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Abstract: The iterative Correlation-based Tuning (CbT) has been proposed recently to
tune multivariable linear time-invariant controllers. A key feature is the fact that the
controller parameters are updated by performing a single experiment per iteration. In
this contribution, the accuracy properties of the estimated parameters for2 × 2 systems
are compared for two cases of excitation, either a single reference or the two references
simultaneously. The performed analysis reveals that the presence of both reference signals
does not improves the accuracy of the estimated controller parameters compared to
the case with a single reference excitation. A heuristic solution to this problem has
been proposed. The results presented here show that there isa trade-off between the
experimental cost and the accuracy of the estimated parameters when performing a single
experiment per iteration.
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1. INTRODUCTION

Data-driven methods have drawn wide attention in the
control community in the last ten years. Several meth-
ods have appeared such as controller unfalsification
(Safonov and Tsao, 1997), simultaneous perturbation
stochastic approximation control (Spall and Cristion,
1998), iterative feedback tuning (Hjalmarssonet al.,
1998) and virtual reference feedback tuning (Campiet
al., 2002). A key question that arises in this research
area is how to cope with the noise that necessarily
corrupts the measurements and therefore also affects
the closed-loop performance.

1 The work of this author is partially supported by the Belgian
Programme on Interuniversity Attraction Poles, initiatedby the
Belgian Federal Science Policy Office.

Recently, another approach to data-driven controller
tuning appeared in (Karimiet al., 2003). The under-
lying idea of this method, labelled Correlation-based
Tuning (CbT), is inspired from the well-known corre-
lation approach in system identification (Söderström
and Stoica, 1983). The controller parameters are tuned
to decorrelate the closed-loop output error between
the designed and achieved closed-loop systems with
the external reference signal. Ideally, the closed-loop
output error only contains the contribution of the
noise. Moreover, the calculated controller parameters
are asymptotically insensitive to measurement noise.
A theoretical survey of this method can be found in
(Karimi et al., 2004).

In (Mišković et al., 2005), the tuning of LTI multi-
variable controllers using the CbT approach is pro-



posed. Assuming that the same number of inputs and
outputs, the off-diagonal elements of the controller
transfer function matrix are tuned to diagonalize the
closed-loop system, while the elements on the main
diagonal are tuned to provide the desired closed-loop
performance. The aspect that makes this approach par-
ticularly appealing for the tuning of MIMO controllers
is that a single experiment per iteration is sufficient
for tuning all controllers and decouplers regardless
of the number of inputs and outputs. This is a con-
siderable advantage compared to some other methods
where the number of experiments needed to estimate
the gradient increases with the number of plant inputs
nu and outputsny. For example, the IFT approach
requiresnynu + 1 experiments per iteration to tune
the controller transfer function (Hjalmarsson, 1999).
Now, the following question arises in this context: Is
the simultaneous excitation of all reference signals
advantageous or detrimental to the accuracy of the
simulated controller parameters?

To answer this question, a multivariable controller
is tuned for an2 × 2 system. The variance of the
estimated controller parameters is analyzed for two
cases of excitation, i.e. when a single reference signal
is used or when both reference signals are applied
simultaneously. The result of this analysis reveals that
the addition of the second reference signal impairs the
variance of the estimated controller parameters. An ad
hoc solution to cope with this increase in the variance
is proposed.

The paper is organized as follows. Some notations
and the idea of the multivariable CbT approach are
given in Section 2. Section 3 deals with tuning of LTI
multivariable controllers by the decorrelation proce-
dure. The variance analysis is presented in Section 4.
Finally, some concluding remarks are given in Section
5.

2. PRELIMINARIES

2.1 Notations

Consider the block diagram of the model-following
problem presented in Fig. 1. The upper part shows
the achieved closed-loop system with the unknown
2 × 2 true plant whose outputs can be described by
the following LTI multivariable discrete-time model:

y(t) = G(q−1)u(t) + v(t) (1)

wherey(t) ∈ R2 denotes the outputs of the true plant
at timet, u(t) ∈ R2 the control signals,v(t) ∈ R2

disturbances on the outputs andG(q−1) ∈ R2×2 a
transfer function matrix withq−1 being the backward-
shift operator. It is assumed thatv(t) is a zero-mean
quasi-stationary stochastic process.

