was first approached in Gevers and
? This work is supported by the Program Science Without Bor-
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Tecnológico, Brazil, by the Belgian Programme on Interuniversity
Attraction Poles, initiated by the Belgian Federal Science Policy
Office, and by Wallonie-Bruxelles International.

Bazanella (2015), where it was illustrated on a simple 3-
node network. It was shown in that paper that the choice of
informative external signals that would lead to consistent
identifiability of the desired transfer function depends both
on the network topology and on the chosen identification
method. A framework, based on Gevers et al. (2009),
was proposed to determine which external signals need
to be applied in order to make the vector of node signals
informative.

In Everitt et al. (2017) a new approach has been proposed
for the identification of a single module. Unlike the meth-
ods presented in Dankers et al. (2016) this new approach
uses all external excitation signals that enter the network.
Denoting Gji the desired transfer function to be identified,
then Everitt et al. (2017) propose a two-step procedure,
one of which consists of identifiying all transfers from all
external signals to all the nodes that have a direct link to
node j.

All results cited above, that deal with the identification
of a single module embedded within a dynamical network,
require knowledge of the topology of the whole network.
In this paper we present a completely different and very
simple method which requires only local information about
the topology. More precisely, if the module to be identified
is Gji, then the only topological information that is
required for our new method is to know either to which
nodes node i connects (i.e. which nodes k are such that
Gki 6= 0), or which nodes connect to j (i.e. which nodes k
are such that Gjk 6= 0).

Let us summarize this introduction as follows. The con-
sistent identification of a specific module Gji(q) contains
both an experiment design aspect and a computational



aspect. These can be summarized in the following three
problems:

• which nodes should be excited?
• which nodes should be measured?
• how to estimate Ĝji(q) from these signals?

The new method proposed in this paper solves all three
problems at once. In addition, the method requires only
local knowledge of the topology of the network, namely
either the existence of the edges leaving node i, or the
existence of the edges entering node j.

The paper is organized as follows. The problem is stated
in section 2. In section 3 we present the standard direct
Prediction Error Method (PEM) that rewrites the network
as a closed-loop system and then estimates the desired Gji

by identifying all nonzero Gjk that appear in the same row
as Gji. In section 4 we apply this direct method to a 20-
node network in order to illustrate the difficulty in arriving
at excitation scenarii that yield a consistent estimate. We
present the new method in section 5, and we return to
the case study in section 6 to illustrate its simplicity and
effectiveness.

2. PROBLEM STATEMENT

We adopt the network structure of Gevers et al. (2017), in
which the outputs of the nodes are denoted
{w1(t), . . . , wL(t)} and are related to each other and to
the external excitation signals rj(t), j = 1, . . . , L and the
noise signals vj(t), j = 1, . . . , L by the following network
equations:


w1(t)
w2(t)

...
wL(t)

=


0 G0

12(q) . . . G0
1L(q)

G0
21(q) 0

. . . G0
2L(q)

...
. . .

. . .
...

G0
L1(q) G0

L2(q) . . . 0



w1(t)
w2(t)

...
wL(t)



+


r1(t)
r2(t)

...
rL(t)

+


v1(t)
v2(t)

...
vL(t)


=G0(q)w(t) + r(t) + v(t). (1)

where q−1 is the delay operator and the superscript 0

denotes the real value of a quantity. The matrix G0(q) will
be called the network matrix and equation (1) the network
model, and we will often omit the dependence on t and on q
whenever it does not create ambiguity. We assume that the
network model has the properties specified in Assumption
1 below.

Assumption 1. The network model (1) has the following
properties:

(1) all the transfer functions G0
ij(q) are proper

(2) there is a delay in every loop going from any wj(t) to
itself

(3) the stochastic processes vi(t) are stationary, zero
mean and mutually independent: E[vj(t)vk(s)] =
0 ∀t, s ∈ < for all j 6= k.

(4) the external excitation signals ri(t) are quasi-stationary
and uncorrelated with all noise signals vj(t)

(5) the network is internally stable.

In this paper we consider the problem of identifying a
particular transfer function, say G0

ji(q), from measured
node signals wk(t) and measured excitation signals rl(t).

3. BACKGROUND - THE DIRECT METHOD

Perhaps the most natural approach towards the identifi-
cation of a single transfer function Gji

1 in a network is
to estimate it from the scalar equation of (1) in which it
appears, based on the signals that appear in that equation.
This corresponds to a closed-loop identification problem
for a Multiple Input Single Output (MISO) feedback sys-
tem with L− 1 inputs and one output, namely wj . Let us
take, without loss of generality and to ease notation, j = 1
and i = 2, so that G12 is the desired transfer function.

