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Abstract: An analysis of the variance for the parameters of a2 × 2 plant estimated in
closed-loop operation is performed. Two cases of excitation are considered, i.e. via either
a single reference signal or both references simultaneously. The resulting expressions are
valid for all conventional Prediction Error Models (PEM). It is shown that, regardless
of the parametrization, the presence of the second reference signal never impairs and, in
most cases, improves the accuracy of the parameter estimates. The analytical results are
illustrated by two simulation examples. The results presented here are straightforward to
extend to the case of direct closed-loop identification of anarbitrary multi-input system.
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1. INTRODUCTION

In (Geverset al., 2005), the authors consider the open-
loop identification of multi-input systems. The effect
of an additional input signal on the variance of the
polynomial coefficients in the case of FIR, ARX, AR-
MAX, OE and BJ models is investigated. Necessary
and sufficient conditions on the parametrization of
MISO models under which the addition of an input de-
creases the covariance of the parameter estimates are
provided. It is shown that, for SISO model structures
that have common parameters in the plant and noise
model, any additional input reduces the covariance of
all parameters, including the noise model parameters
and the parameters associated with the other input. It
is also shown that for systems with several inputs, the
accuracy improvement resulting from an additional in-
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Belgian Federal Science Policy Office.

put extends beyond the case of common parameters in
all transfer functions. The reader is referred to (Gevers
et al., 2005) for details.

The present contribution is a continuation of that work
but in the context ofdirect closed-loopidentification.
A Linear Time-Invariant (LTI) system with two inputs
and two outputs is to be identified using data collected
in closed-loop operation. Assume that there are no
common parameters between the models associated
with each of the outputs. Assume furthermore that
the disturbances acting on the outputs are not corre-
lated. For systems fulfilling these two assumptions, a
MISO model can be first identified for each output
separately and then the resulting individual models
combined into a final MIMO model (Dayal and Mac-
Gregor, 1997). Now, the following questions arise: Do
the conditions on the parametrization of the MISO
structures that apply to the open-loop identification
also hold for the case of direct closed-loop identifica-



tion (with the difference that in closed-loop operation
the external reference signals are excited instead of the
inputs)? In what way does the correlation of the input
signals, due to the presence of the feedback, affects
the accuracy of the parameter estimates?

To answer these questions, a general model structure is
introduced that encompasses all commonly-used para-
metric model structures. It is assumed that the system
(including the noise model) is in the model set. An
analysis, asymptotic in data length but not in model or-
der, of the variance of the estimated parameters in this
structure is performed for two cases of excitation: (i)
a single reference signal is used to excite the closed-
loop system; (ii) both references are applied simulta-
neously. A similar asymptotic analysis is performed
in (Bomboiset al., 2005), where the variances in both
open and closed loop for the BJ models are compared
for SISO systems.

The result of this analysis is that in the case of closed-
loop identification the following two situations can be
distinguished:

(i) If all parameters of the noise model are present
in the plant model, or if there is no noise model at
all, then the accuracy of all parameter estimates
is always improved by applying both references
simultaneously. For the FIR and OE structures,
this result is in contrast to the open-loop case
where existence of common parameters between
the plant and noise models is required to improve
the accuracy of all parameter estimates.

(ii) If the noise model contains some parameters that
are independent of the plant model, then the si-
multaneous excitation of both reference signals
cannot worsen the quality of the parameter esti-
mates.

The paper is organized as follows. Preliminaries con-
cerning prediction error identification are given in
Section 2. In Section 3, the expression describing the
influence of the reference signals on the information
matrix is derived. This expression is used for the com-
putation of the variance of the parameter and transfer
function estimates in Section 4. Section 5 illustrates
the analytical result via two simulation examples. Fi-
nally, the conclusions are given in Section 6.

