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Abstract— This paper introduces a new approach for ro-
bust controller design using Iterative Feedback Tuning (IFT)
method. Based on some robustness principles a new criterion
is proposed reflecting both performance and robustness speci-
fications. Then, some analysis of the new criterion is made and
we show how to apply the standard IFT procedure using the
new criterion. The approach is transparently illustrated on one
model-based controller design example.

I. INTRODUCTION

Iterative Feedback Tuning (IFT) is an iterative procedure
for controller optimization [2]. It is useful mainly for tun-
ing of low-order controllers. It can tune a badly adjusted
controller to upgrade its performance, where the desired
performance has to be formulated as a criterion function
of some specific form. Although the main application of
IFT is controller tuning (optimization starting from an ini-
tial controller), it is successfully used for model-free and
model-based controller design as well (for some application
examples see [1], or [3]). The IFT procedure was primarily
developed for tuning of single-input single-output (SISO)
one-degree-of-freedom (1DOF) or two-degree-of-freedom
(2DOF) discrete-time controllers. Later, the procedure was
modified to allow optimization of other controller structures
[1].

The IFT procedure does not require a plant model; only
closed-loop system experiments are necessary to estimate a
gradient of a criterion function which is to be minimized. In
the classical IFT method the criterion is typically constructed
with two terms: one reflecting a desired tracking property,
the second one restricting control action energy. This kindof
criterion is obviously insufficient if other specifications, such
as robust stability, are imposed. The robustness specification
belongs to the most commonly required specifications and it
would be useful to handle it within the IFT framework.

One attempt to deal with the robustness was made in
[6], where the H∞-norm approximation of a sensitivity
matrix (matrix with the four sensitivities) is introduced to
the criterion. In this paper we introduce a robust stability
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measure to the criterion in a simpler and more flexible
way. We use the elements of the sensitivity matrix, i.e.
the sensitivity functions and we add the square of their
weightedH2-norm separately to the criterion using closed-
loop signals. We focus only on a single-input single-output
(SISO) discrete-time linear 1DOF controller structure in this
paper, but the same approach is easily extendable to a 2DOF
structure.

The paper is organized as follows: Section 2 introduces
the considered closed-loop system and the classical IFT
procedure with some details on possible configurations. In
section 3 we develop the new robustness criterion and the
corresponding modified IFT procedure. We show that an
unbiased estimate of the required gradient can be computed
from closed-loop signals. Section 4 illustrates the function-
ality of the developed approach on one controller design
example. Finally section 5 gives some conclusions.

II. BASICS

A. Closed-loop system

A one-degree-of-freedom linear discrete-time controller
optimization is considered. A corresponding closed-loop
(CL) diagram is shown in Figure 1. The blockG is either a
discrete-time plant modelG(z−1) or a real plantG with a
sample and hold device and the blockC(z−1) represents a
linear discrete-time controller to be optimized. The operator
z−1 is considered to be either a frequency operator in a Z-
transform, or a time delay operator. The external signalsr(t),
d(t), v(t) are an output reference, an external control action
input, and a perturbation signal, respectively. The output
signal y(t) and the control actionu(t) are internal closed-
loop signals.
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Fig. 1. Considered closed-loop system.

The reference inputr(t) and the control inputd(t) are
exogenous signals added to the closed loop either as a
reference for the output, or as a closed-loop excitation
providing us with some plant information. The perturbation
v(t) is an unwanted and unknown perturbing signal.

Considering the plant modelG(z−1) in the closed loop,
the system in Figure 1 can be described by four closed-
loop transfer functions (generalized sensitivities):S(z−1),



C(z−1)S(z−1), G(z−1)S(z−1), andG(z−1)C(z−1)S(z−1),
with the sensitivityS(z−1) defined as follows:

S(z−1) = (1 + G(z−1)C(z−1))−1 (1)

(To simplify equations, we will often use the following
simplified notations for the sensitivities:S, CS, GS, GCS

and for the signals:r, d, v.)
The sensitivities represent the behavior of closed-loop

internal signals (u(t) and y(t)) with respect to an external
signal. They are typically used to describe the following
input-output signal relations:

y(t) = Sv(t)

u(t) = −CSv(t)

y(t) = GSd(t)

y(t) = GCSr(t) (2)