The controller transfer function matrixK(ρ) ∈ R2×2

is parameterized by some parameter vectorρ ∈ Rnρ ,
andr(t) ∈ R2 represents external reference signals.
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Fig. 1. Achieved multivariable closed-loop system and
its reference model

The reference signalsr(t) are assumed to be uncorre-
lated with the disturbancesv(t). Furthermore, the ele-
ments of the reference signal vectorr(t) are assumed
to be mutually independent.

The (i, j) element of the controller transfer function
matrix is:

K(ij)(q−1, ρ) =
S(ij)(q−1, ρ)

R(ij)(q−1, ρ)
(2)

where

R(ij)(q−1, ρ) = 1 + r
(i,j)
1 q−1 + · · · + r(ij)

nr
q−nr

S(ij)(q−1, ρ) = s
(ij)
0 + s

(ij)
1 q−1 + · · · + s

(ij)
ns−1q

−ns+1

It is assumed that all controllersK(ij)(q−1, ρ), i =
1, 2, j = 1, 2 have the same order and have no
common parameters. Hence, the controller parameter
vectorρ can be written as follows:

ρ
T = [ρT

11, ρ
T
12, ρ

T
21, ρ

T
22] (3)

where

ρ
T
ij = [r

(ij)
1 , r

(ij)
2 , . . . , r(ij)

nr
, s

(ij)
0 , s

(ij)
1 , . . . , s

(ij)
ns−1]

Note thatnρ = 4(nr + ns).

The lower part in Fig. 1 shows the reference model
Md defining the desired behavior of the closed-
loop outputsyd(t). The reference model can be con-
structed, for example, as the closed-loop system con-
taining a model of the plantG0 and the controllerK0:

Md = (I + G0K0)−1G0K0. (4)

It is assumed that the reference modelMd has a
diagonal structure. In this way, the controllerK0

meets the control and decoupling specifications with
respect toG0.

The closed-loop response can be written as:

y(ρ, t) = T r(t) + Sv(t), (5)

and the control error is:

e(ρ, t) = r(t) − y(ρ, t) = S (r(t) − v(t)) , (6)

whereS denotes the output sensitivity function:

S = (I + GK)−1 (7)



andT the complementary sensitivity function:

T = (I + GK)−1GK (8)

with I ∈ R2×2 being the identity matrix.

The closed-loop output error is defined as:

εoe(ρ, t) = y(ρ, t) − yd(t). (9)

A few words regarding the notations: The signals
collected under closed-loop operation using the con-
troller K(ρ) will carry the argumentρ. The elements
of vector signals and transfer function matrices will
carry the position as a superscript in the parenthesis
and will not be in bold. For example,y(i)(ρ, t) will
denote theith component of the output vectory(ρ, t).
Furthermore, the backward-shift operatorq−1 will be
omitted whenever appropriate.

2.2 Idea of Multivariable Correlation-based Tuning

For the controller structure presented in Fig. 2, con-
sider the following design specification : controllers
K(21)(ρ) and K(12)(ρ) are to decouple the outputs
y(2)(ρ, t) andy(1)(ρ, t) from r(1)(t) andr(2)(t), re-
spectively; controllersK(11)(ρ) andK(22)(ρ) are to

provide satisfactory tracking ofy(1)
d (t) by y(1)(ρ, t)

andy
(2)
d (t) by y(2)(ρ, t), respectively. In other words,

the desired outputSd and complementaryTd sensi-
tivity functions are in a block-diagonal form.

