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Abstract: In this paper we briefly review the evolution of the main tools and results
for optimal experiment design for system identification. The initial work dates back
to the seventies and focused on the accuracy of the parameters of the input-output
transfer function estimate. In the eighties, new formulas for the variance of transfer
function estimates based on high-order model approximations led to the first goal-
oriented experiment design results. The recent trend is to address control-oriented
optimal design questions using the more accurate parameter covariance formulas
for finite order models.
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The early work on experiment design
Optimal input design for system identification
was an active area of research in the 1970’s,
with different quality measures of the identified
model being used for this optimal design (Mehra,
1974; Zarrop, 1979; Goodwin and Payne, 1977).
Up until very recently, the optimal input design
literature has focused almost exclusively on the
minimization of some measure of the variance
error of the estimated quantity. The objective
functions that were minimized in the 1970’s were
various measures of the covariance matrix Pθ,
where θ is the parameter vector of the model
structure used for the open-loop model, which is
being estimated.

Let the “true system” be given by:
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S : y(t) =

G0(z)︷ ︸︸ ︷
G(z, θ0) u(t) +

v(t)︷ ︸︸ ︷
H(z, θ0)e(t) (1)

for some unknown parameter vector θ0 ∈ Rk,
where e(t) is white noise of variance σ2

e , while
G(z, θ0) and H(z, θ0) are stable discrete-time
transfer functions, with H(z, θ0) monic and mini-
mum-phase.As stated above, in most of the op-
timal input design literature, it is assumed that
the system is identified with a model structure
M = {G(z, θ), H(z, θ)}, θ ∈ Rk, that is able to
represent the true system.

When Prediction Error identification is used with
a full order model structure, the estimated param-
eter vector θ̂N is known to converge, under mild
assumptions, to a Gaussian distribution:

(θ̂N − θ0)
N→∞−→ N(0, Pθ), (2)



where the asymptotic parameter covariance ma-
trix Pθ can be estimated from the data. Impor-
tant examples of optimal design criteria devel-
oped in the 1970’s are A-optimal design which
minimizes tr(Pθ), D-optimal design which mini-
mizes det(Pθ), E-optimal design which minimizes
λmax(Pθ), and L-optimal design which minimizes
tr(WPθ), where W is a nonnegative weighting
matrix.

Although the design can be performed directly
with respect to the time-domain input signal
sequence u(1), . . . , u(N), this leads to a com-
plex nonlinear optimal control problem involv-
ing a large number of unknowns. Examples of
optimal design directly with respect to the in-
put sequence can be found in e.g. (Cooley and
Lee, 2001). The problem is significantly simplified
if one restricts attention to quasi-stationary sig-
nals (Ljung, 1999), which admit a power spectral
density Φu(ω). Indeed, in open-loop identification,
the inverse of the covariance matrix Pθ can be
expressed as the following expression of the input
signal spectrum:

P−1
θ =

N

σ2
e

1
2π

π∫
−π

Fu(ejω, θ0)Fu(ejω, θ0)∗Φu(ω)dω


+

N
1
2π

π∫
−π

Fe(ejω, θ0)Fe(ejω, θ0)∗dω

 (3)

This matrix is called the information matrix
(or Fisher information matrix): Mθ , P−1

θ .

Here, Fu(z, θ0) = ΛG(z,θ0)
H(z,θ0)

, Fe(z, θ0) = ΛH(z,θ0)
H(z,θ0)

,

ΛG(z, θ) = ∂G(z,θ)
∂θ and ΛH(z, θ) = ∂H(z,θ)

∂θ . The
formula shows that the data length N and the
input spectrum Φu(ω) appear linearly in the ex-
pression of the information matrix Mθ, and that,
for a given data length N , the input spectrum
is the only design quantity that can shape the
parameter covariance matrix. It is also clear from
(3) that, provided the first matrix has full rank,
the covariance matrix Pθ can be made arbitrarily
small by raising the power of the input signal.
Thus, the most common approach to optimal in-
put design is to minimize some reasonable func-
tion of Pθ (e.g. det(Pθ)) with respect to Φu(ω)
under a constraint on Φu(ω) (e.g.

∫
Φudω < α for

a fixed α). An optimal input signal is then defined
as any realization of length N of a quasistationary
signal u(t) having Φopt

u (ω) as spectral density.