Recall that by analyzing the sensitivities (2) we can
measure the system robust stability with respect to different
kinds of uncertainties, and noise and perturbation signals
(see for example [7]). ConventionalH∞ design techniques
typically use the so called sensitivity matrixT (z−1):

T =

(

GCS GS

CS S

)

(3)

which contains the four sensitivities. To design a robust
controller, these techniques minimize theH∞-norm of the
weighted matrixW1(z

−1)T (z−1)W2(z
−1):

min
C(z−1)

‖W1(z
−1)T (z−1)W2(z

−1)‖∞ (4)

The weighting filtersWi allow the designer to scale and to
weight appropriately the sensitivities in order to obtain the
best compromise in the sensitivity minimization. Weighting
selection is one of the main designer tasks in theH∞

controller design techniques.
Using the sensitivities as they are defined in (2), the two

internal closed-loop signalsu(t) andy(t) (see Figure 1) have
the following expressions:

y(t) = GCSr(t) + GSd(t) + Sv(t)

u(t) = CSr(t) + Sd(t) − CSv(t) (5)

B. Classical Iterative Feedback Tuning

The classical IFT scheme for 1DOF controller optimiza-
tion considers the closed-loop system as it is shown in Figure
1 but without the control excitation input:d(t) = 0. IFT
generally minimizes the following criterion function:

JP (ρ) = E
[

(

Ly(z
−1)(y(t) − yd(t))

)2
]

+λE
[

(

Lu(z−1)u(t)
)2

]

(6)

(the indexP denotes ”performance”), whereρ is a vector
of controller coefficients to be optimized, e.g.C = C(ρ)
and E[·] denotes expectation with respect to all random
signals. The first term in the criterion reflects some tracking
performance specifications (yd(t) is a desired closed-loop
time response,y(t) is the output (5)). The second term

adds a possible control action energy restriction. The transfer
functionsLy(z−1) and Lu(z−1) are some stable weighting
filters adjusting the criterion andλ is a scaling factor added
for the same purpose.

Replacing the signalsu(t) and y(t) with the sensitivity
expressions (5) and withd(t) = 0, we obtain the following
criterion:

JP (ρ) = E[Lu(GCSr + Sv − yd)
2]

+λE[Lu(CSr − CSv)2] (7)

whereC andS depend on the optimization vectorρ.
Notice that the criterion (7) contains three of the four

sensitivities (2). Only two of these sensitivities (GCS and
CS) are driven by the external signalr(t) that is at the
designer’s disposal, while the third one (S) is driven by
the uncontrollable perturbation signalv(t). This implies that
we can see the optimization of the criterionJP from two
different points of view:

1) By minimizing the criterionJP we improve the track-
ing performance (termE[(y − yd)2]) and limit the
control action (termE[u2]).

2) By minimizing the criterion JP we minimize a
weighted and perturbedH2 norm of the sensitivities
GCS and CS. The sensitivityS is neglected since
it is weighted with the unknown random perturbation
v(t).

Controller optimization using IFT minimizes the criterion
function (6) step by step by iteratively tuning the controller.
The following style of procedure sets out one such step:

1) Step 1: 1st real-time experiment.An external excitation
signal (r1(t) or d1(t)) is applied to the closed-loop
system. In this experiment we obtain the internal
closed-loop signalsy1(t) and u1(t) containing some
weighted sensitivity functions as shown by (5). We
can establish three general configurations for the 1st
experiment:

• Configuration 1: The excitation is applied atr(t):
r(t) = r1(t), d(t) = 0.

• Configuration 2: The excitation is applied atd(t):
d(t) = d1(t), r(t) = 0.

• Configuration 3: The excitation is applied at both
r(t) andd(t): r(t) = r1(t), d(t) = d1(t).

2) Step 2: 2nd real-time experiment.Another excitation
signal (r2(t) or d2(t)) is applied to the closed loop,
in order to obtain an estimate of the signal gradients:
est∂y1

∂ρ
andest∂u1

∂ρ
. These derivatives are necessary to

compute the gradient of the criterion. The following
design choices are available for the 2nd experiment:

• The excitation in the 2nd experiment may be
applied either atr(t) = r2(t) or at d(t) = d2(t)).