Consider first the tuning of the decouplerK(12)(ρ).
When applying the controllerK0 to the true plant ex-
cited by the reference signalr(t), the outputy(1)(ρ, t)
contains the contributions due to the disturbancev(t)
and the reference signalsr(1)(t) andr(2)(t). The ref-
erence signalsr(1)(t) andr(2)(t) are mutually inde-
pendent and uncorrelated withv(t). Hence, the idea
of adjusting the parameters ofK(12)(ρ) is to make the
outputy(1)(ρ, t) uncorrelated with the reference sig-
nalr(2)(t). The resulting decoupler providesy(1)(ρ, t)
that contains only the contributions due tov(1)(t) and
r(1)(t), i.e. the influence ofv(2)(t) and r(2)(t) on
y(1)(ρ, t) is eliminated.

Now consider the tuning ofK(11)(ρ). Again, withK0

operating in the loop, the observed closed-loop out-
put errorε(1)

oe (ρ, t) contains a contribution due to the
disturbancev(t) and another contribution stemming
from the difference betweenG andG0 that, in turn,
has two parts originating fromr(1)(t) andr(2)(t). The
idea is to adjust the parameters ofK(11)(ρ) so as to

make ε
(1)
oe (ρ, t) uncorrelated withr(1)(t). The con-

troller updated in such a way compensates the effect of
modeling errors to the extent that the closed-loop error
ε
(1)
oe (ρ, t) contains only the disturbance filtered by the

closed-loop system. This way, the outputy(1)(ρ, t)

will achieve the desired outputy(1)
d (t). Note that the

effect of modeling errors due tor(2)(t) is eliminated
by the decouplerK(12)(ρ).
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Fig. 2. Multivariable2 × 2 controller

A similar reasoning follows for K(21)(ρ) and
K(22)(ρ) that are related to the outputy(2)(ρ, t).

3. DECORRELATION PROCEDURE

In (Mišković et al., 2005) the controller transfer func-
tion parameters are computed by iterative minimiza-
tion of the two-norm of the cross-correlation function
between an instrumental variable matrix and a vector
consisting of the closed-loop output errors and out-
puts. Here, the parameters of the controller are cal-
culated as solutions of the following system of corre-
lation equations:

F (ρ) , E
{

F̄ (ρ)
}

= 0 (10)

whereE{·} is the mathematical expectation, and the
vectorF̄ (ρ) ∈ Rnρ×1 reads:

F̄T (ρ) =
[

f̄T
11(ρ), f̄T

12(ρ), f̄T
21(ρ), f̄T

22(ρ)
]

(11)

with

f̄ij(ρ) =
1

N

N
∑

t=1

ζij(ρ, t)ηij(ρ, t) i, j = 1, 2 (12)

whereN is the number of data andζij(ρ, t) ∈ Rnζ the
vector of instrumental variables. Note thatnζ = nr +
ns, andnρ = 4nζ . According to the discussion in
Section 2.2, the variableηij(ρ, t) ∈ R is constructed
in the following way:

ηij(ρ, t) =

{

ε(i)
oe (ρ, t), i = j

y(i)(ρ, t), i 6= j
(13)

and the vectors of instrumental variablesζij(ρ, t)
read:

ζij(ρ, t) =

{

ζii(r
(i), ρ, t), i = j

ζij(r
(j), ρ, t), i 6= j.

(14)

The rationale behind (13) and (14) is as follows.
First, note that the component̄fij(ρ) ∈ Rnζ of
F̄ (ρ) is used to tune the controllerK(ij)(ρ). Then,
to tune the diagonal elements of the controller transfer
function, the vector of instrumental variablesζii(ρ, t)
is chosen to be correlated withr(i)(t) and independent
of v(i)(t). Note that, when all design specifications
are met,ε(i)

oe (ρ, t) contains only the contribution of
v(i)(t). On the other hand, to tune the decouplers it



is sufficient the decorrelater(j)(t) and y(i)(t), i.e.
ζij(ρ, t), i 6= j should be correlated withr(j)(t).