An important contribution of the optimal ex-
periment design work of the seventies was to
parametrize Φu in such a way that the information
matrix (3) can be expressed as an affine combina-
tion of a finite number of parameters of that spec-
trum. For example, Zarrop used Tchebycheff sys-
tem theory (see e.g. (Karlin and Studden, 1966))

to parametrize the input spectrum in terms of its
so-called “trigonometric moments” with respect
to the system (Zarrop, 1979); these moments are
real numbers. The information matrix Mθ , P−1

θ

can then be expressed as a finite linear combina-
tion of these moments, with respect to which the
optimization can then be performed.

Another important result of the optimal exper-
iment design work of the seventies, first estab-
lished in (Mehra, 1974), was to establish that
the solutionof this optimal input design problem
could always be obtained in the form of a dis-
crete power spectrum, i.e. the optimal input can
always be generated as a finite linear combination
of sinusoids (multisine). The number of sinusoids
required depends on the particular model struc-
ture and on the constraints. For example, it was
shown in (Goodwin and Payne, 1977) that, if a
Box-Jenkins model structure is used with G(z, θ)
containing 2n parameters, then an optimal input
for the criterion det(Pθ) under a constraint on
the input power can be achieved with no more
than 2n sinuoids. By using the theory of Tcheby-
cheff systems, Zarrop showed that the number of
sinusoids required can actually be reduced to n
(Zarrop, 1979).

Even though some of the experiment design work
of the 1970’s considered closed-loop experiments
(Ng et al., 1977a; Ng et al., 1977b), the objective
functions considered at that time were limited to
functions of the covariance of the open-loop model
parameters.

Experiment design based on L2 control per-
formance criteria
In the mid-eighties, Ljung and collaborators pro-
duced bias and variance formulas (Ljung, 1985;
Wahlberg and Ljung, 1986) directly for the trans-
fer function estimates, rather than for the pa-
rameter estimates which only serve as auxiliary
variables in the representation of these transfer
functions. The asymptotic variance formulas were
derived under the assumption that the model or-
der n tends to infinity in some appropriate way
when the data length N tends to infinity. Thus, for
the variance of the input-output transfer function
estimate G(z, θ̂N ), the following approximations
were obtained in (Ljung, 1985) under an assump-
tion of high model order, for the open-loop (O.L.)
and closed-loop (C.L.) experimental conditions,
respectively:

V ar(G(ejω, θ̂N ))≈ n

N

Φv(ω)
Φu(ω)

in O.L. (4)

V ar(G(ejω, θ̂N ))≈ n

N

Φv(ω)
Φr

u(ω)
in C.L. (5)

where n is the model order, N is the number
of data, Φu(ω) is the input spectrum, Φv(ω) is
the output disturbance spectrum, and Φr

u(ω) ,



| Cid(ejω)
1+Cid(ejω)G0(ejω) |

2Φr(ω) is the part of the input
spectrum that is caused by the external reference
excitation r (here Cid is the feedback controller
present during the data collection experiment).
These formulas explicitly contain the effect of
the experimental conditions (e.g. number of data,
input spectrum, noise spectrum, feedback config-
uration, feedback controller Cid, etc) on the error
measure. They paved the way for the formula-
tion of goal-oriented experiment design problems,
including control-oriented problems (Gevers and
Ljung, 1986; Hjalmarsson et al., 1996; Forssell and
Ljung, 2000).

The optimal design criterion used in these contri-
butions was the squared error between the output
of the optimal loop (i.e. the loop that would be
obtained if the optimal controller, dependent on
the unknown true system, were applied to the
system), and the output of the achieved loop (i.e.
the loop in which the controller obtained from the
estimated model is applied to the true system).
The results were all based on the transfer func-
tion variance formulas (4)-(5), derived under the
assumption that the model order tends to infin-
ity, and it was observed in recent years that the
use of these formulas for finite order models can
sometimes lead to erroneous conclusions. This ob-
servation triggered a revival of interest in optimal
design formulations based on variance expressions
for finite order models.