2. PRELIMINARIES

Consider the unknown LTI2 × 2 “true” plant:

S : y(t) =G(q−1)u(t) +H(q−1)η(t)

=

[

G11 G12

G21 G22

]

u(t) +

[

H1 0
0 H2

]

η(t) (1)

whereG11, G12, G21 and G22 are strictly causal,
finite-order, rational transfer functions not necessar-
ily analytic outside the unit circle, andH1 andH2

are stable and inversely stable transfer functions. The
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Fig. 1. Closed-loop configuration

backward-shift operatorq−1 will be omitted in the
sequel whenever appropriate. The signaly(t) ∈ R2

is the output of the true plant,u(t) ∈ R2 the control
signal, r(t) ∈ R2 an external reference signal and
η(t) ∈ R2 white noise input with varianceσ2

η =
diag(σ2

η1
, σ2

η2
). The systemS is controlled by the sta-

bilizing controllerK ∈ R2×2 as depicted in Fig. 1.
The control signalu(t) can be expressed as a function
of r(t) as follows:

u(t) =U (r(t) −Hη(t))

=

[

U11 U12

U21 U22

]

(r(t) −Hη(t)) (2)

where the input sensitivity functionU is U = KS,
with S = (I +GK)−1 the output sensitivity function.

Consider now the direct closed-loop identification of
the subsystemS1 of the systemS:

S1 : y1(t) = G11u1(t) +G12u2(t) +H1η1(t) (3)

using the following model structure:

M = {G11(α), G12(α, β), H1(α, β, γ),

θ =
(

αT βT γT
)T ∈ Dθ ⊂ Rnθ

}

(4)

whereG11(α),G12(α, β) andH1(α, β, γ) are rational
transfer functions,θ ∈ Rnθ is the vector of model
parameters, andDθ is a subset of admissible values
for θ. It is assumed that the true subsystemS1 can
be described by this model structure for someθ0 =
(αT

0 , β
T
0 , γ

T
0 )T ∈ Dθ. Note that this parametrization

covers a wide range of model structures. For example,
if one considers the ARMAX structure:Ay1(t) =
B11u1(t) + B12u2(t) + C1η1(t) then the subvector
α contains the parameters of the polynomialsA and
B11, β contains the parameters ofB12 andγ contains
the parameters ofC1. HereH1 = H1(α, γ).

The direct method gives consistent estimates of the
open-loop system if the data is sufficiently informative
with respect to the adopted model structure and if
the true system, including the noise model, can be
described within the chosen parametrization (Ljung
and Forssell, 1999). Here, sufficiently informative data
means that the signalsu(t) are persistently exciting of
appropriate order. In closed loop, this is ensured e.g.
by a persistently exciting reference signal. Using a set



of input-output data of lengthN acquired in closed-
loop operation, the estimatêθN is calculated via the
prediction error criterion (Ljung, 1999):

θ̂N =





α̂N

β̂N

γ̂N



 = arg min
θ∈Dθ

1

N

N
∑

t=1

[ε(t, θ)]2 (5)

where the one-step ahead prediction errorε(t, θ) for
(3) is defined as:

ε(t, θ)
∆
= y1(t) − ŷ1(t|t− 1, θ)

=H1(θ)
−1 (y1(t) −G11(θ)u1(t)

−G12(θ)u2(t)) (6)

and the transfer functions are written generically as
functions of the parameter vectorθ.

Let us assume that the parameter estimatesθ̂N con-
verge to the true parameter vectorθ0 as N tends
to infinity. Then, the parameter error converges to a
Gaussian random variable:

√
N

(

θ̂N − θ0

)

dist−→ N (0, Pθ) (7)

where the covariance matrixPθ is given by:

Pθ = σ2
η1(t)[Eψ(t, θ0)ψ

T (t, θ0)]
−1 (8)

with ψ(t, θ) ,
∂ε(t,θ)

∂θ
. Typically, to compute approx-

imate expressions for the covariance of the parameter
vector estimates, the asymptotic covariance formulas
(7)-(8) are used:

cov(θ̂N ) ≈ 1

N
Pθ ,

σ2
η1(t)

N
M−1. (9)

M is called the information matrix. In the next sec-
tion, an expression forM is derived that shows the
dependence of this matrix on the external excitation
signals. This expression, together with (9), will help
us analyze the dependence of the covariance of the
parameter vector estimatêθN onr1(t) andr2(t).

