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Abstract— This paper introduces a new approach for ro- measure to the criterion in a simpler and more flexible
bust controller design using lterative Feedback Tuning (IF)  way. We use the elements of the sensitivity matrix, i.e.
method. Based on some robustness principles a new criterion the sensitivity functions and we add the square of their

is proposed reflecting both performance and robustness spiec iahted H. telv to th iteri . | d
fications. Then, some analysis of the new criterion is made an weighted fix-norm separatély 1o the criterion using closed-

we show how to apply the standard IFT procedure using the |00p signals. We focus only on a single-input single-output
new criterion. The approach is transparently illustrated on one  (SISO) discrete-time linear 1DOF controller structurehist

model-based controller design example. paper, but the same approach is easily extendable to a 2DOF

. INTRODUCTION structure. _ o
The paper is organized as follows: Section 2 introduces

Ilterative Feedback Tuning (IFT) is an iterative procedur@,. ~onsidered closed-loop system and the classical IFT

for controller optimization [2]. It is useful mainly for _tun rocedure with some details on possible configurations. In
ing of low-order controllers. It can tune a badly adjuste(f;

I de i ¢ h he desi eéiction 3 we develop the new robustness criterion and the
controller to upgrade its performance, where the desir rresponding modified IFT procedure. We show that an

p]?rformance h?s fto be f(lnrhmular:edh as a_cnterltln_n functiof)iased estimate of the required gradient can be computed
of some specific form. Although the main application Otfrom closed-loop signals. Section 4 illustrates the fuoreti

IF'll' IS conltlroller_ tl_mlng (optlTlnzatlon dstz;\rtlng f(rjorlnfar;(;m ality of the developed approach on one controller design
tial controller), it is successfully used for model-freedan o, o ple  Finally section 5 gives some conclusions.
model-based controller design as well (for some applicatio

examples see [1], or [3]). The IFT procedure was primarily Il. BASICS

developed for tuning of single-input single-output (SISO)

one-degree-of-freedom (1DOF) or two-degree-of-freedor%' Closed-loop system

(2DOF) discrete-time controllers. Later, the procedures wa A one-degree-of-freedom linear discrete-time controller

modified to allow optimization of other controller struatgr optimization is considered. A corresponding closed-loop

[1]. (CL) diagram is shown in Figure 1. The blockis either a
The IFT procedure does not require a plant model; onlgliscrete-time plant modek (= ~1) or a real plantG with a

closed-loop system experiments are necessary to estimatsaaple and hold device and the blo€kz~!) represents a

gradient of a criterion function which is to be minimized. Inlinear discrete-time controller to be optimized. The opara

the classical IFT method the criterion is typically constad z~! is considered to be either a frequency operator in a Z-

with two terms: one reflecting a desired tracking propertytransform, or a time delay operator. The external sign@ls

the second one restricting control action energy. This kihd d(t), v(t) are an output reference, an external control action

criterion is obviously insufficient if other specificatigresich  input, and a perturbation signal, respectively. The output

as robust stability, are imposed. The robustness spedificat signal y(¢) and the control action.(t) are internal closed-

belongs to the most commonly required specifications andliaop signals.

would be useful to handle it within the IFT framework.

One attempt to deal with the robustness was made in d() v(®)
[6], \_/vhere t_he Hoo-norm approximgt?on c_)f a sensitivity ) c N AT S AR
matrix (matrix with the four sensitivities) is introduced t > —
the criterion. In this paper we introduce a robust stability .
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CzHS(z™1),G(z"1)S(z7 1), andG (2~ 1)C(271)S(2~ 1), adds a possible control action energy restriction. Thesfean
with the sensitivityS(z~!) defined as follows: functionsL,(2~!) and L, (>~!) are some stable weighting
SN = (14 G- (=) ) ;Ll)tretrﬁeag;uns]gngutrr;i;:g.ter|on and is a scaling factor added
(To simplify equations, we will often use the following Replacing the signala(t) and y(¢) with the sensitivity
simplified notations for the sensitivities!, C'S, GS, GCS  expressions (5) and witti(t) = 0, we obtain the following
and for the signalsr, d, v.) criterion:
The sensitivities represent the behavior of closed-loop 9
internal signals «(¢) and y(t)) with respect to an external Jp(p) = E[Lu(GCSr + Sv —ya)]
signal. They are typically used to describe the following +AE[L,(CSr — CSv)?] (7)

input-output signal relations: L
P P g whereC and S depend on the optimization vectpr

y(t) = Sv(t) Notice that the criterion (7) contains three of the four
u(t) = —CSv(t) sensitivities (2). Only two of these sensitivitie&¢'S and
y(t) = GSd(t) CS) are driven by the external signalt) that is at the
designer’s disposal, while the third on&)(is driven by
y(t) = GOSr(t) (2)  the uncontrollable perturbation signalt). This implies that