Experiment design for robust control
Robust stability and robust performance criteria
are typically expressed as constraints on frequency
weighted expressions of the variance of the trans-
fer function error, rather than as L2 performance
criteria. For example, a robust stability constraint
is typically formulated as

V ar G(ejω, θ̂N ) ≤ b(ejω) ∀ω (6)

where b(ejω) is a frequency weighting function
that takes account of closed-loop properties (e.g.
robust stability condition). In order to formulate
optimal input design problems in terms of control-
oriented quality measures on G(ejω, θ̂N ) such as in
(6), using the finite model order formula (3) rather
than the asymptotic (in model order) variance
formulas, several approaches can be taken.

One commonly used approach to go from param-
eter covariance to transfer function covariance is
to use the following first order Taylor series ap-
proximation:

V ar G(ejω, θ̂N )≈ ∂G∗(ejω, θ0)
∂θ

Pθ
∂G(ejω, θ0)

∂θ
(7)

This approach, initiated in the L2 framework in
(Lindqvist, 2001), was subsequently adopted in

(Jansson and Hjalmarsson, 2004b)-(Jansson and
Hjalmarsson, 2004a), where it is shown that sev-
eral useful H∞ design criteria can be reformulated
as weighted trace optimal input design problems
subject to LMI constraints. A sensible open-loop
optimal input design problem can then be formu-
lated as follows:

min
Φu(ω)

max
ω

tr[W (ejω)Pθ] subject to (8)

π∫
−π

Φu(ω)dω ≤ α, and Φu(ω) ≥ 0 ∀ω,

where α is some positive constant and W (ejω) is
a function of the model structure and reflects the
robustness objectives. This is still a difficult, infi-
nite dimensional optimization problem. However,
by the use of Schur complement, the problem can
be reformulated as a convex optimization problem
under Linear Matrix Inequality (LMI) constraints.
The numerical solution of such problems became
possible in the nineties with the advent of interior
point optimization methods (Nesterov and Ne-
mirovskii, 1994; Boyd et al., 1994). The problem
becomes finite dimensional if the input spectrum
Φu(ω) can be finitely parametrized. As we have
stated above, this can always be achieved, either
exactly by a finite dimensional expansion based
on the trigonometric moments using Tchebycheff
system theory, or by restricting the class of ad-
missible to subclasses which, by construction, ad-
mit a finite parametrization. One such possible
approximation, used in (Lindqvist and Hjalmars-
son, 2001) is to use input signals generated by
passing white noise through FIR filters; other
finite-dimensional approximations of the input
signal spectrum have been used and analyzed in
the thesis (Jansson, 2004) which contains a wealth
of useful results on optimal experiment design; see
also (Jansson and Hjalmarsson, 2004c).

All the results quoted above use the first order
Taylor series approximation (7). An alternative to
the use of this approximation formula is to use the
formulas that have recently been obtained for the
variance of finite order transfer function estimates
(Xie and Ljung, 2001; Ninness and Hjalmarsson,
2004). For example, for an Output Error (OE)
model structure, the open-loop variance formula
(4) is replaced by

V ar(G(ejω, θ̂N )) ≈ κn(ω)
Φv(ω)
Φu(ω)

(9)

where κn(ω) depends on the poles of the true
system and on Φu(ω). The use of these new trans-
fer function variance formulas for input design
has been advocated in (Hjalmarsson and Jans-
son, 2003), but one additional difficulty, as the
authors point out, is that the function κn(ω) de-
pends on the unknown system.



A rather different approach to optimal input de-
sign for robust control, which directly uses the
covariance matrix Pθ without the need for an ap-
proximation is based on the use of the ellipsoidal
uncertainty set Uθ:

Uθ = {θ|(θ − θ̂N )T P−1
θ (θ − θ̂N ) < χ2}. (10)

It follows from the property (2) that the true pa-
rameter vector θ0 ∈ Rd belongs to Uθ with prob-
ability α(d, χ2) = Pr(χ2(d) ≤ χ2), where χ2(d)
denotes the χ2 distribution with d degrees of free-
dom. The results in (Bombois et al., 2001; Gevers
et al., 2003), which connect robust stability and
robust performance measures directly to the el-
lipsoidal uncertainty region Uθ, now allow one to
formulate experiment design problems for robust
control in terms of the minimization of some ap-
propriate function of Uθ (or of Pθ) without the
need for the intermediate step of transfer function
variance estimation, which typically requires both
a Taylor series approximation and/or a conserva-
tive step of overbounding of the uncertainty set.

