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Abstract: An analysis of the variance for the parameters »fxa2 plant estimated in

closed-loop operation is performed. Two cases of excitai@ considered, i.e. via either
a single reference signal or both references simultangoLisé resulting expressions are
valid for all conventional Prediction Error Models (PEM).i$ shown that, regardless
of the parametrization, the presence of the second referggnal never impairs and, in
most cases, improves the accuracy of the parameter estinfdte analytical results are
illustrated by two simulation examples. The results presgthere are straightforward to
extend to the case of direct closed-loop identification oddritrary multi-input system.
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1. INTRODUCTION put extends beyond the case of common parameters in
all transfer functions. The reader is referred to (Gevers

In (Geverset al, 2005), the authors consider the open- et al, 2005) for details.
loop identification of multi-input systems. The effect o ] )
of an additional input signal on the variance of the '€ Presentcontributionis a continuation of that work
polynomial coefficients in the case of FIR, ARX, AR- but_ln the _context ot_ilrect closed—loopdgntlﬂca_tlon.
MAX, OE and BJ models is investigated. Necessary A Linear Time-Invariant (LTI) system with two inputs
and sufficient conditions on the parametrization of @nd two outputsis to be identified using data collected
MISO models under which the addition of an input de- 1N closed-loop operation. Assume that there are no
creases the covariance of the parameter estimates arg2mmon parameters between the models associated
provided. It is shown that, for SISO model structures With €ach of the outputs. Assume furthermore that
that have common parameters in the plant and noisethe disturbances actm_g_on the outputs are noft corre-
model, any additional input reduces the covariance of atéd. For systems fulfilling these two assumptions, a
all parameters, including the noise model parametersMISO model can be first identified for each output
and the parameters associated with the other input. [S€Parately and then the resulting individual models
is also shown that for systems with several inputs, the ©©Mbined into a final MIMO model (Dayal and Mac-

accuracy improvement resulting from an additional in- G"€90r, 1997). Now, the following questions arise: Do
the conditions on the parametrization of the MISO
structures that apply to the open-loop identification

! The work of this author is partially supported by the Belgian also hold for the case of direct closed-loop identifica-
Programme on Interuniversity Attraction Poles, initiatey the
Belgian Federal Science Policy Office.




tion (with the difference that in closed-loop operation n(t)
the external reference signals are excited instead of the |
inputs)? In what way does the correlation of the input
signals, due to the presence of the feedback, affects
the accuracy of the parameter estimates?

r(t) u(t) w3 00 )
To answer these questions, a general model structure is T\_ K G >

introduced that encompasses all commonly-used para-
metric model structures. It is assumed that the system
(including the noise model) is in the model set. An
analysis, asymptotic in data length but notin model or-
der, of the variance of the estimated parameters in thisFig. 1. Closed-loop configuration
structure Is performgd for.two cases of excitation: 0 backward-shift operatog—* will be omitted in the
a single reference signal is used to excite the closed- . ) 9

e . : sequel whenever appropriate. The signél) € R
loop system; (ii) both references are applied simulta- 5

M : o is the output of the true plant(t) € R* the control
neously. A similar asymptotic analysis is performed signal,r(t) € R? an external reference signal and
in (Bomboiset al,, 2005), where the variances in both gnal,» 9

(t) € R* white noise input with variance; =
open and closed loop for the BJ models are comparecﬁiagw2 o2 ). The systens is controlled by the sta-
for SISO systems. "2

m?
bilizing controller K € R?*? as depicted in Fig. 1.

The result of this analysis is that in the case of closed- The control signal:(¢) can be expressed as a function
loop identification the following two situations can be of r(¢) as follows:
distinguished:

(i) If all parameters of the noise model are present u(t)=U (r(t) — Hn(t))
in the plant model, or if there is no noise model at Upr Uis
all, then the accuracy of all parameter estimates = | Uy, Uy, | 7O = H(®) )

is always improved by applying both references
simultaneously. For the FIR and OE structures, Where the input sensitivity functiotl is U = K.S,
this result is in contrast to the open-loop case With S = (I +GK)~! the output sensitivity function.
where existence of common parameters betweenconsider now the direct closed-loop identification of
the plant and noise models is required to improve e subsystens; of the systens:
the accuracy of all parameter estimates.