• The excitation signal applied in the 2nd experi-
ment is not arbitrary, but highly though not com-
pletely constrained, as described in detail below.
The theory of IFT shows that the computation of
the desired gradients requires a special excitation



signal containing a feedback from a signal gener-
ated in the 1st experiment, possibly filtered with a
selected stable filterK(z−1).

The obtained derivative estimate is perturbed (i.e. de-
viates from the exact value) by a noise term. The form
of the noise term is determined by the 1st experiment
configuration, and the 2nd experiment choice, as we
shall see later.

3) Step 3: Criterion gradient estimation.Using the esti-
mated signal derivativesest∂y1

∂ρ
and est∂u1

∂ρ
obtained

from the 2nd experiment, the criterion gradientest∂J
∂ρ

is estimated.
4) Step 4: New coefficients calculation.A new controller

parameter vectorρ is computed from the estimated
criterion gradient. This new controller parameter vector
defines a new controllerC(ρ).

Notice that in the classical IFT procedure, the excitationsin
steps 1 and 2 are always applied atr(t).

III. IFT FOR ROBUST CONTROLLER DESIGN

To introduce a robust stability measure to IFT, we can
incorporate the four sensitivities (2) to the optimized criterion
function. To do so we add a new termJR(ρ) (R denotes
robustness) to the classical criterionJP (ρ); we will call JP

a performance index andJR a robustness index. The new
IFT criterion becomes:

J(ρ) = JP (ρ) + JR(ρ) (8)

whereJP (ρ) has the standard form (6) andJR(ρ) contains
some norms of weighted sensitivity termsLSS, LCSCS,
LGSGS, LGCSGCS. The transfer functionsLS , LCS, LGS,
LGCS are stable and proper weighting filters to be chosen
by the designer. The exact structure ofJR(ρ) is given below,
since it differs according to the configuration chosen for the
IFT tuning.

A. Robustness index

Consider the IFT scheme where configuration no. 1 is
chosen for the 1st experiment; i.e. the excitation is applied to
r(t): r(t) = r1(t), d(t) = 0. The internal closed-loop signals
have the following form:

y(t) = GCSr(t) + Sv(t)

u(t) = CSr(t) − CSv(t) (9)

We propose the following robustness index (the criterion
for robustness):

JR(ρ) = JGCS(ρ) + JCS(ρ) + JGS(ρ) + JS(ρ)

= λGCSE
[

(LGCSy)2
]

+ λCSE
[

(LCSu)2
]

+ λGSE
[

(LGSC−1y)2
]

+ λSE
[

(LSC−1u)2
]

(10)

where theλi are some weighting (scaling) coefficients to
adjust the relative impact of each particular robustness term.
The termsLi are some stable and proper weighting filters
to impose some specific sensitivity attenuations. The reason

for the subscripts on the four summands in (10) is suggested
by equations (11) below.

Replacing the signalsy(t) andu(t) by (9) in the criterion
(10), we have:

JGCS(ρ) = λGCSE
[

(LGCS(GCSr + Sv))2
]

JCS(ρ) = λCSE
[

(LCS(CSr − CSv))2
]

JGS(ρ) = λGSE
[

(LGS(GSr + C−1Sv))2
]

JS(ρ) = λSE
[

(LS(Sr − Sv))2
]

(11)

We can observe that the sub-criteriaJGCS , JCS , JGS , JS

of the robustness indexJR always contain two sensitivities.
One sensitivity is different in each term and it is driven (or
weighted) by the excitationr(t), the other is driven by the
perturbationv(t). In order to impose robustness we shall rely
only on the sensitivities driven by the excitationr(t) because
we have control over the energy of that signal, while the other
term is considered as a perturbation.

Each sub-criterion in (11) contains theH2-norm of a
corresponding weighted sensitivity perturbed with the filtered
perturbationv(t). To measure robust stability we would,
of course, prefer anH∞-norm instead. To improve the
quality of the robustness measure forJR we can choose an
appropriate filterLi. For example:

• A band-pass filter selecting the problematic frequency
band (where a sensitivity modulus is too high) can help
to lower the sensitivity in the appropriate frequency
band. A similar idea using band-pass filters is advanced
in [6] to approximate theH∞-norm.

