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Abstract: The iterative Correlation-based Tuning (CbT$ baen proposed recently to
tune multivariable linear time-invariant controllers. A&k feature is the fact that the
controller parameters are updated by performing a singterxent per iteration. In
this contribution, the accuracy properties of the estitha@rameters fo2 x 2 systems
are compared for two cases of excitation, either a singkreete or the two references
simultaneously. The performed analysis reveals that tesguce of both reference signals
does not improves the accuracy of the estimated controliearpeters compared to
the case with a single reference excitation. A heuristiatsmh to this problem has
been proposed. The results presented here show that thar&dse-off between the
experimental cost and the accuracy of the estimated paeasnghen performing a single
experiment per iteration.
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1. INTRODUCTION Recently, another approach to data-driven controller
tuning appeared in (Kariret al., 2003). The under-

Data-driven methods have drawn wide attention in the lying idea of this method, labelled Correlation-based
control community in the last ten years. Several meth- Tuning (CbT), is inspired from the well-known corre-
ods have appeared such as controller unfalsificationlation approach in system identification (Soderstrom
(Safonov and Tsao, 1997), simultaneous perturbationand Stoica, 1983). The controller parameters are tuned
stochastic approximation control (Spall and Cristion, to decorrelate the closed-loop output error between
1998), iterative feedback tuning (Hjalmarsseinal, the designed and achieved closed-loop systems with
1998) and virtual reference feedback tuning (Caeipi  the external reference signal. Ideally, the closed-loop
al., 2002). A key question that arises in this research output error only contains the contribution of the
area is how to cope with the noise that necessarily noise. Moreover, the calculated controller parameters
corrupts the measurements and therefore also affectsire asymptotically insensitive to measurement noise.
the closed-loop performance. A theoretical survey of this method can be found in
(Karimi et al, 2004).

1 The work of this author is partially supported by the Belgian In (_MISKOVIC et al, 200,5)’ the tuning of LTI m_ultl-
Programme on Interuniversity Attraction Poles, initiatey the variable controllers using the CbT approach is pro-
Belgian Federal Science Policy Office.




posed. Assuming that the same number of inputs and
outputs, the off-diagonal elements of the controller
transfer function matrix are tuned to diagonalize the
closed-loop system, while the elements on the main r(t)

;_ Achieved Closed-Loop System v(t) |
| _elpt) u(p, 1) +% I y(p,t)
diagonal are tuned to provide the desired closed-loop T T K(p) G
|
|

performance. The aspect that makes this approach par-
ticularly appealing for the tuning of MIMO controllers

is that a single experiment per iteration is sufficient
for tuning all controllers and decouplers regardless -
of the number of inputs and outputs. This is a con- ya(®)
siderable advantage compared to some other methods
where the number of experiments needed to estimate
the gradient increases with the number of plant inputs Fig. 1. Achieved multivariable closed-loop system and
n, and outputsy,. For example, the IFT approach its reference model

requiresnyn, + 1 experiments per iteration to tune
the controller transfer function (Hjalmarsson, 1999).
Now, the following question arises in this context: Is
the simultaneous excitation of all reference signals
advantageous or detrimental to the accuracy of the

The reference signaig¢) are assumed to be uncorre-
lated with the disturbances). Furthermore, the ele-
ments of the reference signal vecidgt) are assumed
to be mutually independent.

simulated controller parameters? The (i, j) element of the controller transfer function
. . L matrix is:

To answer this question, a multivariable controller 3

is tuned for an2 x 2 system. The variance of the K (g L, p) = S(llj.) (¢, p) @)

estimated controller parameters is analyzed for two ’ R (g1, p)

cases of excitation, i.e. when a single reference signal,here

is used or when both reference signals are applied

simultaneously. The result of this analysis reveals that i) o1 (Grf) —1 i) —n

the addition of the second reference signal impairs the X (¢ p) =1+ g 4™

variance of the estimated controller parameters. An ad 56 (g1, p) = Sgij) + sgii)qfl 4ot sgff)_lq’”sﬂ
hoc solution to cope with this increase in the variance

is proposed. It is assumed that all controlleds ) (¢~ p), i =

1,2, 5 = 1,2 have the same order and have no
common parameters. Hence, the controller parameter
vectorp can be written as follows:

The paper is organized as follows. Some notations
and the idea of the multivariable CbT approach are
given in Section 2. Section 3 deals with tuning of LTI

multivariable controllers by the decorrelation proce- p’ = [pll, pls, Pa1, Pas) 3)
dure. The variance analysis is presented in Section 4.