We split up the vector w into

w =

[
w1

w̃2

]
(2)

where w̃2
∆
= [w2 . . . wL]

T
. Correspondingly, we split up the

matrix G0(q) into the 4-block matrix

G0 =


0 (G0

12 . . . G
0
1L ) G0

21
...

G0
L1


 0

. . . G0
2L

. . .
. . .

...
G0

L2 . . . 0


 (3)

which we denote as

G0 =

[
0 G̃0

1

G̃0
2 G̃

0
3

]
(4)

We can now rewrite the initial network model (1) as a
MISO feedback system as follows. First we rewrite (1) as[

w1

w̃2

]
=

[
0 G̃0

1

G̃0
2 G̃

0
3

] [
w1

w̃2

]
+

[
r1

r̃2

]
+

[
v1

ṽ2

]
(5)

Next we rewrite (5) in the traditional form of a MISO
feedback system:

w1 = G̃0
1w̃2 + r1 + v1 (6)

=G0
12w2 +

L∑
k=3

G0
1kwk + r1 + v1 (7)

w̃2 = [I − G̃0
3]−1{G̃0

2w1 + r̃2 + ṽ2}
(8)

We observe that, if the objective is to identify G0
12(q), then

it is natural to do so by identifying G̃0
1(q) (of which G0

12(q)
is the first element) directly from the scalar equation
(6), by using the prediction error method. This problem
setting is not the most realistic in large scale networks.
Large scale networks tend to be highly sparse, meaning
that most elements of G̃0

1(q) are known to be zero. With
this knowledge, then the identification can proceed as
described before but identifying only those elements that
are known to be nonzero.

Let us define some notation in order to take advantage
of the sparsity of the network. If (and only if) Gik is

1 From now on we omit the dependence on q and t whenever it
creates no ambiguity.



nonzero then node i is said to be an out-neighbour of node
k; similarly, node k is said to be an in-neighbour of node i.
Observe that the in-neighbours of a node i correspond to
the nonzero elements of the i-th line of the network matrix
G0; similarly, the out-neighbours of node k correspond to
the nonzero elements of the k-th column of G0. The set of
in-neighbours of node i is denoted N−i and the set of out-
neighbours of node k is denoted N+

k , their cardinalities

being d−i and d+
k , respectively. With these definitions one

can then write, in lieu of (7):

w1 =
∑

k∈N−
1

G1k(q)wk + r1 + v1 (9)

Define further the vector containing the node signals of
the in-neighbours of node 1, with dimension d−1 :

w−1 =
[
wl1 . . . wld−

1

]T
where l1, . . . , ld−1 are the indices corresponding to the in-
neighbours of node 1, and the corresponding partition of
the vector G̃1 in (6):

G−1 (q) =
[
G1,l1(q) . . . G1,ld−

1
(q)
]
.

This is the vector of the nonzero transfer functions in (7).
Equation (6) can then be rewritten as

w1 = G−1 (q)w−1 + r1 + v1. (10)

Next, let us define parametrized model structuresG1k(q, θ)
for each one of the transfer functions in the vector G−1 (q),
corresponding to a parametrized G−1 (q, θ), and a model
structure H1(q, θ) for the noise v1(t) = H0

1 (q)e1(t) where
e1(t) is a stationary zero-mean white noise process. Pre-
diction error identification then proceeds by defining the
predictor:

ŵ1(t, θ) = H−1
1 (q, θ)[G−1 (q, θ)w−1 (t) + r1(t)] (11)

and minimizing the energy of the prediction error:

ε(t, θ)
∆
= w1(t)− ŵ1(t, θ). (12)

This direct application of prediction error identification to
the network model has become known as the direct method
in recent literature. The following theorem from Van den
Hof et al. (2013) gives sufficient conditions for the direct
method to succeed in providing consistent estimates.

Theorem 3.1. Consider a dynamic network (6) satisfy-
ing Assumption 1 and the identification of the first row
of the network matrix by the direct method described
above. The estimate obtained for G−1 (q) is consistent if
the following two conditions are satisfied:

(1) there exists θ0 such that G−1 (q, θ) = (G−1 )0(q) and
H1(q, θ) = H0

1 (q)
(2) the spectral density of w−1 (t) is positive definite for

almost all ω.

The problem in the direct method, and also in other
known methods as described in Van den Hof et al. (2013)
is condition 2 of the above theorem: it is a condition
on internal signals wi(t). What is required for a proper
experiment design are conditions on the external signals -
ri(t) and vi(t) - that will enforce condition 2; this issue is,
however, not solved in the direct method 2 .
2 Actually it is mentioned as an open question in the last sentence
of Van den Hof et al. (2013).