(ii) If the noise model contains some parametersthat S1 : 41(t) = Griui(t) + Giaua(t) + Him(t) (3)
are independent of the plant model, then the si-
multaneous excitation of both reference signals

cannot worsen the quality of the parameter esti-
mates. M = {Gui(a),Gr2(a, B), Hi(a, B,7),

The paper is organized as follows. Preliminaries con- 0= (O‘T pr At )T €Dy C Rne} (4)
cerning prediction error identification are given in _
Section 2. In Section 3, the expression describing the WhereéGii (), Giz(a, §) andH, («, 5,~) are rational
influence of the reference signals on the information transfer functionsg < ‘R" is the vector of model
matrix is derived. This expression is used for the com- Parameters, and)s is a subset of admissible values
putation of the variance of the parameter and transfer’or ¢- It is assumed that the true subsysteincan
function estimates in Section 4. Section 5 illustrates P& described by this model structure for sothe=

; . . ; : T T\T - izati
the analytical result via two simulation examples. Fi- (?0:/50,7% )" € D¢. Note that this parametrization
nally, the conclusions are given in Section 6. covers a wide range of model structures. For example,

if one considers the ARMAX structuredy, (t) =
Biiui(t) + Biaua(t) + Cimi(t) then the subvector

using the following model structure:

2. PRELIMINARIES a contains the parameters of the polynomidlsind
By1, B contains the parameters Bfi» and~y contains
Consider the unknown LT? x 2 “true” plant: the parameters af, . HereH, = H(«, 7).
The direct method gives consistent estimates of the
S y(t)=Glg Hu(t) + H(g Mn(t) open-loop system if the data is sufficiently informative

with respect to the adopted model structure and if
G11 G12 Hy 0 . . )

= Goy Gy (t) + 0 H, n(t) (1) the true system, including the noise model, can be
described within the chosen parametrization (Ljung
where G11, G12, Goy and Goo are strictly causal, and Forssell, 1999). Here, sufficiently informative data

finite-order, rational transfer functions not necessar- means that the signalgt) are persistently exciting of
ily analytic outside the unit circle, anél; and Hs appropriate order. In closed loop, this is ensured e.g.
are stable and inversely stable transfer functions. Theby a persistently exciting reference signal. Using a set



of input-output data of lengttV acquired in closed-
loop operation, the estimatky is calculated via the
prediction error criterion (Ljung, 1999):

dN 1 N

N B 1 )

by =| By | = arg min NZ[E(M)] (5)
N t=1

where the one-step ahead prediction een@r 0) for
(3) is defined as:

e(t,0) 2 y1(t) — ga(tlt —1,0)
= Hi(0)"! (51 (t) — G11(0)ua (t)
—G12(0)usa(t)) (6)

and the transfer functions are written generically as

functions of the parameter vectér

Let us assume that the parameter estiméfeson-
verge to the true parameter vectéy as N tends

to infinity. Then, the parameter error converges to a

Gaussian random variable:
VN (éN . 90) A8 Ar(0, Py) @)
where the covariance matri is given by:
Py = a oy [EY(t, 00)07 (t,60)] 7! (8)

with 4(t, 0) £ 2200,

Typically, to compute approx-

and
_ 0Hy(0)

nY =
2 PR
The quantitiedI,, Il,, II3 andIl, are introduced in
(10) for the sake of simplicity of notation.

(11)

From (8)-(11), and using Parseval’s theorem and the
fact thatr (¢), r2(t), n1(¢t) andn2(t) are not corre-
lated, the information matrix can be rewritten as:

[
M= %/ {ILII}®,, + ILIT5D,., +

+ 300, + MalTo, | do
= M(r1) + M(rg) + M(m) + M(n2) (12)
where(.)* is used to denote the complex conjugate.

Consider now the partition of the parameter vector
in (4). The sensitivities of the transfer functioig,
G112 and H, with respect td read:

9?1 = (9?1 0 0 )T s

T
9162 = (9?2 9152 0) and
W=(ne w2 )" (13)

where the definition of the componentsgf, ¢¢, and
¢ is analogous to that in (11). It follows from (10),

imate expressions for the covariance of the parameter(ll) and (13) that the quantify; reduces to:
vector estimates, the asymptotic covariance formulas

(7)-(8) are used:

R 1 o2
cov(fin) ~ Py £ "T“Hw—l. 9)

M is called the information matrix. In the next sec-
tion, an expression folM is derived that shows the
dependence of this matrix on the external excitation
signals. This expression, together with (9), will help

I = Hi 7' (g8 Ui + 50U giyUan 0) (14)

Consequently, the contribution of;(¢) to M can
formally be expressed as:

Mi1(r1) Ma2(r1) O
Mo (r1) Maa(r1) O
0 0 0

M(ry) = (15)

us analyze the dependence of the covariance of theSimilar calculations provide the expressions for

parameter vector estimaig: onr (t) andrs (t).