• A filter where the frequency response is the inverse
of the spectral factor of the external excitation signal
allows one to remove the sensitivity weighting caused
by the excitation.

Notice that the criterion can be adjusted at each iteration
to capture the robust stability property as it evolves with
successive controllers.

The proposed robustness index (10) allows one to shape
each sensitivity independently in a transparent manner andit
gives us a sensitivity shaping design tool. On the other hand,
we have to take into account that the criterion minimizes
an H2-norm instead of theH∞-norm and this may result in
different weighting filters with respect to standard sensitivity
shaping techniques. One key advantage of this IFT approach
to robust controller design is that the filters used are not
limited in complexity since they do not influence the final
controller order. This is an important advantage with respect
to H∞ design methods, where a subsequent controller re-
duction step is often used to reduce the complexity of the
controller.

The criterion (10) has the following gradient:

∂JR

∂ρ
=

∂JGCS

∂ρ
+

∂JCS

∂ρ
+

∂JGS

∂ρ
+

∂JS

∂ρ
(12)



where the sub-criteria gradients are as follows:

∂JS

∂ρ
= 2λSE

»

LSC
−1

uLS

„

∂C−1

∂ρ
u + C

−1 ∂u

∂ρ

«–

∂JCS

∂ρ
= 2λCSE

»

LCSuLCS

∂u

∂ρ

–

∂JGS

∂ρ
= 2λGSE

»

LGSC
−1

yLGS

„

∂C−1

∂ρ
y + C

−1 ∂y

∂ρ

«–

∂JGCS

∂ρ
= 2λGCSE

»

LGCSyLGCS

∂y

∂ρ

–

(13)

The exact internal closed-loop signal derivatives are as
follows:

∂y

∂ρ
= GS

∂C

∂ρ
(Sr − Sv) = GS

∂C

∂ρ
(r − y)

∂u

∂ρ
= S

∂C

∂ρ
(Sr − Sv) = S

∂C

∂ρ
(r − y) (14)

The term(Sr − Sv) in (14) represents the required form of
the excitation for the 2nd experiment; as is indicated in (14)
it can be generated as(r(t)−y(t)) using the reference signal
r(t) and the output signaly(t). The expressions (14) shows
that, to obtain the derivatives∂y

∂ρ
and ∂u

∂ρ
the excitation signal

(r(t)−y(t)) has to be filtered by the closed-loop sensitivities
GS andS.

B. Robustness index gradient estimation

To estimate the gradient (12) properly, we need to present
a more explicit version of steps 2 and 3 of the IFT procedure.
We consider the configuration 1 for the 1st step of the IFT
procedure: the excitation is applied tor(t) = r1(t) with
d(t) = 0. The obtained internal signals are then:

y1(t) = GCSr1(t) + Sv1(t)

u1(t) = CSr1(t) − CSv1(t) (15)

In the 2nd experiment, the excitation can be applied either
to r(t) or to d(t). As we show later, these two possibilities
are equivalent. The excitation signal is considered to be in
the following form:

r2(t) = d2(t) = K(Sr(t)−Sv(t)) = K(r1(t)−y1(t)) (16)

K(z−1) is any chosen stable proper filter withK−1(z−1)
stable and proper. We show below that with this 2nd exper-
iment we are able to estimate the internal signal derivatives
est∂y

∂ρ
and est∂u

∂ρ
. The estimates will serve to estimate the

gradient of both the standard performance criterionJP and
the robustness criterionJR. With the excitationr2(t) from
(16) added to the closed loop and withd2 = 0, the obtained
2nd experiment signals are:

y2(t) = GCSr2(t) + Sv2(t)

u2(t) = CSr2(t) − CSv2(t) (17)

The derivative estimates are evaluated as follows:

est
∂y

∂ρ
= K−1C−1 ∂C

∂ρ
y2 =

∂y1

∂ρ
+ K−1C−1S

∂C

∂ρ
v2 (18)

est
∂u

∂ρ
= K−1C−1 ∂C

∂ρ
u2 =

∂u1

∂ρ
− K−1S

∂C

∂ρ
v2 (19)

where the terms withv2(t) represent the estimation error.
Notice that if necessaryC−1 can be unstable. A stable
approximation of the inversesC−1 is then used instead using
all-pass stable filters; for details see [2].