A solution of equations (10) can be found using one
iterative stochastic approximation procedure, for ex-
ample the Robbins-Monro algorithm (Robbins and
Monro, 1951):

ρi+1 = ρi − γiF̄ (ρi) (15)

whereγi is a scalar step size.

In (Karimi et al., 2004), it is shown that under the
assumptions:

(i) Boundedness of the signals in the loop (the cal-
culated controllers stabilize the closed-loop sys-
tem at each iteration).

(ii) The step size tends to zero appropriately fast.
(iii) The decorrelating controllerK∗ exists and be-

longs to the set of parameterized controllers (the
corresponding parameters will be denoted asρ

∗).
(iv) F (ρ) possesses continuous partial derivatives of

first and second order with respect toρ.

this scheme converges to a solution of the correlation
equations (10), provided that:

Q(ρ) = E

{

∂F̄ (ρ)

∂ρ

}

> 0 (16)

In this work we are interested to investigate the ac-
curacy properties of the parameter estimates in the
vicinity of the solution. Therefore, in the sequel it will
be assumed that this matrix is positive definite.

For this analysis, the structure of this matrix will be
studied. It follows from (3), (11), (12) and (16) that
Q(ρ) ∈ Rnρ×nρ can be expressed as:

Q(ρ) =











Q11
11 Q12

11 Q21
11 Q22

11

Q11
12 Q12

12 Q21
12 Q22

12

Q11
21 Q12

21 Q21
21 Q22

21

Q11
22 Q12

22 Q21
22 Q22

22











(17)

with Qij
kl being the derivative ofE{f̄ij(ρ)} with re-

spect toρkl:

Qij
kl = E

{

1

N

N
∑

i=1

∂ζij(ρ, t)

∂ρkl

ηij(ρ, t)

+
∂ηij(ρ, t)

∂ρkl

ζT
ij(ρ, t)

}

(18)

In the vicinity of the solution, the first term in (18)
vanishes since the derivative of the instrumental vari-
able vectorζij(ρ, t) is not correlated withηij(ρ, t).
Note that∂ηij(ρ, t)/∂ρkl = ∂yi(ρ, t)/∂ρkl.

At the solutionρ∗, using (5)-(8) one gets

∂y(ρ, t)

∂ρ
(m)
kl

∣

∣

∣

∣

∣

ρ∗
kl

(m)

= S(ρ∗)G
∂K(ρ)

∂ρ
(m)
kl

∣

∣

∣

∣

∣

ρ∗
kl

(m)

e(ρ∗, t)

(19)
wherem = 1, nr + ns.

Now, considering that the subvectorsρkl are indepen-
dent, andS is block-diagonal atρ∗, it follows from
(19) and the second equality in (6)

∂y(ρ, t)

∂ρ
(m)
kl

∣

∣

∣

∣

∣

ρ∗
kl

(m)

∼ e(l)(ρ∗, t) ∼ r(l)(t), v(l)(t)

(20)
where∼ denotes that the signal on the left side of this
operator is a function of the right-side signal. Using
this relationship, the expressions (14) and (18), and
the fact thatr(1)(t), r(2)(t), v(1)(t) andv(2)(t) are not
correlated, it can be deduced that:

Qij
kl = 0, j 6= l (21)

i.e. the matrixQ(ρ∗) takes the following form:

Q(ρ∗) =











Q11
11 0 Q21

11 0

0 Q12
12 0 Q22

12

Q11
21 0 Q21

21 0

0 Q12
22 0 Q22

22











(22)

where
Qij

kj ∼ r(j)(t), v(j)(t). (23)

Now, assuming the conditions for the algorithm (15) to
converge toρ∗ hold, it is of interest to investigate the
accuracy properties of the parameter estimates around
this solution as functions of the external reference
signalsr(1)(t) andr(2)(t). This is the topic of the next
section.