3. EXPRESSION FOR THE INFORMATION
MATRIX M

Combining (2), (3) and (6), the gradient of the predic-
tion error with respect to the parameters atθ = θ0 can
be expressed as follows:

ψ(t, θ0) = H1
−1

[(

gθ
11U11 + gθ

12U21

)

r1(t)

+
(

gθ
11U12 + gθ

12U22

)

r2(t)

+
(

hθ
1 − gθ

11U11H1 − gθ
12U21H1

)

η1(t)

−
(

gθ
11U12H2 − gθ

12U22H2

)

η2(t)
]

, Π1r1(t) + Π2r2(t) + Π3η1(t) + Π4η2(t)(10)

where

gθ
11 =

∂G11(θ)

∂θ

∣

∣

∣

∣

θ=θ0

; gθ
12 =

∂G12(θ)

∂θ

∣

∣

∣

∣

θ=θ0

and

hθ
1 =

∂H1(θ)

∂θ

∣

∣

∣

∣

θ=θ0

. (11)

The quantitiesΠ1, Π2, Π3 andΠ4 are introduced in
(10) for the sake of simplicity of notation.

From (8)-(11), and using Parseval’s theorem and the
fact thatr1(t), r2(t), η1(t) and η2(t) are not corre-
lated, the information matrix can be rewritten as:

M =
1

2π

∫ π

−π

{Π1Π
∗
1Φr1

+ Π2Π
∗
2Φr2

+

+ Π3Π
∗
3ση2

1

+ Π4Π
∗
4ση2

2

}

dω

,M(r1) +M(r2) +M(η1) +M(η2) (12)

where(.)∗ is used to denote the complex conjugate.

Consider now the partition of the parameter vectorθ

in (4). The sensitivities of the transfer functionsG11,
G12 andH1 with respect toθ read:

gθ
11 =

(

gα
11 0 0

)T
,

gθ
12 =

(

gα
12 g

β
12 0

)T
and

hθ
1 =

(

hα
1 h

β
1 h

γ
1

)T
(13)

where the definition of the components ofgθ
11, gθ

12 and
hθ

1 is analogous to that in (11). It follows from (10),
(11) and (13) that the quantityΠ1 reduces to:

Π1 = H1
−1

(

gα
11U11 + gα

12U21 g
β
12U21 0

)

(14)

Consequently, the contribution ofr1(t) to M can
formally be expressed as:

M(r1) =





M11(r1) M12(r1) 0
M21(r1) M22(r1) 0

0 0 0



 . (15)

Similar calculations provide the expressions for
M(r2), M(η1) andM(η2), from which one can ex-
press the information matrixM in the following form:

M =





M11(r, η) M12(r, η) M13(η1)
M21(r, η) M22(r, η) M23(η1)
M31(η1) M32(η1) M33(η1)



 . (16)

If an element ofM carries the argumentr and/orη,
this means that this particular element depends onboth
r1(t) andr2(t) and/orη1(t) andη2(t). Otherwise, the
elements ofM carry as argument only the particular
component, for exampleM33(η1) depends only on
η1(t).

In the sequel, the effect of the presence/absence of
the second external reference signalr2(t) on the vari-
ance of the elements of the parameter vector estimate
is analyzed. Note that, for a given model structure,
the presence/absence of a particular external reference
signal does not change the structure of the information
matrixM due to the fact that, in closed-loop opera-
tion, both inputsu1(t) andu2(t) are excited by both
reference signals.



4. EFFECT OF THE SECOND REFERENCE
SIGNAL

Consider the form of the matrixM in (16). All pos-
sible model structures that can be derived from the
parametrization (4) can be divided in two groups:

A) The model structures where the subvectorγ of
the vectorθ is empty (there are no parameters in
the noise modelH1 that are independent of the
plant model), or which contain no noise model
at all. Among others, this group includes the
classical FIR, ARX and OE model structures.

B) The noise model contains some (not necessarily
all) parameters that are independent of the plant
model. This group includes the ARMAX and BJ
model structures in addition to some less conven-
tional structures where, for example, common
parameters are not shared by all transfer func-
tions (e.g. there are common parameters between
G12 andH1 but not withG11).