This problem of transfer of excitation from the external
signals to the regressor used in the identification has been
solved for SISO systems in Gevers et al. (2009), where
necessary and sufficient conditions on the richness of the
external excitation signals for closed-loop systems have
been given. Although those tools can also be used in the
analysis of MISO problems, as illustrated in Gevers and
Bazanella (2015), no general results exist and, much more
importantly, the analysis requires knowledge of the whole
network.

A case study in the next section illustrates the difficulties
in this experiment design problem.

4. A MOTIVATING CASE STUDY

Consider a network with L = 20 nodes, of which we want
to identify the transfer function G34(q). The real network
has the graph presented in Figure 1 and the real transfer
function is G0

34(q) = −0.3q−1 + 0.8q−2. All noises vi are
white. The nonzero transfer functions are all of first or
second order; the full 20 × 20 matrix G0(q) is given in
Appendix .

Figure 1. The directed graph corresponding to the case
study; the transfer function of interest is the red edge

In order to apply the direct method, we need to know what
are the in-neighbours of node 3; these are nodes 2, 4, 5 and
9. With these we form the regressor

w−3 (t) = [w2(t) w4(t) w5(t) w9(t) ]
T

We take an Output-Error-like model structure, with
H3(q, θ) = H3(q) = 1 and full-order models for the transfer
functions to be identified - the desired G34 plus G32, G35

and G39. Then we apply the direct method with data
collected from the real system under 18 different excitation
scenarii: see Table 1. Each scenario consists of the excita-
tion of a selected number of ri signals with a persistently
exciting signal - stationary zero-mean white noise with
unit variance. In each scenario, one thousand Monte-Carlo
runs are performed, with ten thousand data in each run.
The average values obtained for the parameters in eighteen
different excitation scenarii are given in Table 2. Recall
that the real parameter values are a0

1 = −0.3 and a0
2 = 0.8.



In the first scenario, all ri’s are excited, which guarantees
that the regressor vector w−3 will have full-rank spectrum.
The result of the MC runs in the space of G34 parameters
is given in Figure 2. It is important to note that the scales
of the top and bottom plots are widely different. It is seen
from this Figure, as well as from Table 2, that consistent
estimation is obtained, as expected. But exciting all inputs
in order to identify a single transfer function is obviously
far from necessary and, most importantly, far from feasible
in a large network.

Figure 2. Scatter plot for Scenarios 1 to 4 (watch out:
different scales for each plot); scenarii 1 and 2 provide
consistent estimates, unlike scenarii 3 and 4

In fact, exciting a single input may be sufficient. We first
try exciting only the node which is the input to the desired
transfer function, i.e. node 4, but it does not result in
an informative experiment as can be seen both by the
average values in Table 2 and in Figure 3: consistency is
not achieved and the variance tends to infinity. Exciting
only r5 (scenario 5 in Table 2) proves to be enough, as can
be seen in Figure 3, but other “closeby” excitation scenarii,
i.e. exciting neighbors of the nodes 3 and 4 involved in the
desired transfer function G34 do not work either. On the
other hand, exciting “far away” nodes, like in scenario 17,
does provide consistent estimation.

Table 1. Excitation Scenarios

Scenario Inputs Scenario Inputs
1 All inputs (r1 - r20) 10 r2, r6, r7, r8
2 r3, r4, r5 11 r6, r7, r8, r9
3 r3 12 r7, r8, r9, r10
4 r4 13 r8, r9, r10, r11
5 r5 14 r9, r10, r11, r12
6 r3, r4 15 r10, r11, r12, r13
7 r3, r5 16 r11, r12, r13, r14
8 r4, r5 17 r1, r7
9 r1, r2, r6, r7 18 r1, r16

In Gevers and Bazanella (2015) we have shown that, to
obtain an excitation scenario for the direct method that
yields informative data, may require knowledge of the
whole network even though only a single transfer function
is to be identified.

Figure 3. Scatter plot for Scenarios 5 to 8 (watch out:
different scales for each plot); exciting r5 alone is
enough to provide consistent estimates

Table 2. Parameters Estimation

Parameters Parameters

Scenario a1 a2 Scenario a1 a2
1 -0.3001 0.7998 10 -0.3004 0.8018

2 -0.3002 0.8001 11 -0.2998 0.8073

3 -0.3918 -17.8802 12 -0.3002 0.8387

4 0.0526 70.9308 13 -0.2980 1.5186

5 -0.3011 0.8020 14 -0.2981 1.7612

6 -0.2124 15.5122 15 -0.3014 -0.7478

7 -0.3003 0.8001 16 -0.3315 -12.0514

8 -0.2997 0.8000 17 -0.3034 0.8007

9 -0.3001 0.8007 18 -0.3080 0.7992

5. THE NEW METHOD

In this Section we present a simple method which solves
both the problem of transfer of excitation and that of
measurement selection. In other words, with this method
we know a priori which inputs must be excited in order
to obtain an informative experiment and which nodes
need be measured, using only local information about the
network’s topology.