The first open-loop optimal input design prob-
lem for robust control based on the direct use
of the uncertainty ellipsoid Uθ was formulated in
(Hildebrand and Gevers, 2003). The robust stabil-
ity measure minimized in that paper, with respect
to the input spectrum Φu(ω), was the worst-case
ν-gap δWC(G(z, θ̂N ),D) between the identified
model G(z, θ̂N ) and all models in the Prediction
Error uncertainty set D , {G(z, θ)|θ ∈ Uθ}:

δWC(G(z, θ̂N ),D) = sup
θ∈Uθ

δν(G(z, θ̂N ), G(z, θ))(11)

where the ν-gap is defined in (Vinnicombe, 1993).
One of the merits of the worst-case ν-gap is that
it is directly related to the size of the set of
its stabilizing controllers: the smaller the worst-
case ν-gap of the uncertainty set D, the larger is
the set of controllers that stabilize all models in
D. The optimal input design problem solved in
(Hildebrand and Gevers, 2003) was

min
Φu

δWC(G(z, θ̂N ),D) subject to (12)

π∫
−π

Φu(ω)dω ≤ α, and Φu(ω) ≥ 0 ∀ω.

The solution uses Tchebycheff system theory: the
input spectrum is parametrized in terms of its n
moments with respect to the system. The optimal
solution can always be obtained as a multisine.

Optimal experiment design in closed loop
All the results discussed so far are for open-loop
identification, whereas identification for control
is typically performed in closed-loop, often in

an iterative way. As it happens, the parameter
covariance formula (3) can easily be extended to
closed-loop identification as follows (Bombois et
al., 2005; Jansson and Hjalmarsson, 2005):

P−1
θ =N

P−1
r (Φr(ω),θ0,σ2

e)︷ ︸︸ ︷ 1
σ2

e

1
2π

π∫
−π

Fr(ejω, θ0)Fr(ejω, θ0)∗Φr(ω)dω



+ N

P−1
v (θ0)︷ ︸︸ ︷ 1

2π

π∫
−π

Fe(ejω, θ0)Fe(ejω, θ0)∗dω

 (13)

Here, Fr(z, θ0) = CidSid
ΛG(z,θ0)
H(z,θ0)

, Fe(z, θ0) =
ΛH(z,θ0)
H(z,θ0)

−CidSidΛG(z, θ0), ΛG(z, θ) = ∂G(z,θ)
∂θ and

ΛH(z, θ) = ∂H(z,θ)
∂θ . Note that P−1

θ is made up of
a part depending on Φr(ω) and a part which does
not depend on Φr(ω). Both parts are linear in N
and both parts depend on the operating controller
Cid. For a given controller Cid and a fixed data
length, we observe that the covariance matrix
is again linear in the reference spectrum Φr(ω),
which is now the design object. Instead of using a
fixed controller, and optimizing over the external
reference spectrum Φr(ω), closed-loop optimal de-
sign problems can also be formulated with respect
to both the reference spectrum Φr(ω) and the
operating controller Cid. It turns out to be easier
to use the input spectrum Φu(ω) and the cross-
spectrum Φue(ω) as design variables; note that
there is a one-to-one relationship between the pair
{Φr(ω), Cid(ejω)} and the pair {Φu(ω),Φue(ω)}.
Such approach has been proposed in (Jansson and
Hjalmarsson, 2005).

Why do more work than is needed ?
The traditional approach to optimal input design,
as exemplified by the problem formulations (8)
or (12), has been to optimize some measure of
the resulting uncertainty, subject to a constraint
on the input signal power. However, in an iden-
tification for robust control setting, one should
not spend more effort on the identification than
is needed to ensure that the controller designed
with the identified model achieves a prescribed
level of performance with all systems in the un-
certainty region. This robustness constraint can
always be translated into a condition similar to
(6). This idea has led to the recent concept of
“least costly identification for control”, which was
first proposed in (Bombois et al., 2004b). Instead
of minimizing some measure of the uncertainty
set, the objective is to deliver an uncertainty set
that is just within the bounds required by the
robust control specifications, and to do so at the
smallest possible cost. In (Bombois et al., 2004a)



open-loop identification is considered and the cost
is then defined as the total input signal power. The
idea of least costly (or minimum energy) identi-
fication experiment for control has been further
developed in an open-loop framework in (Jansson
and Hjalmarsson, 2004b).