4. VARIANCE ANALYSIS

To perform the analysis in this section, one will make
use of the following theorem (Karimiet al., 2004):

Theorem 4.1.Assume that

(1) The iterative algorithm (15) converges toρ
∗ al-

most surely asi → ∞.
(2) The step sizeγi = α

i
where α is a positive

constant.
(3) The matrixD = I/2−αQ(ρ∗) has all eigenval-

ues with negative real part.

Then, the sequence
√

i(ρi−ρ
∗) converges asymptoti-

cally in distribution to a zero-mean normal distribution
with covarianceV

V = α2

∫

∞

0

eDx P eDT xdx (24)

where
P = lim

i→∞

E
{

F̄ (ρ∗)F̄T (ρ∗)
}

(25)

Before proceeding to the main result of this work, let’s
consider the forms of matricesP , D andV . Note that
(13) atρ = ρ

∗ reduces to:

ηij(ρ, t) =















S(ii)(ρ∗)v(i)(t), i = j
{

T (ii)(ρ∗)r(i)(t)

+S(ii)(ρ∗)v(i)(t)
}

, i 6= j

(26)



Then, taking into account thatr(1)(t), r(2)(t), v(1)(t)
andv(2)(t) are independent and using (11), (12), (25)
and (26), one gets , after straightforward but tedious
calculations, for the covariance matrixP :

P (ρ∗) =











P 11
11 0 0 0

0 P 12
12 P 21

12 0

0 P 12
21 P 21

21 0

0 0 0 P 22
22











(27)

where

P kl
ij = E

{

1

N2

N
∑

t=1

ζij(ρ, t)ηij(ρ, t)

×
N

∑

s=1

ζT
kl(ρ, s)ηkl(ρ, s)

}

. (28)

Observe also that the matrixD = 1/2I − Q(ρ∗)
has the same structure asQ(ρ∗) in (22), and that its
elements, due to (23), satisfy:

Dij
kj ∼ r(j)(t), v(j)(t). (29)

Finally, note that the covariance matrixV can be
partitioned as:

V =











V 11
11 V 12

11 V 21
11 V 22

11

V 11
12 V 12

12 V 21
12 V 22

12

V 11
21 V 12

21 V 21
21 V 22

21

V 11
22 V 12

22 V 21
22 V 22

22











. (30)

Next, two cases will be considered:

a) when the closed-loop system is excited by a sin-
gle reference signal, sayr(1)(t); the correspond-
ing matrices and its elements will carry the sub-
script “a”, for exampleV kl

a,ij , i, j, k, l = 1, 2, or
Da.

b) when the closed-loop system is excited by both
components ofr(t); the corresponding matrices
and its elements will carry the subscript “b”.

Note that, when onlyr(1)(t) is excited it is obvious
from (12) and (14) that one can tune only the parame-
ters of the controllersK(11)(ρ) andK(21)(ρ). Hence,
only the variancesV 11

11 andV 21
21 can be compared for

the two excitation cases. In order to provide a fair
comparison, it will be assumed whenr(1)(t) alone is
excited, that the controllersK(12)(ρ) and K(22)(ρ)
are kept fix to their optimal valuesK(12)(ρ∗) and
K(22)(ρ∗), respectively.

Now, the following result can be established.

Theorem 4.2.Consider the tuning of the parameters
ρ11 andρ21, related to the controllersK(11)(ρ) and
K(21)(ρ), respectively. Assume that the iterative algo-
rithm (15) converges toρ∗. Let the componentsr(1)(t)
andr(2)(t) be independent and persistently exciting of
sufficient order. Then, the covariance matrices of the

parameter estimateŝρ11 and ρ̂21 cannot decrease by
addition of the second excitationr(2)(t), i.e.