3. EXPRESSION FOR THE INFORMATION
MATRIX M

Combining (2), (3) and (6), the gradient of the predic-

tion error with respect to the parameterg at 6, can
be expressed as follows:

W(t,00) = Hy ' [(901U11 + g25Un) 71 (2)

+ (93, U12 + g85Us2) m2(t)

+ (] — g0\ Ui Hy — g75Us Hy) m (t)

— (g5 Ur2Ha — g8,Us2 Ha ) ma(t)]

2 My () + Moo (t) + Tan () + Mana(2)(10)
where

0G11(0)
0 11 )
911 = 69 060 y 912 69 09—,

M (ra), M(n1) and M (n2), from which one can ex-
press the information matri¥/ in the following form:

M (r,n) Maz(r,n) Maz(n)
Mo (r,n) Maz(r,n) Maz(n)
Ms1(m) Msa(m) Mszs(m)

If an element ofM carries the argumentand/orn,
this means that this particular element dependsath
r1(t) andry(t) and/orn; (t) andnz(t). Otherwise, the
elements of\/ carry as argument only the particular
component, for examplé/ss(rn;) depends only on

m(t).

In the sequel, the effect of the presence/absence of
the second external reference signgk) on the vari-
ance of the elements of the parameter vector estimate
is analyzed. Note that, for a given model structure,
the presence/absence of a particular external reference
signal does not change the structure of the information
matrix M due to the fact that, in closed-loop opera-
tion, both inputsu, (¢t) andus(t) are excited by both
reference signals.

M= (16)



4. EFFECT OF THE SECOND REFERENCE
SIGNAL

Consider the form of the matri/ in (16). All pos-
sible model structures that can be derived from the
parametrization (4) can be divided in two groups:

A) The model structures where the subvectoof

the vectom is empty (there are no parameters in
the noise modeH; that are independent of the
plant model), or which contain no noise model
at all. Among others, this group includes the
classical FIR, ARX and OE model structures.
The noise model contains some (not necessarily
all) parameters that are independent of the plant
model. This group includes the ARMAX and BJ
model structures in addition to some less conven-
tional structures where, for example, common
parameters are not shared by all transfer func-

4.1 GroupA

When the vectot is empty and both excitation signals
r1(t) andry(t) are present, the information matdx
from (16) reduces to

@ — ( Mu(r,n) Maa(r,n)

A Moy (r,n) Maa(r,m)
The corresponding information matrix when exciting
r1(t) alone reads:

(19)

) _ (( Mu(ri,m) Mia(ri,m) | (20)
A My (r1,m) Maa(ri,m)
The matrifo) can be written as:
MY =MP + A (21)
— M (T ) M12(7‘2)
AM £ 1172 . 22
(M21(7"2) M (r2) (22)

The following result is an immediate consequence of

tions (e.g. there are common parameters betweeny,o expression (21) and the fact tiab? > 0.

G412 and H; but not withG1;).

In order to study the effect of; (¢) andry(¢) on the
accuracy of the parameter estimatespf and~, we
introduce:

Ca Caﬁ COC’Y
C S ]\4_1 = Cﬁa C@ C[)’y (17)
C’ya C’Yﬁ C’Y
Note thatcov(dy) =~ U%Ca, COU(BN) ~ O%Cﬁ’

andcov(yn) ~ %C’V. Furthermore, the variances of
the identified plant model5,; (éN) andG12(éN) and
the identified noise mode#; (0) can be calculated
using Gauss’ approximation formula (Ljung, 1999).
For large number of dat& and by inserting (13) for
g1, g%, andhf, one gets:

2
1

Q

var (G (e, ) ) ~ 22 (g72)" Ca g1

2

2
1

Q

var (Glg(ej“, éN)) ~

2

{(91&2)* Cagia
(9?2)*0[3 gfz}
2

m

+

Q

var (Hl(ej‘”,éN) {(h?)* Cohf

)

+(1))"C b + (h])" €y 1 } (18)

=

In the sequel, the analysis is performed separately
for the two groups4 and B, and the corresponding
covariance matrice€’ and their elements will carry
the appropriate subscriptsd™ and “B”, respectively.
Furthermore, the block-diagonal elemertts, Cjg,

C.,, the matrices” and M will carry the superscript
“(1)” when only reference signat;(¢) is applied
and “(2)” when both reference signals are applied
simultaneously.

Theorem 4.1. Consider the closed-loop identification
of the parameter vectors and 5 of the model struc-
ture A C M. Letthe excitation signals (t) andrz(t)

be independent and persistently exciting of sufficient
order. Then, the covariance matrices of the parameter
estimatesy and 3 decrease by addition of the second
excitationry(t), i.e.

c® <oy and 0P <o (29)
Proof. The inequalities (23) are a direct consequence
of the following expression:

Y - =cQRamcY 2 ACA>0. (24)
O
Comments

1) For a structure from the groug, the simulta-
neous excitation of(¢) andro(t) reduces the
covariance of the estimates of the parameter vec-
tors a and 3 compared to the case when(t)
alone is excited.