The method is based on the input-output description of
the system, which is obtained by rewriting it in a form that
relates directly the external inputs r, the disturbances v
and the outputs w:

w(t) = (I −G0(q))−1[r(t) + v(t)] (13)

= T 0(q)r(t) + v̄(t) (14)

where

T 0(q)
∆
= (I −G0(q))−1, v̄(t)

∆
= (I −G0(q))−1v(t). (15)

The description (14) will be called the input-output (I/O)
model of the network. It is well known that one can obtain
a consistent estimate T̂ (q) of T 0(q) from {w, r} data; this
is an open loop MIMO identification problem.

Suppose we have an estimate T̂ (q) of T 0; then an estimate

Ĝ of G0 can be obtained by solving either one of the
following two equations for Ĝ(q), each one being a set of
L2 linear equations:



T̂ (q)(I − Ĝ(q)) = I (16)

(I − Ĝ(q))T̂ (q) = I. (17)

If only one particular transfer function in G0 is desired,
then it can be obtained by solving a subset of these
equations; this rationale is the basis of our method. To
describe the method, we introduce some notations that
are specific to the identification of the transfer function
Gji. For simplicity, we also refer to the identification of
an edge of the network to refer to the identification of its
transfer function.
Notations:
• GN+

i
,i(q) = column vector of the out-going edges of i

• Tj,i(q) = the j, i element of matrix T (q)
• TN+

i
L(q) = submatrix of T (q) made up of its rows in N+

i

• TN+
i
,i(q) = i-th column of TN+

i
,L(q)

• TN+
i
N+

i
(q) = submatrix of T (q) made up of its rows and

columns in N+
i .

• Ei = i-th column of the identity matrix.

Consider the network (1) and assume that it is desired to
only identify a specific transfer function Gji.

Theorem 5.1. Perform an experiment under the follow-
ing conditions:

- excite node i and all its N+
i out-neighbors with

sufficiently rich signals
- measure the node signals at the N+

i out-neighbors of
node i.

Under these experimental conditions and using full-order
models for the elements of the matrix T 0, consistent
estimates T̂N+

i
N+

i
and T̂N+

i
,i of T 0

N+
i
N+

i

and T 0
N+

i
,i

can

be obtained by standard open-loop MIMO identification.
From these, a consistent estimate of G0

N+
i
,i

is obtained by

ĜN+
i
,i(q) = [T̂N+

i
N+

i
(q)]−1T̂N+

i
,i(q) (18)

Proof: First note that identification of T 0
N+

i
N+

i

and T 0
N+

i
,i

is an open-loop identification problem which, under the
specified experimental conditions and with full order mod-
els for the elements of these matrices, provides consistent
estimates. Now, consider the system of equations

T (q)(I −G(q)) = I, (19)

where it is desired to compute Gji(q) from T (q). The
desired Gji appears only in a subset of these equations,
its computation resting entirely on the solution of the i-
th column of (19). In the i-th column of I − G, the only
nonzero elements are: the desired Gji, the 1 at position
(i, i), and the Gki corresponding to the remaining d+

i out-
neighbors of i. As a result, the columns of T corresponding
to the zero elements of the i-th column of G do not
contribute to the computation of Gji using (19). It follows
that these columns need not be identified and, therefore,
the corresponding rk are not required. Stated otherwise,
for the identification of G0

ji, it is only required to excite

node i and its d+
i out-neighbors.

To compute Gji we compute the i-th column of (I − G),
of which Gji is an element. From (19), we thus get

T (I −G):i = Ei. (20)

Now let C be a selector matrix that selects the rows of T
that are in the setN+

i of out-neighbors of i. Premultiplying
(20) by this C yields

CT (I −G):i = C:i = 0 ⇔ TN+
i
,L(I −G):i = 0 (21)

because the i-th column of C is zero. Since (I − G):i

contains a 1 in position i and nonzero elements only in
the positions corresponding to N+

i , the last equation is
equivalent with

TN+
i
,i − TN+

i
N+

i
GN+

i
,i = 0, (22)

from which the result (18) follows. That TN+
i
N+

i
is non-

singular follows from Proposition 5.1 in Hendrickx et al.
(2017) 3 .

The desired transfer function Gji is an element of GN+
i
,i;

hence Theorem 5.1 provides a new method for the identifi-
cation of a single embedded module. The method rests on
the identification of a submatrix of the transfer function
matrix T 0; the number of elements T 0

kl that need to be
identified is d+

i × (1 +d+
i ), where d+

i is the number of out-
neighbors of the input node i of the desired Gji. What is
most important is that the theorem completely solves both
the informativity and the identifiability questions for the
identification of a single embedded module, namely which
nodes need to be excited and which nodes need to be mea-
sured, in addition to providing a computational method for
the estimation of Gji. Moreover, this solution requires only
local information about the network’s topology, namely
what nodes are the out-neighbors of node i.