Recall that by analyzing the sensitivities (2) we caVe can see the optimization of the criterioip from two
measure the system robust stability with respect to differe different points of view:
kinds of uncertainties, and noise and perturbation signals1) By minimizing the criterion/p we improve the track-

(see for example [7]). Conventionél.,, design techniques ing performance (termE[(y — yd)?]) and limit the
typically use the so called sensitivity matrix(z—1): control action (termk[u?)).

aCsS  GS 2) By minimizing the criterion Jp we minimize a

T= ( cs S > 3) weighted and perturbedls norm of the sensitivities

GCS and CS. The sensitivity.S is neglected since
which contains the four sensitivities. To design a robust it is weighted with the unknown random perturbation
controller, these techniques minimize tig,-norm of the v(t).

i i -1 -1 —1)-
weighted matrixiVy (=~ )T (=~ )Wa(z""): Controller optimization using IFT minimizes the criterion
min ||[Wi(z"DT("HYWa(z™ )]s (4) function (6) step by step by iteratively tuning the contall
C="h The following style of procedure sets out one such step:
The weighting filtersiV; allow the designer to scale and to 1) Step 1: 1st real-time experimedtn external excitation

weight appropriately the sensitivities in order to obtdie t signal {1 (t) or di(t)) is applied to the closed-loop
best compromise in the sensitivity minimization. Weightin system. In this experiment we obtain the internal
selection is one of the main designer tasks in tHg, closed-loop signalg/; (t) and u;(¢) containing some
controller design techniques. weighted sensitivity functions as shown by (5). We
Using the sensitivities as they are defined in (2), the two  can establish three general configurations for the 1st
internal closed-loop signats(t) andy(t) (see Figure 1) have experiment:
the following expressions: « Configuration 1: The excitation is applied ft):
y(t) = GOSr(t) +GSd(t) + Su(t) e(t) - ri(t), d(;) T=h0- tation is anofied
ut) = CSr(t)+ Sd(t) — CSu(t) (5) ) d(ot;] o l;lrf(l?)o nr(t') _ g.excna'uon s applied &)
B. Classical Iterative Feedback Tuning « Configuration 3: The excitation is applied at both
The classical IFT scheme for 1DOF controller optimiza- r(t) andd(t): r(t) = r1(t), d(t) = du(?).
tion considers the closed-loop system as it is shown in Bigur 2) Step 2: 2nd real-time experimernother excitation
1 but without the control excitation inputi(t) = 0. IFT signal (2(t) or d»(t)) is applied to the closed loop,
generally minimizes the following criterion function: in order to obtain an estimate of the signal gradients:
. 5 est%ipl and est%—“pl. These derivatives are necessary to
Jp(p) =E {(Ly(z )(y(t) — yd(f))) } compute the gradient of the criterion. The following
A [(Lu(z_l)u(t))Q] ©6) design choicgs gre f;\vailable for the 2r.1d experiment:
o The excitation in the 2nd experiment may be
(the index P denotes "performance”), where is a vector applied either at(t) = ro(t) or atd(t) = da(t)).
of controller coefficients to be optimized, e.§. = C(p) « The excitation signal applied in the 2nd experi-
and E[-] denotes expectation with respect to all random ment is not arbitrary, but highly though not com-
signals. The first term in the criterion reflects some tragkin pletely constrained, as described in detail below.
performance specificationg {t) is a desired closed-loop The theory of IFT shows that the computation of

time responsey(t) is the output (5)). The second term the desired gradients requires a special excitation



signal containing a feedback from a signal generfor the subscripts on the four summands in (10) is suggested

ated in the 1st experiment, possibly filtered with aby equations (11) below.

selected stable filteRK (2 ~1). Replacing the signalg(t) andu(t) by (9) in the criterion
The obtained derivative estimate is perturbed (i.e. d€10), we have:
viates from the exact value) by a noise term. The form
of the noise term is determined by the 1st experiment

2
configuration, and the 2nd experiment choice, as we Jocs(p) = AcosE [(Leos(GOST + 50))7]
shall see later. Jes(p) = AosE [(Les(CSr— CSv))?]