V 11
b,11 ≥ V 11

a,11 and V 21
b,21 ≥ V 21

a,21 (31)

Proof. Observe that the matricesV , D and P are
related via the following Lyapunov equation (Horn
and Johnson, 1990):

P + DV + V DT = 0. (32)

A straightforward computation of this expression, due
to the specific form ofD andP , gives the following
relation that includes the variancesV 11

11 andV 21
21 :

P̄ + D̄V̄ + V̄ D̄T = 0, (33)

where

P̄ =

(

P 11
11 0
0 P 21

21

)

, D̄ =

(

D11
11 D21

11

D11
21 D21

21

)

(34)

and

V̄ =

(

V 11
11 V 21

11

V 11
21 V 21

21

)

. (35)

Now, from (29), observe that̄D depends onr(1)(t)
and not onr(2)(t). Therefore,D̄ is identical for both
cases of excitation, i.e.̄Da = D̄b. Furthermore, note
that at the solution the closed-loop system is perfectly
decoupled. Then, from (26) and (28), one can con-
clude thatP 11

11 is also identical for both cases of ex-
citation. Let’s considerP 21

21 . It is obvious from (14),
(26) and (28) that the contribution ofr(2)(t) to P 21

21 is
positive definite. This contribution will be denoted as
∆P 21

21 . Therefore, one can write:

P̄b = P̄a +

(

0 0
0 ∆P 21

21

)

, P̄a + ∆P̄ (36)

where∆P̄ ≥ 0. For the covariance matrices̄Va and
V̄b, it can be writtenV̄b = V̄a + ∆V̄ . Consequently, it
follows that:

P̄b + D̄bV̄b + V̄bD̄
T
b =

(

P̄a + ∆P̄
)

+ D̄b

(

V̄a + ∆V̄
)

+
(

V̄a + ∆V̄
)

D̄T
b =

∆P̄ + D̄b∆V̄ + ∆V̄ D̄T
b = 0 (37)

The last equality can be written more illustratively as:

∆V̄ =

∫

∞

0

eDbx ∆P̄ eDT
b xdx. (38)

It is standard result in the literature that if∆P̄ ≥ 0
then∆V̄ ≥ 0 (Zhou and Doyle, 1998). The inequali-
ties (31) follows from the fact that any principal sub-
matrix of a positive semi-definite matrix is positive
semi-definite. 2

Theorem 4.2 states that the presence of the compo-
nentr(2)(t) does not improves at all the accuracy of
the parameters related to the controllersK(11)(ρ) and
K(21)(ρ). In fact, the accuracy is impaired in most
cases. This result is rather interesting taking into ac-
count the work of the same authors where, in the case
of direct closed-loop identification using prediction



error methods, it is shown that the addition ofr(2)(t)
almost always improves the variance of the estimated
parameters (Miškovićet al., 2006).

The instrumental-variable method in the field of sys-
tem identification brings about two opposite effects
of the excitation on the variance of the parameter
estimates: 1) An increase in the variance of the ex-
citation signal induces an increase in the variance of
the criterion, which in turn increases the variance of
the parameter estimates; 2) An increase in the vari-
ance of the excitation signal induces an increase in
the derivative of the predictor of the output. This
derivative enters inversely in the expression for the
variance of the parameter estimates. In general, if one
chooses the instruments as noise-free estimates of this
derivative, then the overall effect is that the variance
of the parameter estimates decrease as the variance of
the excitation signal increases. For more details, the
reader is referred to Section 9.5 in (Ljung, 1999).

Here, becausēD is insensible to the changes inr(2)(t),
only the first effect is present. A remedy to this would
be to do the following. Since the variance of the crite-
rion increases due to the increase of the variance of the
instrumental variables, see (14) and (28), the instru-
ments can be multiplied by an small positive constant
kζ . This way, the positive definiteness ofQ(ρ∗) is not
compromised and, at the same time, the variance of
the parameter estimates can be made small. However,
observe thatkζ cannot be made arbitrarily small since,
in the limiting case, the criterion becomes zero.

5. CONCLUSIONS

This contribution has presented a variance analysis
for the estimated parameters of a linear time-invariant
multivariable controller for two cases of excitation.
It has been shown that by simultaneous excitation of
both reference signals the variance of the estimated
controller parameters is larger than or equal to that of
the case with a single reference excitation. A heuristic
solution to this problem has been proposed.
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