In the same spirit, we can derive a dual method by
manipulating equation (17) instead of (16). In this case
only the j-th equation is relevant and we get:

(I −G)j:T = ET
j (23)

Taking a selector matrix C that selects the columns of T
that correspond to the in-neighbors of j yields:

(I −G)j:TC = Cj: = 0 ⇔ (I −G)j:TL,N−
j

= 0 (24)

because the j-th line of C is zero. Since (I−G)j: contains a
1 in position j and nonzero elements only in the positions
corresponding to N−j , the last equation is equivalent with

Tj,N−
j
−Gj,N−

j
TN−

j
N−

j
= 0, (25)

and we have proven the following result.

Theorem 5.2. Perform an experiment under the follow-
ing conditions:

- excite the node signals at all N−j in-neighbors of node
j with sufficiently rich signals

- measure node j and the node signals of its N−j in-
neighbors.

Under these experimental conditions and using full-order
models for the elements of the matrix T 0, consistent
estimates T̂N−

j
N−

j
and T̂j,N−

j
of T 0

N−
j
N−

j

and T 0
j,N−

j

can

be obtained by standard open-loop MIMO identification.
From these estimates, a consistent estimate of Gj,N−

j
is

given by

Ĝj,N−
j

(q) = T̂j,N−
j

(q)[T̂N−
j
N−

j
(q)]−1 (26)

3 Just apply it to A = C = N+
i .



The desired transfer function Gji is an element of Gj,N−
j

.

Proof: The proof is the exact dual of the proof of Theo-
rem 5.1, and is therefore omitted.

The desired transfer function Gji is an element of Gj,N−
j

.

The identification of G0
ji rests on the identification of a

submatrix of T 0 that contains (d−j + 1) × d−j elements,

where d−j is the number of in-neighbors of the output
node j of the desired Gji. Again, the identification of Gji

using the dual method of Theorem 5.2 requires only local
information about the network’s topology, namely what
nodes are the in-neighbors of node j.

Comment. If local information is available about both
the out-neighbors of node i and the in-neighbors of node
j, then the user has a choice, for the identification of
Gji, of applying either Theorem 5.1 or Theorem 5.2. The
decision may depend on the practically available excitation
and measurement scenarii. If both scenarii are possible,
he/she will then obviously chose to apply the method that
requires the smallest number of transfer functions T 0

kl to
be identified, by applying Theorem 5.1 if d+

i ≤ d−j and
Theorem 5.2 otherwise.

6. THE CASE STUDY REVISITED

Let us now apply our method to the identification of
G34(q) in our 20-node case study of section 4. It is seen
in the graph that node 4 has 3 out-neighbors, i.e. d+

4 = 3,
while node 3 has 4 in-neighbors, i.e. d−3 = 4. Thus we
identify G34(q) using the method of Theorem 5.1, noting
that the set of outneighbors of node 4 is N+

4 = {3, 5, 6}. So
we need an experiment in which we measure these three
nodes and excite them plus node 4. We have excited each
input ri, i = 3, 4, 5, 6 with independent white noises with
unit variance, and also applied unmeasured noise signals
vi, i = 3, 4, 5, 6 with variance 10−6.

From this experiment we have identified the nine transfer
functions in the matrix TN+

4 ,N+
4

and the three transfer

functions in the vector TN+
4 ,4. We have performed black-

box identification of order six models for these twelve
transfer functions by the instrumental variable method
in MatLab’s identification toolbox. The actual transfer
functions T 0

kl are of very large order, but models of order
six were enough to get a fit above 99%. HOW were they
identified? The identified transfer functions are in the form

Tij =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + b4z
−4 + b5z

−5 + b6z
−6

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4 + a5z−5 + a6z−6

and their identified parameters are given below, with eight
significant digits. Gian: Some of the estimated transfer
functions had unstable states that were removed. That’s
why some of the Ts have lower order.