. : : . . where
Finally, some concluding remarks are given in Section o S N
5. piTj = [rgm,?‘é”), e ,rfg),sé”),sgm, . ,SEZZ)_l]
Note thatn, = 4(n, + ns).
2. PRELIMINARIES The lower part in Fig. 1 shows the reference model
. Mgy defining the desired behavior of the closed-
2.1 Notations loop outputsy4(¢). The reference model can be con-

) ) _ structed, for example, as the closed-loop system con-
Consider the block diagram of the model-following taining a model of the plarGo and the controlleKo:
problem presented in Fig. 1. The upper part shows

the achieved closed-loop system with the unknown Ma = (I + GoKo) 'GoKo. (4)

2 x 2 true plant whose outputs can be described by |1 is assumed that the reference moddl, has a
the following LTI multivariable discrete-time model: diagonal structure. In this way, the controlli,

y(t) = G(qfl)u(t) +v(t) (1) meets the control and decoupling specifications with

respect tdGo.
wherey(t) € R? denotes the outputs of the true plant P 0

at timet, u(t) € R? the control signalsy(t) € R? The closed-loop response can be written as:
disturbances on the outputs ai¢~') € R?*? a

. o . t)=Tr(t Sv(t 5
transfer function matrix witly ~! being the backward- y(e.1) r(t) + Sv(b), ©®)
shift operator. It is assumed theft) is a zero-mean and the control error is:

uasi-stationary stochastic process.
q Y P e(p,t) = x(t) — y(p,1) = S (x(t) — v(1)), (6)

i 2x2
The controller transfer function matrit (p) € R whereS denotes the output sensitivity function:

is parameterized by some parameter vepter R,
andr(t) € R? represents external reference signals. S=(I+GK)™! @



and7 the complementary sensitivity function:

e (1) . u @ (2)
T = (I+GK) 'GK 8) K1i(p) )
with I € R?*? being the identity matrix.
The closed-loop output error is defined as: Ka1(p)
€oe(p,t) = y(p,t) — yal(l). 9)
Kiz(p)
A few words regarding the notations: The signals
collected under closed-loop operation using the con- e@ (1) 3 u®)
troller K(p) will carry the argumenp. The elements Ky (p) Y

of vector signals and transfer function matrices will
carry the position as a superscript in the parenthesis
and will not be in bold. For example, " (p,t) will
denote theé'® component of the output vectgt p, ). A similar reasoning follows for K(?Y)(p) and
Furthermore, the backward-shift operagor* will be K(22)(p) that are related to the outpyit®) (p, t).
omitted whenever appropriate.

Fig. 2. Multivariable2 x 2 controller

3. DECORRELATION PROCEDURE

2.2 ldea of Multivariable Correlation-based Tuning
In (MiSkovic et al,, 2005) the controller transfer func-

For the controller structure presented in Fig. 2, con- tion parameters are computed by iterative minimiza-
sider the following design specification : controllers tion of the two-norm of the cross-correlation function

K(Ql)(p) and K(12>(p) are to decouple the outputs between an instrumental variable matrix and a vector
y@ (p,t) andy® (p,t) from (D (t) andr3 (t), re- consisting of the closed-loop output errors and out-
spectively; controllerss (1)) (p) and K (2)(p) areto  Puts. Here, the parameters of the controller are cal-
provide satisfactory tracking ojfll)(t) by v (p, ) culated as solutions of the following system of corre-

lation equations:
andy'? () by y® (p, 1), respectively. In other words, a . B
the desired outpuSy and complementar¢y sensi- F(p) 2= E{F(p)} =0 (10)

tivity functions are in a block-diagonal form. whereE{-} is the mathematical expectation, and the

Consider first the tuning of the decoupl&i!2)(p).  VectorF(p) € R"*! reads:

When applying the controlldKq to the true plant ex- FT(p) = [FT FT 7T T 11
cited bythe reference Slgnﬂﬂt), the Outpuy(l)(p,t) . (p) [fll(p)ale(p)af21(p)7f22(p)] ( )
contains the contributions due to the disturban¢g with

and the reference signat§") (¢) andr(® (¢). The ref- B 1 N

erence signals() () andr(®(t) are mutually inde-  fij(P) = > Gilp i (pt) 0,5 =1,2 (12)
pendent and uncorrelated with(t). Hence, the idea t=1

of adjusting the parameters &f(1?) (p) is to make the  whereN is the number of data ang; (p, t) € R™< the
outputy(p, t) uncorrelated with the reference sig- vector of instrumental variables. Note that=n, +
nalr(®) (). The resulting decoupler providgs” (p, t) ns, andn, = 4n¢. According to the discussion in
that contains only the contributions dueutd’ (¢) and Section 2.2, the variablg; (p,t) € R is constructed

r((t), i.e. the influence of®(t) and r®)(t) on in the following way:

M (p,t) is eliminated. . o
y (p ) - . . . ( t): €g€)(p,t) 1= (13)
Now consider the tuning ok *1)(p). Again, withKo g\ vy (p,t), i

operating in the loop, the observed closed-loop out-
put errors’y) (p,t) contains a contribution due to the
disturbancev(t) and another contribution stemming _
from the difference betwee@ and Gy that, in turn, Giilp,t) = { Cii(r(%)apv t), i=j (14)
has two parts originating fromi) (£) andr 2 (¢). The A Gy (rY,p,t), i .

idea is to adjust the parametersisf'!)(p) S0 ast0  The rationale behind (13) and (14) is as follows.
make 'Y (p, t) uncorrelated with-() (t). The con- First, note that the componerft;(p) € R™ of
troller updated in such a way compensates the effect ofF(p) is used to tune the controllgs (i) (p). Then,
modeling errors to the extent that the closed-loop error to tune the diagonal elements of the controller transfer
sﬁﬁ)(p, t) contains only the disturbance filtered by the function, the vector of instrumental variablgs(p, t)
closed-loop system. This way, the outpyt) (p, 1) is chosen to be correlated witff) (t) and independent
will achieve the desired outpuf,” (¢). Note that the ~ of v(”)(¢). Note that, when all design specifications
effect of modeling errors due td?)(t) is eliminated  are met,sgle)(p, t) contains only the contribution of
by the decouplek ('?)(p). v (t). On the other hand, to tune the decouplers it

and the vectors of instrumental variablég(p, t)
read:



is sufficient the decorrelate’)(t) and y¥(t), i.e. Now, considering that the subvectgrg are indepen-

Gij(p,t), i # j should be correlated with9) (t). dent, andS is block-diagonal ap*, it follows from

i _ ) (19) and the second equality in (6)
A solution of equations (10) can be found using one

iterative stochastic approximation procedure, for ex- dy(p,t) - e(l)( “f) ~ O (t) o) (t)
ample the Robbins-Monro algorithm (Robbins and 3027) o P ’
. P '™
Monro, 1951): Kt (20)
Piv1 = p; —viF(p;) (15) where~ denotes that the signal on the left side of this

operator is a function of the right-side signal. Using
this relationship, the expressions (14) and (18), and
In (Karimi et al, 2004), it is shown that under the the fact that-(!) (t), 7(?) (¢), v()(t) andv(?) (t) are not

where-; is a scalar step size.

assumptions: correlated, it can be deduced that:
(i) Boundedness of the signals in the loop (the cal- 0=0, j#l (21)
culated controllers stabilize the closed-loop sys- j e the matrixQ(p*) takes the following form:
tem at each iteration). 1 1
(i) The step size tends to zero appropriately fast. n 0 Q0
(iii) The decorrelating controllefs* exists and be- . 0 Qi3 0 Qi
- Qlp*) = (22)
longs to the set of parameterized controllers (the oo Q4 oo
corresponding parameters will be denoteg8gs 12 22
. . . e 0 @pn 0 @
(iv) F(p) possesses continuous partial derivatives of
first and second order with respectdo where g , ,
. _ _ QY ~ (1), 09 (1). (23)
this scheme converges to a solution of the correlation
equations (10), provided that: Now, assuming the conditions for the algorithm (15) to
OF (p) converge tg™* hold, it is of interest to investigate the
Qp)=E {—p} >0 (16) accuracy properties of the parameter estimates around
9p this solution as functions of the external reference

signalsr() () andr(?) (¢). This is the topic of the next

In this work we are interested to investigate the ac- .
section.

curacy properties of the parameter estimates in the
vicinity of the solution. Therefore, in the sequel it will
be assumed that this matrix is positive definite. 4. VARIANCE ANALYSIS

For this analysis, the structure of this matrix will be
studied. It follows from (3), (11), (12) and (16) that 10 perform the analysis in this section, one will make

Q(p) € R™*™ can be expressed as: use of the following theorem (Karingt al., 2004):
11 12 21 22
11 @11 @i Wrn Theorem 4.1 Assume that
11 12 21 22
Qp) = ﬁ g ;f ;g (17) (1) The iterative glgorithm (15) convergespd al-
21 Wo1 Wa1 Wal most surely ag — oo.
Q2 Q3 Q% (2) The step sizey; = < wherea is a positive
it 0 being th o _ h constant.
with @} b(.amg the derivative oE{ f;;(p)} with re- (3) The matrixD = 1/2 — aQ(p*) has all eigenval-
spect topy,;: ues with negative real part.