3) Step 3: Criterion gradient gstimatiorUsaing the esti- Jas(p) = AasE [(Las(GSr+C'Sv))?)
mated signal denvqﬂve&t%; a.nd ?5taipl optalned Js(p) AgE [(Ls(ST _ SU))Q] (11)
from the 2nd experiment, the criterion gradlemtg—i
is estimated.

4) Step 4: New coefficients calculatiof.new controller e can observe that the sub-critedacs, Jos. Jas, Js
parameter vectop is computed from the estimated of the robustness indeXr always contain two sensitivities.

criterion gradient. This new controller parameter vectoN€ Sensitivity is different in each term and it is driven (or
defines a new controlle?'(p) weighted) by the excitation(¢), the other is driven by the

: . . o perturbatiorv(t). In order to impose robustness we shall rely
'S\ltgt'cseltgarf dlnztgfecﬁvsvjcslgFnigzﬁce)dure' the excitations only on the sensitivities driven by the excitatioft) because
P ys app at). we have control over the energy of that signal, while the iothe

lIl. IFT FOR ROBUST CONTROLLER DESIGN  term is considered as a perturbation.

To introduce a robust stability measure to IFT, we can Each sub-criterion in (11) contains thé,-norm of a
incorporate the four sensitivities (2) to the optimizedemipn ~ corresponding weighted sensitivity perturbed with therféd
function. To do so we add a new terii(p) (R denotes perturbationv(t). To measure robust stability we would,
robustness) to the classical criteridp (p); we will call J, ~ Of course, prefer anf..-norm instead. To improve the
a performance index andy a robustness index. The newQduality of the robustness measure fbg we can choose an

IFT criterion becomes: appropriate filterL;. For example:

J(p) = Jp(p) + Jr(p) 8) « A band-pass filter s.e_le.cting the pr_oblema.tic frequency

band (where a sensitivity modulus is too high) can help

where Jp(p) has the standard form (6) antk(p) contains to lower the sensitivity in the appropriate frequency
some norms of weighted sensitivity ternis;S, LcsC'S, band. A similar idea using band-pass filters is advanced
LcsGS, LaesGCS. The transfer functioné s, Les, Las, in [6] to approximate theH ,.-norm.
Lgaes are stable and proper weighting filters to be chosen . A filter where the frequency response is the inverse
by the designer. The exact structure&f(p) is given below, of the spectral factor of the external excitation signal
since it differs according to the configuration chosen far th allows one to remove the sensitivity weighting caused
IFT tuning. by the excitation.
A. Robustness index Notice that the criterion can be adjusted at each iteration

Consider the IFT scheme where configuration no. 1 i capture the robust stability property as it evolves with
chosen for the 1st experiment; i.e. the excitation is apptie Successive controllers.
r(t): r(t) = r1(t), d(t) = 0. The internal closed-loop signals The proposed robustness index (10) allows one to shape
have the following form: each sensitivity independently in a transparent manneitand
gives us a sensitivity shaping design tool. On the other hand
y(t) = GOSr(t) + Su(t) we have to take into account that the criterion minimizes
u(t) = CSr(t) — CSv(t) (9)  an H,-norm instead of the{.-norm and this may result in
We propose the following robustness index (the criteriOtgli'ﬁer.ent Welghtlng filters with respect to stand.ard sentt
for robustness): shaping techniques. Ong ke)_/ advantage _of this IFT approach
to robust controller design is that the filters used are not
Jr(p) = Jdacs(p) + Jos(p) + Jas(p) + Js(p) limited in complexity since they do not influence the final
— AoosE [(Lccsy)Q] + AesE [(LCSU)Q] controller order. This is an important advantage with respe
1 39 1o to H., design methods, where a subsequent controller re-
+ AasE[(LasO )] + As B [(LsC ™ u)’] duction step is often used to reduce the complexity of the
(10)  controller.

where the); are some weighting (scaling) coefficients to The criterion (10) has the following gradient:
adjust the relative impact of each particular robustness.te
The termsL; are some stable and proper weighting filters dJr _ 0Jacs | 0Jcs | OJas | 0Js

to impose some specific sensitivity attenuations. The reaso dp  9p dp dp T Op (12)




where the sub-criteria gradients are as follows: where the terms withy(¢) represent the estimation error.