In order to study the effect ofr1(t) andr2(t) on the
accuracy of the parameter estimates ofα, β andγ, we
introduce:

C , M−1 =





Cα Cαβ Cαγ

Cβα Cβ Cβγ

Cγα Cγβ Cγ



 (17)

Note thatcov(α̂N ) ≈ σ2

η1

N
Cα, cov(β̂N ) ≈ σ2

η1

N
Cβ ,

andcov(γ̂N ) ≈ σ2

η1

N
Cγ . Furthermore, the variances of

the identified plant modelsG11(θ̂N ) andG12(θ̂N ) and
the identified noise modelH1(θ̂N ) can be calculated
using Gauss’ approximation formula (Ljung, 1999).
For large number of dataN and by inserting (13) for
gθ
11, gθ

12 andhθ
1, one gets:

var
(

G11(e
jω , θ̂N )

)

≈ σ2
η1

N
(gα

11)
∗
Cα g

α
11

var
(

G12(e
jω , θ̂N )

)

≈ σ2
η1

N

{

(gα
12)

∗
Cαg

α
12

+(gβ
12)

∗Cβ g
β
12

}

var
(

H1(e
jω , θ̂N )

)

=
σ2

η1

N

{

(hα
1 )

∗
Cαh

α
1

+(hβ
1 )∗Cβ h

β
1 + (hγ

1 )
∗
Cγ h

γ
1

}

.(18)

In the sequel, the analysis is performed separately
for the two groupsA andB, and the corresponding
covariance matricesC and their elements will carry
the appropriate subscripts “A” and “B”, respectively.
Furthermore, the block-diagonal elementsCα, Cβ ,
Cγ , the matricesC andM will carry the superscript
“(1)” when only reference signalr1(t) is applied
and “(2)” when both reference signals are applied
simultaneously.

4.1 GroupA

When the vectorγ is empty and both excitation signals
r1(t) andr2(t) are present, the information matrixM
from (16) reduces to

M
(2)
A

=

(

M11(r, η) M12(r, η)
M21(r, η) M22(r, η)

)

. (19)

The corresponding information matrix when exciting
r1(t) alone reads:

M
(1)
A

=

(

M11(r1, η) M12(r1, η)
M21(r1, η) M22(r1, η)

)

. (20)

The matrixM (2)
A

can be written as:

M
(2)
A

= M
(1)
A

+ ∆M̄ (21)

with

∆M̄ ,

(

M11(r2) M12(r2)
M21(r2) M22(r2)

)

. (22)

The following result is an immediate consequence of
the expression (21) and the fact that∆M̄ > 0.

Theorem 4.1. Consider the closed-loop identification
of the parameter vectorsα andβ of the model struc-
tureA ⊂ M. Let the excitation signalsr1(t) andr2(t)
be independent and persistently exciting of sufficient
order. Then, the covariance matrices of the parameter
estimateŝα andβ̂ decrease by addition of the second
excitationr2(t), i.e.

C
(2)
α,A < C

(1)
α,A and C

(2)
β,A < C

(1)
β,A. (23)

Proof. The inequalities (23) are a direct consequence
of the following expression:

C
(1)
A

− C
(2)
A

= C
(2)
A

∆M̄C
(1)
A

, ∆CA > 0. (24)

2

Comments

1) For a structure from the groupA, the simulta-
neous excitation ofr1(t) andr2(t) reduces the
covariance of the estimates of the parameter vec-
tors α andβ compared to the case whenr1(t)
alone is excited.

2) If the variance ofr2(t) tends to infinity,∆M̄

and M (2)
A

also tend infinity and consequently

C
(2)
A

tends to zero. The intuition is thatα and
β become perfectly known when the power of
r2(t), and therefore the power ofu1(t) andu2(t),
tends to infinity.

3) The presence ofr2(t) reduces the variance of all
transfer function estimates. If the power ofr2(t)
grows unbounded, the variances ofG11(θ̂N ),
G12(θ̂N ) andH1(θ̂N ) tend to zero.

4.2 GroupB

When onlyr1(t) is excited, it follows from (10)-(13)
that the information matrixM (1)

B
has the following

form:



M
(1)
B

=





M11(r1, η) M12(r1, η) M13(η1)
M21(r1, η) M22(r1, η) M23(η1)
M31(η1) M32(η1) M33(η1)



 . (25)

When bothr1(t) andr2(t) are present, the information

matrix M (2)
B

is given by expression (16).M (1)
B

and

M
(2)
B

are related as follows:

M
(2)
B

= M
(1)
B

+ ∆M (26)

with

∆M =





M11(r2) M12(r2) 0
M21(r2) M22(r2) 0

0 0 0



 . (27)

Next, the following result can be established.