Then, the sequenagi(p, — p*) converges asymptoti-
Z]l — Z 8(1] p.t) i (p, 1) cally in distribution to a zero-mean normal distribution
N & with covariance/

n Md P} @ Ve [Cerrpear )
P ’ 0
In the vicinity of the solution, the first term in (18) where P = lim E{F(p")F" o5
vanishes since the derivative of the instrumental vari- i { (p )} (25)
able vector¢;; (p, t) is not correlated withy;; (p, t).
Note thatdn;; (p, t)/0py, = 9y (p,t)/Opy- Before proceeding to the main result of this work, let's
At the solutionp*, using (5)-(8) one gets consider the forms of matriceg3, D andV'. Note that
(13) atp = p* reduces to:
dy(p;t * IK(p) * ii) [ %y, (i C
8((m)) =S(p")G P ((m) e(p,t) St )(P )U()(ﬁ)a =]
Pri o, m Pri o, om (19) nij(p,t) = {T(”) (p*)r () (26)

wherem = 1,7, + n,. +80) (p*)u (t)} i



Then, taking into account that® (¢), () (t), v(1) (¢)
andv(® (t) are independent and using (11), (12), (25)

and (26), one gets , after straightforward but tedious

calculations, for the covariance matfix

Pl 0 0 0
0 P2 P 0
P(p*) = 27
0 0 0 PZ
where
PE— g

)

LN
{ Nz > Gilp. s (p, )
t=1

} . (28)

Observe also that the matri = 1/21 — Q(p*)
has the same structure @4p*) in (22), and that its
elements, due to (23), satisfy:

lejj ~ (), 09 (¢).

N
x> Ch(p, s)m(p, 9)

s=1

(29)

Finally, note that the covariance matriX can be

partitioned as:

Vit iy Vi
11 12 21

‘/12 ‘/12 V12
11 12 21

Vor Vor Vo

11 12 21
Vaz Vas' Vos

22
Vll

22
V12

22
Vai

22
Vas

(30)

Next, two cases will be considered:

a) when the closed-loop system is excited by a sin-
gle reference signal, say") (t); the correspond-
ing matrices and its elements will carry the sub-
script “a”, for exampleV," ., i, 7, k,1 = 1,2, or
D,.

b) when the closed-loop system is excited by both
components of(¢); the corresponding matrices
and its elements will carry the subscript

Note that, when only-(!)(¢) is excited it is obvious

from (12) and (14) that one can tune only the parame-

ters of the controller& 'V (p) and K ?Y) (p). Hence,
only the variance$ ! andV3! can be compared for
the two excitation cases. In order to provide a fair
comparison, it will be assumed wheft) (¢) alone is
excited, that the controller& (') (p) and K ??)(p)
are kept fix to their optimal value& '?) (p*) and
K(22)(p*), respectively.

Now, the following result can be established.

Theorem 4.2 Consider the tuning of the parameters
py; and p,,, related to the controller& (*')(p) and
K1 (p), respectively. Assume that the iterative algo-
rithm (15) converges tp*. Let the components ) (¢)
andr(? (t) be independent and persistently exciting of
sufficient order. Then, the covariance matrices of the

parameter estimatgs,; and p,, cannot decrease by
addition of the second excitatiof® (t), i.e.

11 11 21 21
Vb,u > Va,u and ‘/;),21 > Va,21 (31)

Proof. Observe that the matricélg, D and P are
related via the following Lyapunov equation (Horn
and Johnson, 1990):

P+ DV +VDT =0. (32)

A straightforward computation of this expression, due
to the specific form ofD and P, gives the following
relation that includes the varianceg! and V3!

P+ DV +VDT =0, (33)
where
5_(Pi 0 ~_ (D Di
P (V) o= (BHDH) e
and 11 21
- Viy V,
V — 11 11 ) . 35
<‘/2111 ‘/2211 ( )

Now, from (29), observe thab depends on-(1)(t)
and not on~(?(¢). Therefore,D is identical for both
cases of excitation, i.d), = D,. Furthermore, note
that at the solution the closed-loop system is perfectly
decoupled. Then, from (26) and (28), one can con-
clude thatP}! is also identical for both cases of ex-
citation. Let's considePs. It is obvious from (14),
(26) and (28) that the contribution of? (¢) to P3 is
positive definite. This contribution will be denoted as
AP}, Therefore, one can write:

0 0
0 APZ

PbPa+< )APa+AP (36)
vyhereA]5 > 0. For_the c_:ovariagce matricds, and
V4, it can be writterl, = V, + AV. Consequently, it

follows that:

pb + vab + %Dg =
(P, + AP) + Dy (Vo + AV) + (Vo + AV) Df =
AP + DAV + AVD] =0 (37)

The last equality can be written more illustratively as:

AV = / ePv® AP ePi e dy. (38)
0

It is standard result in the literature thatAP > 0

thenAV > 0 (Zhou and Doyle, 1998). The inequali-

ties (31) follows from the fact that any principal sub-

matrix of a positive semi-definite matrix is positive

semi-definite. O

Theorem 4.2 states that the presence of the compo-
nentr()(¢) does not improves at all the accuracy of
the parameters related to the controll&rs!)(p) and
K@Y (p). In fact, the accuracy is impaired in most
cases. This result is rather interesting taking into ac-
count the work of the same authors where, in the case
of direct closed-loop identification using prediction



error methods, it is shown that the addition/6? (t) ~ Karimi, A,, L. MiSkovi¢ and D. Bonvin (2003). ltera-
almost always improves the variance of the estimated ~tive correlation-based controller tuning with ap-

parameters (Miskoviét al., 2006). plication to a magnetic suspension syst&on-

] ) ) ) trol Engineering Practicel 1(9), 1069-1078.
The instrumental-variable method in the field of sys- o.imi A L. Migkovié and D. Bonvin (2004). It-

tem identification brings about two opposite effects erative correlation-based controller tunitgter-

of the excitation on the variance of the parameter national Journal of Adaptive Control and Signal
estimates: 1) An increase in the variance of the ex- ProcessingL8, 645-664.

citation signal induces an increase in the variance of Ljung, L. (1999).System Identification - Theory for
the criterion, which in turn increases the variance of the User Il ed.. Prentice Hall. Upper Saddle
the parameter estimates; 2) An increase in the vari- River, NJ.

ance of the excitation signal induces an increase in Migkovie, L., A. Karimi, D. Bonvin and M. Gevers

the derivative of the predictor of the output. This (2005). Correlation-based tuning of linear mul-

derivative enters inversely in the expression for the tivariable decoupling controller. INCDC-ECC
variance of the parameter estimates. In general, if one 2005 Sevilla, Spain.

chooses the instruments as noise-free estimates of thiﬁ/liékovi'c, L., A. Karimi, D. Bonvin and M. Gevers
derivative, then the overall effect is that the variance (2006). Direct closed-loop identification bfx 2
of the parameter estimates decrease as the variance of
the excitation signal increases. For more details, the
reader is referred to Section 9.5 in (Ljung, 1999).

systems: Variance analysis. Bubmitted to 14th
IFAC Symp. on System identificatidtewcastle,

Australia.
Here, becausB is insensible to the changesit¥ (t), =~ Robbins, H. and S. Monro (1951). A stochastic ap-
only the first effect is present. A remedy to this would proximation methodAnn. Math. Stat22, 400—
be to do the following. Since the variance of the crite- 407.
rion increases due to the increase of the variance of theSafonov, M. G. and T-C. Tsao (1997). The unfalsified
instrumental variables, see (14) and (28), the instru-  control concept and learnindEEE Trans. on

ments can be multiplied by an small positive constant ~ Automatic Contro#2(6), 843-847.

k¢. This way, the positive definiteness@f p*) is not Soderstrom, T. and P. Stoica (1983). Instrumental
compromised and, at the same time, the variance of variable methods for system identification. In:
the parameter estimates can be made small. However, Lecture Notes in Control and Information Sci-
observe thak, cannot be made arbitrarily small since, ence(A. V. Balakrishnan and M. Thoma, Eds.).

in the limiting case, the criterion becomes zero. Springer-Verlag. Berlin.
Spall, J. C. and J. A. Cristion (1998). Model-free con-

trol of nonlinear stochastic systems with discrete-
5. CONCLUSIONS time measurement$EEE Trans. on Automatic

Control 43(9), 1198-1210.

This contribution has presented a variance analysisZhou, K. and J. C. Doyle (1998ssentials of Robust

for the estimated parameters of a linear time-invariant Control. Prentice-Hall. N.Y.

multivariable controller for two cases of excitation.

It has been shown that by simultaneous excitation of

both reference signals the variance of the estimated

controller parameters is larger than or equal to that of

the case with a single reference excitation. A heuristic

solution to this problem has been proposed.
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