875 901 ou Notice that if necessary’~! can be unstable. A stable
e 22sE [Ls(fluLs < o u+ Cila—p)] approximation of the inverseS—! is then used instead using
o P all-pass stable filters; for details see [2].
95— 2\esE {LcsuLcs—“] The estimation of the gradient (12) is computed using
dp Ip the estimated derivatives (18), (19), which are unbiasgd. B
dJas 1 oCc™t _10y computing the estimation errors of the unbiased sub-aiter
op  ~ Pesk {LGSC yLGS( o VY 5, gradientsest %822 | est29es, est29cs, and est%ls, one
dJacs Deera B | I Jy (13) observes that the estimate of the gradiefttaé—],f obtained
op  rcost|heosyreosy, this way is also unbiased. The errors on the estimated
The exact internal closed-loop signal derivatives are agsrad|ents have the following form:
follows: 9Js _ ,9Js _
5 aC ac o o
Y~ 8T (Sr— Sv) = GST (r — ) . 00
Op dp op 2Xg Z {Ls(sm — Svl)LSC*lKﬂsa—pW] (20)
0 ocC ocC
20— s (S —Su) = S (r —y) (14)
dp dp dp
] ) dJcs 0Jcs
The term(Sr — Sv) in (14) represents the required form of op est o

the excitation for the 2nd experiment; as is indicated in) (14 * L aC
it can be generated 4s(t) —y(t)) using the reference signal ~ 2\cs D {LCS(CSH —CSvi)LesK™ Sa—pvz] (1)
r(t) and the output signaj(t). The expressions (14) shows

that, to obtain the derivative% and 2t the excitation signal

. P Op 27 0Jas dJas
(r(t)—y(t)) has to be filtered by the closed-loop sensitivities o est op
GS andS. -

. . . . 2)\ags Z |:LGS(GS7’1 + Cilsvl)LG5072K71$%v2:| (22)
B. Robustness index gradient estimation dp
To estimate the gradient (12) properly, we need to present
a more explicit version of steps 2 and 3 of the IFT procedure. a‘]g’cs — est a‘]g’cs =
p p

We consider the configuration 1 for the 1st step of the IFT

procedure: the excitation is applied t@t) = r1(t) with 2 s Y {LGCS(GCSm +Sv1)LGCSC’71K715@U2] (23)
d(t) = 0. The obtained internal signals are then: 9p

y1(t) = GCSry(t) + Svi(t) with the sum defined as follows:
ui(t) = CSri(t) — CSvy (¢) (15) i[f] _ iXN:[f(t)] =12, (24)
In the 2nd experiment, the excitation can be applied either N t=1

to r(t) or to d(t). As we show later, these two possibilities|t is easy to see that all these estimation errors have zero
are equivalent. The excitation signal is considered to be Mean, because the disturbaneest) and vy (¢) in the two
the following form: experiments are uncorrelated, each having zero mean.
_ _ _ Remark 1: If the 2nd experiment excitation is applied

ro(t) = do(t) = K(Sr(t)—Sv(t)) = K(r1(t)—y1(t 16

2(t) = da(t) (Sr(®) ®) (ri{®)=51(5) (16) to d(t) = do(t) instead ofr(t), the estimation errors on
K(z~1') is any chosen stable proper filter witi—*(z~') the estimates (18), (19) and the gradient estimation errors
stable and proper. We show below that with this 2nd expe(20) - (23) are the same except that they are multiplied
iment we are able to estimate the internal signal derivativevith the controllerC. The reason is that to estima%é

d u ; ; ; . . .
esta—? a.nd estg—. The estimates W|” serve tO.eStImate th%_nd % we do not need to f||ter the |nterna| S|gn@§(t)
grad’fent of botf:l the standard performance critetignand 54 ug(t) with 0~ as we do in (18), (19). This remark
the robustness criterioriz. With the excitationr»(t) from g yajig for all three IFT configurations as they are defined
(16) added to the closed loop and with = 0, the obtained j, the |FT procedure step 1 (section I1-B). The analysis of

2nd experiment signals are: the two different possibilities of excitation point in the®
Y2 (t) = GCSra(t) + Suva(t) experiment leads us to the conclusion that with only one
2nd experiment possibility (eithex = 0 or d2 = 0) we can
uz(t) = CSna(t) = CSua(t) (17) produce the other one by simply adding the controdleor
The derivative estimates are evaluated as follows: its inverseC—! (or its stable approximation) in the excitation
Ay L0C oy oC filter K.