If the variance ofry(t) tends to infinity, AM

and Mﬁf) also tend infinity and consequently

Cﬁf) tends to zero. The intuition is that and

B become perfectly known when the power of
ro(t), and therefore the power af (¢) andux(t),
tends to infinity.

The presence ok (t) reduces the variance of all
transfer function estimates. If the powerraft)
grows unbounded, the variances 6‘&1(@1\,),
Glg(éN) andHl(éN) tend to zero.

2)

3)

4.2 GroupB

When onlyr,(t) is excited, it follows from (10)-(13)

that the information matrixMél) has the following
form:



Mi1(r1,m) Mia(ry,m) Mis(n)
Ma1(r1,m) Mao(r1,m) Mas(m)
M3i(m1)  Msa(m) Mszz(m)
When bothr () andr, (¢) are present, the information
matrix M is given by expression (167" and
Ml(f) are related as follows:

M= . (25)

M = M3 + AM (26)
with
]\/[11(7’2) M12(T2) 0
AM = ]\/[21(7’2) MQQ(TQ) 0 (27)
0 0 0

Next, the following result can be established.

Theorem 4.2. Consider the closed-loop identification
of the parameter vectors, 5 and~ of the model
structureB C M. Let the excitation signals; (¢)
and r,(t) be independent and persistently exciting
of sufficient order. Then, the covariance matrices of
the parameter estimatésand 3 cannot increase by
addition of the second excitation(t), i.e

cPy<cly and CPp <Ol (28)

In addition, the covariance matrices ®fare strictly
smaller forrs(t) # 0 compared to(t) = 0, i.e.

()

C’Y7

<) (29)

Proof. First note that the matrixAM is positive
semi-definite (observe the non-negative contribution
of ro(t) to the elements a#/ in (12)). Consequently,

P _c@— (Mg))*l(Méz) Y >)(M<1>)*1

=cPamcy £ ACs > 0. (30)

Now, the expression (28) follows from the fact that any
principal submatrix of a positive semi-definite matrix
is positive semi-definite. Also, it follows from (30)
that C’f) < C’(l) However, this inequality can be
strengthened as foIIows When(t) alone is present,
by straightforward calculation of the inverse of the

(3, 3) block-element oiMél), one obtains:

C% = (M33(m1) — (M3z1(m1) M32(m1)) (31)
" <M11(T1,77) Mia(r1,m) > 11( <M13(771) )) _'1

Mp1(r1,m) Maa(ri,m) My (m)
Similarly, when both+ (t) andr,(t) are applied:

C z)s (Ms3(m) — (M31(771)M32( 1))
M11 Tlv ]\/[12 Tla
M21 Tlv ]\/[22 Tla

X (Mag(m) Maz(m) T) (32)

where the matrixAM > 0 is given in (22). By
comparing expressions (31) and (32), the expression
(29) follows immediately. O

Comments

1) For a structure of the group, the presence of a
second reference signal(t) does not increase
the covariance of the estimates of the parameter
vectorsa, 8 and reduces the covariance of the
estimates ofy. This statement is valid also for
model structures with independent parametriza-
tion of the plant and noise models such as BJ.

If the energy of(¢) grows unbounded, expres-
sions (32) and (22) reveal thaﬂ’( 5 tends to
Mz (m). At the same time, using (16), it is
straightforward to show that_”); andC;’; tend

to zero. This can be explained as follows: when
ro(t) goes to infinity,u;(¢) and us(t) also go

to infinity, and the parameters and 3 become
perfectly known; then, the estimation efcor-
responds to the identification of the unknown
parameters of the Moving Average (MA) model
y(t) = Hi(g Y)ni(t) (some parameters dff;
might already be known as they are partcof
and/orp).

The excitation-,(t) never impairs and in most
cases improves the accuracy of all transfer func-
tion estimates: see (28), (29) and (18). When the
power ofrq(t) goes to infinity, the variances of
G11(0n) andGy2(0y) tend to zero.

Even when the plant and noise models are pa-
rameterized independently, there is a strong cor-
relation between the parameter estimates due to
closed-loop operation. A lower variance of the
plant parameter estimates implies a lower vari-
ance of estimates of the parameters associated
with the noise model and vice versa.