Theorem 4.2. Consider the closed-loop identification
of the parameter vectorsα, β and γ of the model
structureB ⊂ M. Let the excitation signalsr1(t)
and r2(t) be independent and persistently exciting
of sufficient order. Then, the covariance matrices of
the parameter estimateŝα and β̂ cannot increase by
addition of the second excitationr2(t), i.e.

C
(2)
α,B ≤ C

(1)
α,B and C

(2)
β,B ≤ C

(1)
β,B. (28)

In addition, the covariance matrices ofγ̂ are strictly
smaller forr2(t) 6= 0 compared tor2(t) = 0, i.e.

C
(2)
γ,B < C

(1)
γ,B. (29)

Proof. First note that the matrix∆M is positive
semi-definite (observe the non-negative contribution
of r2(t) to the elements ofM in (12)). Consequently,

C
(1)
B

− C
(2)
B

=
(

M
(2)
B

)−1(

M
(2)
B

−M (1)
B

)(

M
(1)
B

)−1

=C
(2)
B

∆MC
(1)
B

, ∆CB ≥ 0. (30)

Now, the expression (28) follows from the fact that any
principal submatrix of a positive semi-definite matrix
is positive semi-definite. Also, it follows from (30)
that C(2)

γ,B ≤ C
(1)
γ,B. However, this inequality can be

strengthened as follows. Whenr1(t) alone is present,
by straightforward calculation of the inverse of the
(3, 3) block-element ofM (1)

B
, one obtains:

C
(1)
γ,B = (M33(η1) − (M31(η1)M32(η1)) (31)

×
(

M11(r1, η) M12(r1, η)
M21(r1, η) M22(r1, η)

)−1

×
(

M13(η1)
M23(η1)

)

)−1

.

Similarly, when bothr1(t) andr2(t) are applied:

C
(2)
γ,B = (M33(η1) − (M31(η1)M32(η1))

×
((

M11(r1, η) M12(r1, η)
M21(r1, η) M22(r1, η)

)

+ ∆M̄

)−1

× (M13(η1)M23(η1))
T
)−1

(32)

where the matrix∆M̄ > 0 is given in (22). By
comparing expressions (31) and (32), the expression
(29) follows immediately. 2

Comments

1) For a structure of the groupB, the presence of a
second reference signalr2(t) does not increase
the covariance of the estimates of the parameter
vectorsα, β and reduces the covariance of the
estimates ofγ. This statement is valid also for
model structures with independent parametriza-
tion of the plant and noise models such as BJ.

2) If the energy ofr2(t) grows unbounded, expres-

sions (32) and (22) reveal thatC(2)
γ,B tends to

M−1
33 (η1). At the same time, using (16), it is

straightforward to show thatC(2)
α,B andC(2)

β,B tend
to zero. This can be explained as follows: when
r2(t) goes to infinity,u1(t) and u2(t) also go
to infinity, and the parametersα andβ become
perfectly known; then, the estimation ofγ cor-
responds to the identification of the unknown
parameters of the Moving Average (MA) model
y(t) = H1(q

−1)η1(t) (some parameters ofH1

might already be known as they are part ofα

and/orβ).
3) The excitationr2(t) never impairs and in most

cases improves the accuracy of all transfer func-
tion estimates: see (28), (29) and (18). When the
power ofr2(t) goes to infinity, the variances of
G11(θ̂N ) andG12(θ̂N ) tend to zero.

4) Even when the plant and noise models are pa-
rameterized independently, there is a strong cor-
relation between the parameter estimates due to
closed-loop operation. A lower variance of the
plant parameter estimates implies a lower vari-
ance of estimates of the parameters associated
with the noise model and vice versa.

It follows from Theorems 4.2 and 4.1 that, regardless
of the parametrization, the presence of the external
signalr2(t) does not reduce the accuracy of the pa-
rameter vector estimates obtained via direct closed-
loop identification. This conclusion holds for any con-
troller K that guarantees informative experiments in
closed loop. It follows from (12) that, for both groups
A andB, the contribution of the noise is never detri-
mental to the precision of the parameter estimates.

5. SIMULATION RESULTS

In order to illustrate the analytical results for both
groupsA and B, two academic examples are con-
sidered. In both simulation examples, the plants are
controlled by the following2 × 2 controller:

K(q−1) =
0.04(1 − 0.3q−1)

(1 − 0.4q−1)

(

1 0.1
−0.1 1

)

(33)

The controller is designed so as to stabilize both plants
without any additional performance consideration.