The estimation of the gradient (12) is computed using
the estimated derivatives (18), (19), which are unbiased. By
computing the estimation errors of the unbiased sub-criterion
gradientsest∂JGCS

∂ρ
, est∂JGS

∂ρ
, est∂JCS

∂ρ
, and est∂JS

∂ρ
, one

observes that the estimate of the gradientest∂JR

∂ρ
obtained

this way is also unbiased. The errors on the estimated
gradients have the following form:

∂JS

∂ρ
− est

∂JS

∂ρ
=

2λS

∗
X

»

LS(Sr1 − Sv1)LSC
−1

K
−1

S
∂C

∂ρ
v2

–

(20)

∂JCS

∂ρ
− est

∂JCS

∂ρ
=

2λCS

∗
X

»

LCS(CSr1 − CSv1)LCSK
−1

S
∂C

∂ρ
v2

–

(21)

∂JGS

∂ρ
− est

∂JGS

∂ρ
=

2λGS

∗
X

»

LGS(GSr1 + C
−1

Sv1)LGSC
−2

K
−1

S
∂C

∂ρ
v2

–

(22)

∂JGCS

∂ρ
− est

∂JGCS

∂ρ
=

2λGCS

∗
X

»

LGCS(GCSr1 + Sv1)LGCSC
−1

K
−1

S
∂C

∂ρ
v2

–

(23)

with the sum defined as follows:
∗

∑

[f ] =
1

N

N
∑

t=1

[f(t)] | t = 1, 2, . . . (24)

It is easy to see that all these estimation errors have zero
mean, because the disturbancesv2(t) and v1(t) in the two
experiments are uncorrelated, each having zero mean.

Remark 1: If the 2nd experiment excitation is applied
to d(t) = d2(t) instead ofr(t), the estimation errors on
the estimates (18), (19) and the gradient estimation errors
(20) - (23) are the same except that they are multiplied
with the controllerC. The reason is that to estimate∂y

∂ρ

and ∂u
∂ρ

we do not need to filter the internal signalsy2(t)

and u2(t) with C−1 as we do in (18), (19). This remark
is valid for all three IFT configurations as they are defined
in the IFT procedure step 1 (section II-B). The analysis of
the two different possibilities of excitation point in the 2nd
experiment leads us to the conclusion that with only one
2nd experiment possibility (eitherr2 = 0 or d2 = 0) we can
produce the other one by simply adding the controllerC or
its inverseC−1 (or its stable approximation) in the excitation
filter K.

Remark 2: Consider the complete controllerCc consisting
of a fixed partH and a partC to be optimized as follows:

Cc(z
−1) = H(z−1)C(z−1) (25)



whereH is a stable and proper transfer function. The errors
as they are mentioned in Remark 2 are again the same, only
multiplied with the fixed partH . The derivative estimates
(18), (19) are slightly different, since the signalsy2(t) and
u2(t) have to be filtered with the fixed partH .

C. IFT configuration 2 and 3

For the 1st experiment, and with configuration no. 2
(excitation withd1(t), andr(t) = 0) the internal closed-loop
signals are as follows:

y1(t) = GSd1(t) + Sv1(t)

u1(t) = Sd1(t) − CSv1(t) (26)

and the proposed robustness index has the following form:

JR(ρ) = JGCS(ρ) + JCS(ρ) + JGS(ρ) + JS(ρ)

= λGCSE
[

(LGCSCy)2
]

+ λCSE
[

(LCSCu)2
]

+ λGSE
[

(LGSy)2
]

+ λSE
[

(LSu)2
]

(27)

The choice of the robustness index again reflects the
need to introduce into the criterion all four sensitivities
weighted with the exogenous excitation. Again, the sub-
criteria gradient estimatesest∂JGCS