2)

3)

4)

It follows from Theorems 4.2 and 4.1 that, regardless
of the parametrization, the presence of the external
signalry(t) does not reduce the accuracy of the pa-
rameter vector estimates obtained via direct closed-
loop identification. This conclusion holds for any con-
troller K that guarantees informative experiments in
closed loop. It follows from (12) that, for both groups
A andB, the contribution of the noise is never detri-
mental to the precision of the parameter estimates.

5. SIMULATION RESULTS

In order to illustrate the analytical results for both
groups.A and 3, two academic examples are con-
sidered. In both simulation examples, the plants are
controlled by the followin@ x 2 controller:

) @

o) = 0.04(1-03¢7Y / 1 0.1
(1—0.4q71) —0.1 1

The controller is designed so as to stabilize both plants
without any additional performance consideration.

K(



A Monte-Carlo simulation is performed to compare
the case where the reference signdl) alone is ex-
cited with the case where the two reference signals are
applied simultaneously. The reference signal&)
andr,(t) are PRBS generated by a 10-bit shift register
with data lengthV. = 1023 with standard deviations
oy, = 1 ando,, = 10. The disturbance signais (¢)
andn2(t) are white noises with standard deviations
op, = op, = 4. The signals(t), r2(t), n:(t) and
n2(t) are mutually independent. So, the assumptions
of Theorems 4.2 and 4.1 are verified.

Simulation 1: Group A
The following FIR model is simulated:

y1(t) = Briua(t) + Biaua(t) + n1(t)
Y2(t) = Barua (t) + Bagua(t) +m2(2)

with B;; = 10q_1 + q_2, By = 0.5q_1 + 4q_2,
By = 0.4(]714’3(]72 andBgyy = 2(]714’0.25(]72. The
variance of the estimates of the following parameter
vectord = (b}, b2,,bi,, b2,) is computed for the two
cases of excitation. When (¢) alone is excited, the
asymptotic variances of the elementsgofomputed
by 1000 Monte-Carlo runs are:

var(Y) = (599.603 585.486 603.934 612.293)

The asymptotic variances @f computed when both
r1(t) andry(t) are excited simultaneously are:

var(f?) = (523.286 461.777 84.8456 96.4518)

1
10

1
10° 10

-2

10

107

10°
w [rad/s]

10° 107

w [rad/s]

w [rad/s]

Fig. 2. Variance of the transfer function estimates:
Gii(g", an) (Ieft), Gra(g™", @, By, ) (middle)
and Hy(q™%, &, Bn,4n) (right), for the AR-
MAX model with 2 reference inputs (solid line)
and one input (dashed line).

corresponding variances of the transfer function
estimates G11(¢7 %, 6n), Gia(qt, én, Bn,) and
Hl(q_l,dn,ﬁn,’%) are computed at 500 frequency
points for the two cases of excitation. The results are
compared in Fig. 2. As expected, the accuracy of the
three transfer function estimates is improved.

6. CONCLUSIONS

Once again, all variances are decreased by addition ofan analysis of the variance of the estimated parame-
the second excitation. This result is due to the fact thatters, identified by direct closed-loop identification, is

the input signals.; (¢) andus(t) are correlated, which

performed for two situations: (i) when only (¢) is

in turn affects the correlation between the parametereycited; (i) when both-; (t) andr(t) are excited si-

estimates. Note that, in the case of open-loop identifi-

cation for FIR models, the asymptotic accuracy of the
estimates of thé], coefficients is totally independent
of the presence af.(t).

Simulation 2: Group B
The following ARMAX structure is considered

A1y1(t) = Briui(t) + Biaua(t) + Cim (1)
A2y2(t) = Bgl’ul(t) + BQQUQ(t) + CQ?]Q(t)

with A; =1 — 0.2q_1, By = 10q_1 + q_2, By =
0.1¢g7'+4¢7 2,01 =1-1.6¢71+0.64¢g72, Ay = 1—
0.25¢7 %, Boy = 0.2¢7'4+3¢72, Boy = 2¢7 ' 4+0.1¢72
andCy = 1 — 1.5¢~! 4+ 0.5625¢~2. We consider the
parameter vectof = (a1,bi;,b?;, by, 035, ct,c)T
associated to the outpyi(t). The Monte-Carlo sim-
ulations provide the following variances:

675.5294 1614.4743
620.4109 3.0875 3.1263).
518.046 589.6793
139.8771 1.3696 1.3517).

var(0V) = (4.9336
635.1392
var(f?) = (1.9221
66.99271

Observe that the presence ofy(t) improves
the precision of all estimated coefficients. The

multaneously. It is observed that the presence: (f)
cannot worsen the quality of the parameter estimates;
in fact, the quality is improved in most cases.
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