T33

a1 = 3.8481674× 10−2

a2 = 3.0797313× 10−1

a3 =−6.6201436× 10−1

a4 = 1.7938664× 10−2

a5 = 3.0075344× 10−2

a6 = 0

b0 = 1.0005030

b1 = 3.1534410× 10−2

b2 =−1.7410433× 10−2

b3 =−2.2352584× 10−2

b4 =−2.0168467× 10−2

b5 = 8.5201918× 10−7

b6 = 0

T34

a1 =−4.6166469× 10−1

a2 = 3.1515405× 10−1

a3 =−8.3825398× 10−1

a4 = 3.5551666× 10−1

a5 =−5.3388080× 10−3

a6 = 0

b0 =−4.5876773× 10−3

b1 =−3.2505403× 10−1

b2 = 8.0327554× 10−1

b3 =−3.6555712× 10−1

b4 = 1.3053090× 10−2

b5 = 1.2556216× 10−6

b6 = 0

T35

a1 = 2.4570327× 10−1

a2 = 4.5393517× 10−1

a3 =−4.7766990× 10−1

a4 =−5.0273260× 10−2

a5 =−1.0096247× 10−2

a6 =−5.3395820× 10−2

b0 =−7.8937977× 10−2

b1 =−2.8932660× 10−1

b2 =−2.2567717× 10−1

b3 =−1.1488447× 10−1

b4 =−4.0703106× 10−2

b5 = 5.8362039× 10−3

b6 =−1.7599509× 10−17



T36

a1 = 3.2094476× 10−1

a2 = 3.8846671× 10−1

a3 =−5.6921619× 10−1

a4 =−1.3026078× 10−1

a5 = 2.9584499× 10−3

a6 = 2.2717961× 10−2

b0 = 1.4074532× 10−1

b1 =−2.1822255× 10−1

b2 = 1.0131479× 10−1

b3 =−1.0562591× 10−1

b4 = 1.7462396× 10−2

b5 = 9.7104478× 10−3

b6 = 1.7215627× 10−18

T53

a1 =−2.1525075× 10−2

a2 = 4.1218212× 10−1

a3 =−6.7085915× 10−1

a4 = 9.8264186× 10−2

a5 =−3.8151595× 10−2

a6 = 0

b0 =−2.4299859× 10−4

b1 = 4.2864147× 10−4

b2 = 4.9627613× 10−1

b3 =−2.0867406× 10−2

b4 = 2.1384076× 10−2

b5 =−8.0865862× 10−6

b6 = 0

T54

a1 =−1.9833111× 10−1

a2 = 1.8199887× 10−1

a3 =−7.5568457× 10−1

a4 = 1.3184591× 10−1

a5 = 9.6356440× 10−2

a6 = 0

b0 =−5.5988128× 10−4

b1 = 4.9701271× 10−1

b2 =−1.1035300× 10−1

b3 =−9.1997426× 10−2

b4 =−7.2354865× 10−3

b5 =−3.5608761× 10−5

b6 = 0

T55

a1 =−2.4661243× 10−1

a2 = 7.7627922× 10−1

a3 =−7.3814227× 10−1

a4 = 3.9799183× 10−1

a5 =−2.7861447× 10−1

a6 = 2.4048797× 10−2

b0 = 1.0017417

b1 =−2.7825384× 10−1

b2 = 7.0393709× 10−1

b3 =−8.6350269× 10−1

b4 = 3.4837217× 10−1

b5 =−3.0949202× 10−1

b6 =−1.1725324× 10−17

T56

a1 = 6.2495573× 10−2

a2 = 4.2084437× 10−1

a3 =−6.0218364× 10−1

a4 = 7.4963364× 10−2

a5 = 0

a6 = 0

b0 = 1.8924638× 10−2

b1 = 8.5600937× 10−2

b2 =−2.2788412× 10−2

b3 =−5.6722905× 10−2

b4 =−3.8189237× 10−6

b5 = 0

b6 = 0

T63

a1 = 4.8106647× 10−1

a2 =−7.2321028× 10−2

a3 =−5.1645253× 10−1

a4 =−4.1069797× 10−1

a5 = 3.1824379× 10−1

a6 =−9.2033189× 10−3

b0 =−8.8116822× 10−4

b1 =−3.8823253× 10−2

b2 =−1.8354666× 10−2

b3 = 2.6939801× 10−2

b4 = 4.8460620× 10−3

b5 =−5.1528647× 10−3

b6 =−1.0676972× 10−18



T64

a1 =−1.0520487

a2 = 1.0895993

a3 = 1.0072416

a4 = 1.0194335

a5 =−5.5836734× 10−1

a6 = 0

b0 =−3.7758880× 10−2

b1 = 3.8087588× 10−2

b2 =−1.7630291× 10−2

b3 =−1.3593510× 10−2

b4 = 1.0967873× 10−2

b5 =−2.0085089× 10−5

b6 = 0

T65

a1 = 8.5049286× 10−1

a2 = 3.7655852× 10−1

a3 =−4.0517460× 10−1

a4 =−5.2111539× 10−1

a5 = 1.9891282× 10−2

a6 =−1.8172786× 10−2

b0 =−4.7802708× 10−2

b1 =−1.4941565× 10−2

b2 = 1.2826575× 10−2

b3 = 3.8958096× 10−2

b4 = 1.6370716× 10−2

b5 =−1.6243042× 10−2

b6 =−1.9197463× 10−18

T66

a1 = 7.8166080× 10−1

a2 = 9.1263291× 10−1

a3 =−2.3568030× 10−3

a4 = 0

a5 = 0

a6 = 0

b0 = 9.9342966× 10−1

b1 = 7.7673764× 10−1

b2 = 9.1624167× 10−1

b3 = 6.6391065× 10−6

b4 = 0

b5 = 0

b6 = 0

With these transfer function estimates, we then computed
the estimate ĜN+

4 ,4 from equation (25), of which the

desired transfer function G34 is one of the elements. In
so doing, a transfer function of order 62 was obtained for
Ĝ34. We then proceeded with H2 order reduction using