From a practical point of view, the cost of identi-
fication is an issue of major importance. This has
been thoroughly discussed in (Rivera et al., 2003)
where the concept of “plant-friendly” identifica-
tion is presented. It is often estimated that 75% of
the cost associated to an advanced control project
goes into model development. Even though the
definition of the cost used in the recent work on
“least costly identification for control” does by no
means cover all the practical costs of modelling,
the disruption caused to normal operation and the
time required to arrive at a satisfactory model are
considered to be very significant elements of this
total modelling cost. These two costs are incorpo-
rated in the “least costly” criterion of (Bombois
et al., 2005) in a closed-loop framework.

Is optimal design really worth the effort?
One might wonder whether it pays to perform
optimal input design computations, given that
the optimal solution necessarily depends on the
unknown system, which means that a preliminary
model estimate must be obtained first before an
approximately optimal input signal can be com-
puted. This is sometimes referred to as adaptive
(or iterative) optimal input design. In (Barenthin
et al., 2005) the possible benefits of optimal input
design for control have been quantified for two
benchmark problems. It is shown that significant
savings can sometimes be obtained by the ap-
plication of a two-step identification procedure,
where the second step uses an optimally designed
input signal computed from a preliminary model
estimate.

Many experiment design issues remain to be ad-
dressed, let alone solved. A fundamental issue is
the fact that the optimal experiment depends on
the unknown system. Thus, the practical imple-
mentation of optimal input design results requires
that a preliminary model be estimated quickly
on the basis of non-optimal inputs, after which
an estimate of the optimal input can be com-
puted. This raises the very important issue of
the robustness of the optimal design to model
errors, and of the convergence of such adaptive
implementations. Some preliminary observations
and recommendations on this robustness question
issue have been made in (Jansson and Hjalmars-
son, 2004b).

Other important issues to be addressed are to
formulate the input design problem directly in
terms of the properties (robust stability and per-

formance) of the controller that is designed from
the identified model. Some preliminary results in
this direction can be found in (Barenthin and
Hjalmarsson, 2005). Finally, the new phase of
research results that have been briefly described
here are all based on variance results for finite
order models, under the assumption that the true
system is in the model set. Results for the case of
undermodelling are only just beginning to emerge
(Bombois and Gilson, 2006). As pointed out in
(Hjalmarsson, 2005), a proper choice of input is
even more important when a restricted complexity
model is used with a particular objective (e.g.
control) in mind: it is then always better that
the input excite only those parts of the system
dynamics that need to be modelled.

Conclusions and additions

This will be for the final version.

REFERENCES

Barenthin, Märta and H̊akan Hjalmarsson (2005).
Identification and control: joint input design
and H∞ state feedback with ellipsoidal para-
metric uncertainty. submitted for publication.

Barenthin, Märta, Henrik Jansson and H̊akan
Hjalmarsson (2005). Applications of mixed
H2 and H∞ input design in identification.
In: 16th IFAC World Congress on Automatic
Control. Prague.

Bombois, X. and M. Gilson (2006). Cheapest iden-
tification experiment with guaranteed accu-
racy in the presence of undermodeling. In:
submitted to SYSID 2006. Newcastle, Aus-
tralia.

Bombois, X., G. Scorletti, Gevers, P.M.J. Van den
Hof and R. Hildebrand (2005). Least costly
identification experiment for control. submitt-
ted to Automatica.

Bombois, X., G. Scorletti, M. Gevers, R. Hilde-
brand and P.M.J. Van den Hof (2004a).
Cheapest open-loop identification for control.
In: CD-ROM Proc. 33rd IEEE Conf on Deci-
sion and Control. The Bahamas. pp. 382–387.

Bombois, X., G. Scorletti, P.M.J. Van den Hof and
M. Gevers (2004b). Least costly identification
experiment for control: a solution based on
a high-order model approximation. In: CD-
ROM Proc. American Control Conference.
Boston, MA, USA. pp. 2818–2823.

Bombois, X., M. Gevers, G. Scorletti and
B.D.O. Anderson (2001). Robustness anal-
ysis tools for an uncertainty set obtained
by prediction error identification. Automatica
37(10), 1629–1636.