A Monte-Carlo simulation is performed to compare
the case where the reference signalr1(t) alone is ex-
cited with the case where the two reference signals are
applied simultaneously. The reference signalsr1(t)
andr2(t) are PRBS generated by a 10-bit shift register
with data lengthN = 1023 with standard deviations
σr1

= 1 andσr2
= 10. The disturbance signalsη1(t)

and η2(t) are white noises with standard deviations
ση1

= ση2
= 4. The signalsr1(t), r2(t), η1(t) and

η2(t) are mutually independent. So, the assumptions
of Theorems 4.2 and 4.1 are verified.

Simulation 1: Group A
The following FIR model is simulated:

y1(t) =B11u1(t) +B12u2(t) + η1(t)

y2(t) =B21u1(t) +B22u2(t) + η2(t)

with B11 = 10q−1 + q−2, B12 = 0.5q−1 + 4q−2,
B21 = 0.4q−1+3q−2 andB22 = 2q−1+0.25q−2. The
variance of the estimates of the following parameter
vectorθ = (b111, b

2
11, b

1
12, b

2
12) is computed for the two

cases of excitation. Whenr1(t) alone is excited, the
asymptotic variances of the elements ofθ computed
by 1000 Monte-Carlo runs are:

var(θ̂(1)n ) = (599.603 585.486 603.934 612.293)

The asymptotic variances ofθ computed when both
r1(t) andr2(t) are excited simultaneously are:

var(θ̂(2)n ) = (523.286 461.777 84.8456 96.4518)

Once again, all variances are decreased by addition of
the second excitation. This result is due to the fact that
the input signalsu1(t) andu2(t) are correlated, which
in turn affects the correlation between the parameter
estimates. Note that, in the case of open-loop identifi-
cation for FIR models, the asymptotic accuracy of the
estimates of thebj11 coefficients is totally independent
of the presence ofu2(t).

Simulation 2: Group B
The following ARMAX structure is considered

A1y1(t) =B11u1(t) +B12u2(t) + C1η1(t)

A2y2(t) =B21u1(t) +B22u2(t) + C2η2(t)

with A1 = 1 − 0.2q−1, B11 = 10q−1 + q−2, B12 =
0.1q−1+4q−2,C1 = 1−1.6q−1+0.64q−2,A2 = 1−
0.25q−1,B21 = 0.2q−1+3q−2,B22 = 2q−1+0.1q−2

andC2 = 1 − 1.5q−1 + 0.5625q−2. We consider the
parameter vectorθ = (a1, b

1
11, b

2
11, b

1
12, b

2
12, c

1
1, c

2
1)

T

associated to the outputy1(t). The Monte-Carlo sim-
ulations provide the following variances:

var(θ̂(1)n ) = (4.9336 675.5294 1614.4743

635.1392 620.4109 3.0875 3.1263).

var(θ̂(2)n ) = (1.9221 518.046 589.6793

66.99271 139.8771 1.3696 1.3517).

Observe that the presence ofr2(t) improves
the precision of all estimated coefficients. The
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Fig. 2. Variance of the transfer function estimates:
G11(q

−1, α̂n) (left),G12(q
−1, α̂n, β̂n, ) (middle)

and H1(q
−1, α̂n, β̂n, γ̂n) (right), for the AR-

MAX model with 2 reference inputs (solid line)
and one input (dashed line).

corresponding variances of the transfer function
estimates G11(q

−1, α̂n), G12(q
−1, α̂n, β̂n, ) and

H1(q
−1, α̂n, β̂n, γ̂n) are computed at 500 frequency

points for the two cases of excitation. The results are
compared in Fig. 2. As expected, the accuracy of the
three transfer function estimates is improved.

6. CONCLUSIONS

An analysis of the variance of the estimated parame-
ters, identified by direct closed-loop identification, is
performed for two situations: (i) when onlyr1(t) is
excited; (ii) when bothr1(t) andr2(t) are excited si-
multaneously. It is observed that the presence ofr2(t)
cannot worsen the quality of the parameter estimates;
in fact, the quality is improved in most cases.
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