the knowledge about the model class of the actual transfer
function, which is of the form G34(q, θ) = a1q

−1 + a2q
−2.

MORE details about the H2 The following estimates were
obtained: â1 = −0.2992 and â2 = 0.7979, which confirms
the efficiency of our new method. All details about this
case study will be provided in the ArXiv version of this
paper.

7. CONCLUSIONS

The direct method for the identification of a module in
a network is well known and easy to apply if informative
data are available. However, as we have illustrated through
a 20-node example, there is no practical way to design
an informative experiment for this method. Though the
excitation requirements vary for different methods and
for different input selections, they all suffer from this
limitation.

We have presented an identification method for which the
design of informative experiments is obviated. It consists
in performing the identification of part of the network’s
input-output model and then recovering the desired mod-
ule from these identified transfer functions. Because iden-
tification of the I-O model is an open loop identification
problem, it is clear which are the inputs that must be
excited and the critical issue becomes to determine what
is the smallest set of I-O transfer functions that must
be estimated in order to be able to uniquely recover the
desired module. We have shown that this smallest set
depends strictly on the network’s local topology - that is,
on what are the neighbours of nodes i and j - and we have
provided two choices for it, one involving the in-neighbors
of the end node of the desired module, and another one
the out-neighbors of its source node.

We have illustrated our method by a successful application
to the 20-node example.
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L. (2009). Identification and the information matrix:



how to get just sufficiently rich? IEEE Transactions on
Automatic Control, 54(12), 2828–2840.

Hendrickx, J., Gevers, M., and Bazanella, A. (2017).
Identifiability of dynamical networks with partial node
measurements. Submitted to IEEE Trans. Automatic
Control.

Van den Hof, P., Dankers, A., Heuberger, P., and Bombois,
X. (2013). Identification of dynamic models in complex
networks with prediction error methods- basic methods
for consistent module estimates. Automatica, 49, 2994–
3006.

Appendix A. THE 20X20 MATRIX

The matrix G0(q):

G0(q) =

[
G1 G2

G3 G4

]
where

G1 =



0 0 0 0 0 0 0 0 0 0
G2,1 0 0 0 0 G2,6 0 G2,8 0 0

0 G3,2 0 G3,4 G3,5 0 0 0 G3,9 0
0 G4,2 G4,3 0 0 G4,6 0 G4,8 0 0

G5,1 0 0 G5,4 0 G5,6 0 0 0 0
0 0 0 G6,4 G6,5 0 0 0 0 0
0 0 0 0 0 0 0 G7,8 0 0
0 0 0 0 G8,5 0 G8,7 0 0 0
0 G9,2 0 0 0 G9,6 0 G9,8 0 G9,10

0 0 0 0 0 0 0 G10,8 G10,9 0



G2 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 G7,12 0 G7,14 0 0 0 0 0 0
0 G8,12 G8,13 0 0 0 0 0 0 0
0 G9,12 0 0 0 0 0 0 0 0
0 G10,12 0 0 0 0 0 0 0 0



G3 =



0 0 0 0 0 0 0 0 0 G11,10

0 0 0 0 0 0 0 0 0 G12,10

0 0 0 0 0 0 0 G13,8 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 G18,10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



G4 =



0 G11,12 0 0 0 G11,16 0 0 0 0
G12,11 0 0 G12,14 0 0 0 G12,18 0 0
G13,11 0 0 G13,14 0 0 0 0 0 0

0 0 G14,13 0 G14,15 0 0 0 0 0
0 0 0 0 0 G15,16 0 G15,18 0 0
0 0 0 G16,13 0 0 0 0 0 0
0 0 0 0 0 G17,16 0 G17,18 G17,19 0
0 0 0 0 0 0 G18,17 0 0 0
0 G19,12 0 G19,14 0 0 0 G19,18 0 0
0 G20,12 G20,13 0 0 0 0 0 0 0


The transfer functions are described below:

G2,1 = −1.1576491× 10−01 + 4.2048459× 10−02z−1

G2,6 = −4.9391907× 10−01 + 2.3094301× 10−01q−1

G2,8 = −3.8295603× 10−01 + 3.7364537× 10−01q−1

G3,2 = −2.3501597× 10−01 + 2.2411979× 10−01q−1

G3,4 = −0.3q−1 + 0.8q−2

G3,5 = −0.5q−1

G3,9 = −1.5484356× 10−01 + 3.5947903× 10−01q−1

G4,2 = −3.4361929× 10−01 + 2.7664996× 10−01q−1

G4,3 = q−1

G4,6 = −4.4565148× 10−02 + 3.1267256× 10−02q−1

G4,8 = −3.0217221× 10−02 + 4.9084253× 10−01q−1

G5,1 = −4.4755747× 10−01 + 1.5153359× 10−01q−1

G5,4 = 0.5q−1

G5,6 = −1.8258082× 10−02 + 2.5655941× 10−02q−1

G6,4 = −4.0083967× 10−02 + 2.3831631× 10−02q−1

G6,5 = −4.9526830× 10−02 + 1.8655891× 10−02q−1

G7,8 = −4.2353188× 10−02 + 1.7016841× 10−03q−1

G7,12 = −3.8831215× 10−01 + 1.6625282× 10−01q−1

G7,14 = −1.3013545× 10−01 + 3.2468616× 10−01q−1

G8,5 = −4.8312501× 10−01 + 2.9208833× 10−01q−1

G8,7 = −4.3341455× 10−02 + 2.6095021× 10−02q−1

G8,12 = −2.0610019× 10−01 + 2.6998910× 10−01q−1

G8,13 = −1.4342078× 10−02 + 3.4009137× 10−02q−1

G9,2 = −2.0348115× 10−01 + 6.7364494× 10−02q−1

G9,6 = −2.9096829× 10−01 + 6.1878182× 10−02q−1

G9,8 = −4.7096177× 10−01 + 1.6149849× 10−01q−1

G9,10 = −3.6050395× 10−02 + 4.1517977× 10−02q−1

G9,12 = −3.1296376× 10−02 + 1.1860562× 10−01q−1

G10,8 = −3.0338765× 10−01 + 4.1470173× 10−01q−1

G10,9 = −3.4408597× 10−02 + 2.3732489× 10−03q−1

G10,12 = −3.4207005× 10−02 + 4.4904179× 10−02q−1

G11,10 =
2.4710993× 10−01q−1

1− 5.0578013× 10−01q−1

G11,12 =
2.4512609× 10−02q−1

1− 5.0974782× 10−01q−1

G11,16 =
2.3010071× 10−01q−1

1− 5.3979857× 10−01q−1

G12,10 =
2.0528463× 10−02q−1

1− 5.8943074× 10−01q−1

G12,11 =
2.1646986× 10−02q−1

1− 5.6706027× 10−01q−1

G12,14 =
2.0877819× 10−01q−1

1− 5.8244362× 10−01q−1

G12,18 =
2.0657294× 10−01q−1

1− 5.8685411× 10−01q−1



G13,8 =
2.1848002× 10−02q−1

1− 5.6303996× 10−01q−1

G13,11 =
2.2137643× 10−01q−1

1− 5.5724714× 10−01q−1

G13,14 =
2.2709971× 10−02q−1

1− 5.4580058× 10−01q−1

G14,13 =
2.2787928× 10−02q−1

1− 5.4424144× 10−01q−1

G14,15 =
2.4571974× 10−01q−1

1− 5.0856052× 10−01q−1

G15,16 =
2.4854075× 10−01q−1

1− 5.0291850× 10−01q−1

G15,18 =
2.0964010× 10−01q−1

1− 5.8071980× 10−01q−1

G16,13 =
2.1627442× 10−01q−1

1− 5.6745117× 10−01q−1

G17,16 =
2.3606224× 10−01q−1

1− 5.2787553× 10−01q−1

G17,18 =
2.4035419× 10−02q−1

1− 5.1929163× 10−01q−1

G17,19 =
2.3030840× 10−01q−1

1− 5.3938319× 10−01q−1

G18,10 =
2.1838053× 10−01q−1

1− 5.6323893× 10−01q−1

G18,17 =
2.3869253× 10−02q−1

1− 5.2261494× 10−01q−1

G19,12 =
2.4800810× 10−01q−1

1− 5.0398380× 10−01q−1

G19,14 =
2.4554410× 10−01q−1

1− 5.0891181× 10−01q−1

G19,18 =
2.3382918× 10−01q−1

1− 5.3234164× 10−01q−1

G20,12 =
2.1965134× 10−01q−1

1− 5.6069731× 10−01q−1

G20,13 =
2.2859570× 10−01q−1

1− 5.4280860× 10−01q−1