Boyd, S., L. El Ghaoui, E. Feron and V. Balakr-
ishnan (1994). Linear Matrix Inequalities in
System and Control Theory. SIAM Studies in
Applied Mathematics. Philadelphia.



Cooley, Brian L. and Jay H. Lee (2001). Control-
relevant experiment design for multivariable
systems described by expansions in othonor-
mal bases. Automatica 37(2), 273–281.

Forssell, U. and L. Ljung (2000). Some results
on optimal experiment design. Automatica
36, 749–756.

Gevers, M. and L. Ljung (1986). Optimal exper-
iment designs with respect to the intended
model application. Automatica 22, 543–554.

Gevers, M., X. Bombois, B. Codrons, G. Scorletti
and B.D.O. Anderson (2003). Model valida-
tion for control and controller validation in
a prediction error identification framework -
Part I: theory. Automatica 39(3), 403–415.

Goodwin, G. and R.L. Payne (1977). Dynamic
System Identification: Experiment Design
and Data Analysis. Academic Press. New
York.

Hildebrand, R. and M. Gevers (2003). Identifica-
tion for control: optimal input design with
respect to a worst-case ν-gap cost function.
SIAM Journal on Control and Optimization
41(5), 1586–1608.

Hjalmarsson, H. (2005). From experiment design
to closed-loop control. Automatica 41, 393–
438.

Hjalmarsson, H. and H. Jansson (2003). Using a
sufficient condition to analyze the interplay
between identification and control. In: CD-
ROM of 13th IFAC Symposium on System
Identification. Rotterdam, The Netherlands.
pp. 45–50.

Hjalmarsson, H., M. Gevers and F. De Bruyne
(1996). For model-based control design,
closed-loop identification gives better perfor-
mance. Automatica 32, 1659–1673.

Jansson, H. (2004). Experiment design with ap-
plications in identification for control. PhD
thesis. Royal Institute of Technology (KTH).
TRITA-S3-REG-0404.

Jansson, H. and H. Hjalmarsson (2004a). Convex
computation of worst-case criteria with appli-
cations in identification and control. In: IEEE
Conference on Decision and Control. The Ba-
hamas. pp. 3132–3137.

Jansson, H. and H. Hjalmarsson (2004b). A gen-
eral framework for mixed H∞ and H2 in-
put design. submitted for publication to IEEE
Trans. Auto. Control.

Jansson, H. and H. Hjalmarsson (2004c). Mixed
H∞ and H2 input design for identification. In:
CD-ROM Proc. 43rd IEEE Conf on Decision
and Control. The Bahamas. pp. 388–393.

Jansson, H. and H. Hjalmarsson (2005). Optimal
experiment design in closed loop. In: 16th
IFAC World Congress on Automatic Control.
to appear.

Karlin, S. and W. Studden (1966). Tcheby-
cheff systems with applications in analysis

and statistics. Pure Appl. Math. 15, Wiley-
Interscience. New York.

Lindqvist, K. (2001). On experiment design in
identification of smooth linear systems. PhD
Thesis, Royal Institute of Technology. Stock-
holm, Sweden.

Lindqvist, K. and H. Hjalmarsson (2001). Identi-
fication for control: adaptive input design us-
ing convex optimization. In: CD-ROM Porc.
of 40th IEEE Conf. on Decision and Control.
Orlando, Florida.

Ljung, L. (1985). Asymptotic variance expres-
sions for identified black-box transfer function
models. IEEE Trans. Automatic Control AC-
30, 834–844.

Ljung, L. (1999). System Identification: Theory
for the User, 2nd Edition. Prentice-Hall. En-
glewood Cliffs, NJ.

Mehra, R.K. (1974). Optimal input signals for pa-
rameter estimation in dynamic systems - sur-
vey and new results. IEEE Trans. on Auto-
matic Control AC-19(6), 753–768.

Nesterov, Y. and A. Nemirovskii (1994). Interior
Point polynomial algorithms in convex pro-
gramming. Vol. 13. SIAM Studies in Applied
Mathematics. Philadelphia.

Ng, T.S., G.C. Goodwin and R.L. Payne (1977a).
On maximal accuracy estimation with output
power constraints. IEEE Trans. Automatic
Control 22, 133–134.

Ng, T.S., G.C. Goodwin and T. Söderström
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