€Sta—p =K 'C” " + K_lc_lsa—pvz (18) Remark 2: Consider the complete controll€f. consisting

of a fixed partH and a pariC to be optimized as follows:
oC Ouq oC

o _ p-1,-10% 01 100 B B _
estap K—C ap’UQ 8p K Sap’l}g (19) CC(Z I)ZH(Z I)C(Z 1) (25)



whereH is a stable and proper transfer function. The errormiain robustness measures, since it represents the minimum
as they are mentioned in Remark 2 are again the same, ouligtance of the open loop frequency response (Nyquist plot)
multiplied with the fixed partd. The derivative estimates to the critical point(—1,0¢). The initial controller coeffi-
(18), (19) are slightly different, since the signaig(t) and cients are set t@ = [0.1,0,0]”, which gives us a low-gain
us(t) have to be filtered with the fixed paH. proportional controller.

Controller 1: Tracking performance controller optimiza-

C. IFT configuration 2 and 3 . . : ST
] ] i ] tion. In the first stage we use the following optimization
For the 1st experiment, and with configuration no. Zyiterion:

excitation withd; (¢), andr(t) = 0) the internal closed-loo

s(signals are as fc1>I(Io)ws: =0 i Telp) = E |(y(t) - yd(t))z} (30)
y1(t) = GSdy (t) + Sv1(t) where the desired responsg(t) reflecting the tracking
ui(t) = Sdy(t) — CSvy (1) (26) performance specification is given by the following trackin

reference model;(z~1):
and the proposed robustness index has the following form:
. 0.2257271 4 0.1533z2
Jr(p) = Jacs(p) +Jos(p) + Jas(p) + Js(p) ya(t) = Ta(z"")r(t) = 1—0.9392—1 + 0'318/27276(”
AacsE [(Lgcscy)ﬂ + AcsE [(Lcscu)g} h o . ) £ 80 | (31)
AasE [(Lasy)?] + AsE [(Lsu)?] 27) e excitationr, (¢) is a unit step o samples.

The choice of the robustness index again reflects the Step response
need to introduce into the criterion all four sensitivites | .z =3==
weighted with the exogenous excitation. Again, the sub- 1y Rfeene e
criteria gradient estimatesit anpCS , est agis , est agis ,and
est% contain some errors. The errors are unbiased and the
have a similar form as in configuration no. 1.

Configuration no. 3 has two excitations;(¢) and d;(t)
are applied simultaneously. The closed-loop internalaign § osr
are given by (5). A robustness index can then be defined a
follows:

Jr(p) = Jilp)+ J2(p)
= ME[(L19)*] + M E [(L2u)?]
— ME [(L1 (GCSr + GSd + sv))ﬂ

+

Tracking performance
criterion

Tracking performance +
— — — — sensitivity attenuation

0.4 criterion (Ag = 0.001) T

Tracking performance +
sensitivity attenuation
criterion (}\S =0.01)

0 I I I I I I I

+/\2E [(LQ(CST‘ + Sd — CS’U))Q} (28) 0 10 20 30 40 50 60 70 80

Time [s]

Again the robustness index contains all four sensitivities
weighted by an exogenous signal. However, notice that in
this configuration the four sensitivities cannot all be vinégl
independently. Unbiased gradient estimastesa%, est%‘—]p2

Fig. 2. Closed-loop step response for the three controllers

|S| frequency response
T T

can be generated as in the previous configurations. 25 ‘
IV. ROBUST CONTROLLER OPTIMIZATION il . el C T |

E XA M P L E 15 R ~ N v Tracking performance 4

criterion

To demonstrate the effect and the use of the new robus  *f
ness criterion terms we will optimize a discrete-time PID s
controller for the following discrete-time model:

~0.181327' +0.21222 2

S| [dB]

G Z_l 29 -0.51
=) 1—0.60652—1 (29) e |
The model (29) is taken from [4] (p.137). It is a discretized i Iéimiaﬁ.ﬁy"i{fe“;?;.”fﬁ* Sl = 16508:
continuous-time plant model (with gain time constant 10s ~ * criterion (A = 0.01) sonaiiy stencaton

criterion ()\S =0.001)

and delays). The sampling time is 5s. The required tracking 2 ]
performance specifications for the PID are: rise time abou _.s 1
20s and maximum overshoot under 10%. Additionally, we ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

will require the gain margin to be as large as possible  ° 0% 0% 08 00 o g 0O 0% e o
The margin corresponds to the inverse of the maximum of

the output sensitivity]S(z71)|maz- It gives us one of the Fig. 3. Output sensitivity frequency response moduysiéz—1)|.




Frequency response

Running the IFT optimization on the criterion (30) gives 1 ; | ‘
us the following optimal PID controller:

_ 0.51771 4 0.14448z1
Cripa(x7") = (1— 2 1)(1—0.19749z 1) (32) T |
The corresponding closed-loop step response is shown ii
Figure 2 (dotted line). The value of the criterion with this 5 °f 7
controller is J(p) = 5.3 - 1075. We observe from Figure 2
that the controller fulfills the performance requiremertteT
corresponding output sensitivity response is in Figured-(d
ted line): the maximum is abo@t07dB, which represents a 3l .
gain margin of about 0.78.
Controller 2: Tracking performance and robust stability
controller optimization. To improve the gain margin while  ?f ]
preserving reasonable tracking performance we propose th ‘ ‘ ‘ ‘ ‘ ‘

L I
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

following criterion: Frequency [Hz]

9l 4

7k 4

51 4

Modulus [dB]

4k 4

J(p)=E [(y(t) — yd(t))g} +)\sE {(Lscflu(t)))ﬂ (33) Fig. 4. Frequency response modulus for the weighting filte(z—1).

The first term reflects the tracking requirement and is the

same as in (30), while the second term represents mirhe closed-loop step response for the 3rd controller is show
mization of the output sensitivity maximum. The scalingn Figure 2 (solid line), the resulting criterion valuejgp) =
factor is set tods = 0.001 (this makes the two terms 6.8-107648.1-10~*. The controller guarantees the required
approximately equivalent, see the final criterion valué®®, tracking performance and the sensitivity maximum is now
weighting filter Ls(z~1) is an inverted 2nd order notch filter 1.45dB, which gives a gain margin of 0.85. The sensitivity
[5] with the frequency of band-stog, = 0.02Hz, band response in shown in Figure 3 (solid line).

attenuation)/, = —10dB, and the denominator damping
(4 = 0.5. The frequency response of the weighting filfgy V. CONCLUSIONS
is in Figure 4. In this paper we have presented a simple and flexible
The IFT procedure with this modified criterion gives us@pproach to adding some robustness measures to the clas-
the following second optimal PID controller: sical IFT optimization criterion. The approach allows one
. to optimize or design a controller using the model-free
Cpipa(z™1) = 0.58743 + 0.028572 (34) |IFT methodology, while considering not only the tracking

(I—=271)(1+0.1323521) performance and the energy preservation but also the robust

The resulting closed-loop step response is shown in Figuféability. The robust stability is treated by a sensitivity
2 (dashed line), the criterion reachef;p) = 5.7- 106 +  shaping approach, which gives the designer a simple and
8.2 - 10~5 (first term represents tracking, the second onfiexible tool. The presented model-based controller design
robustness). The second controller again fulfills the fragk €xample illustrates transparently the proposed approach.
performance requirement. Although its tracking behavior
is almost identical to the first controller, the gain margin ) o

H. Hjalmarsson and M. Gevers Eds. Control Engineerinacfice (11),

IS hl_gh_er as can b_e S(_een from the co_rrespondlng_ OUtpm issue 9: Special Section on Algorithms and Applications tefdtive
sensitivity response in Figure 3 (dashed line). The setyiti Feedback Tuning. Elsevier Science Ltd., September 2003.
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about 0.83. Hence using a supplementary robustness index Magazine 18(4):26-41, 1998.
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