∂ρ
, est∂JGS

∂ρ
, est∂JCS

∂ρ
, and

est∂JS

∂ρ
contain some errors. The errors are unbiased and they

have a similar form as in configuration no. 1.
Configuration no. 3 has two excitations:r1(t) and d1(t)

are applied simultaneously. The closed-loop internal signals
are given by (5). A robustness index can then be defined as
follows:

JR(ρ) = J1(ρ) + J2(ρ)

= λ1E
[

(L1y)2
]

+ λ2E
[

(L2u)2
]

= λ1E
[

(L1(GCSr + GSd + Sv))
2
]

+λ2E
[

(L2(CSr + Sd − CSv))2
]

(28)

Again the robustness index contains all four sensitivities
weighted by an exogenous signal. However, notice that in
this configuration the four sensitivities cannot all be weighted
independently. Unbiased gradient estimatesest∂J1

∂ρ
, est∂J2

∂ρ

can be generated as in the previous configurations.

IV. ROBUST CONTROLLER OPTIMIZATION
EXAMPLE

To demonstrate the effect and the use of the new robust-
ness criterion terms we will optimize a discrete-time PID
controller for the following discrete-time model:

G(z−1) =
0.1813z−1 + 0.2122z−2

1 − 0.6065z−1
(29)

The model (29) is taken from [4] (p.137). It is a discretized
continuous-time plant model (with gain1, time constant 10s
and delay3s). The sampling time is 5s. The required tracking
performance specifications for the PID are: rise time about
20s and maximum overshoot under 10%. Additionally, we
will require the gain margin to be as large as possible.
The margin corresponds to the inverse of the maximum of
the output sensitivity:|S(z−1)|max. It gives us one of the

main robustness measures, since it represents the minimum
distance of the open loop frequency response (Nyquist plot)
to the critical point(−1, 0i). The initial controller coeffi-
cients are set toρ = [0.1, 0, 0]T , which gives us a low-gain
proportional controller.

Controller 1: Tracking performance controller optimiza-
tion. In the first stage we use the following optimization
criterion:

JP (ρ) = E
[

(y(t) − yd(t))
2
]

(30)

where the desired responseyd(t) reflecting the tracking
performance specification is given by the following tracking
reference modelTd(z

−1):

yd(t) = Td(z
−1)r(t) =

0.2257z−1 + 0.1533z−2

1 − 0.939z−1 + 0.318z−2
r(t)

(31)
The excitationr1(t) is a unit step of 80 samples.
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Running the IFT optimization on the criterion (30) gives
us the following optimal PID controller:

CPID1(z
−1) =

0.51771 + 0.14448z−1

(1 − z−1)(1 − 0.19749z−1)
(32)

The corresponding closed-loop step response is shown in
Figure 2 (dotted line). The value of the criterion with this
controller isJ(ρ) = 5.3 · 10−6. We observe from Figure 2
that the controller fulfills the performance requirement. The
corresponding output sensitivity response is in Figure 3 (dot-
ted line): the maximum is about2.07dB, which represents a
gain margin of about 0.78.

Controller 2: Tracking performance and robust stability
controller optimization. To improve the gain margin while
preserving reasonable tracking performance we propose the
following criterion:

J(ρ) = E
[

(y(t) − yd(t))
2
]

+λSE
[

(

LSC−1u(t))
)2

]

(33)

The first term reflects the tracking requirement and is the
same as in (30), while the second term represents mini-
mization of the output sensitivity maximum. The scaling
factor is set toλS = 0.001 (this makes the two terms
approximately equivalent, see the final criterion values),the
weighting filterLS(z−1) is an inverted 2nd order notch filter
[5] with the frequency of band-stopfb = 0.02Hz, band
attenuationMa = −10dB, and the denominator damping
ζd = 0.5. The frequency response of the weighting filterLS

is in Figure 4.
The IFT procedure with this modified criterion gives us

the following second optimal PID controller:

CPID2(z
−1) =

0.58743 + 0.02857z−1

(1 − z−1)(1 + 0.13235z−1)
(34)

The resulting closed-loop step response is shown in Figure
2 (dashed line), the criterion reached:J(ρ) = 5.7 · 10−6 +
8.2 · 10−5 (first term represents tracking, the second one
robustness). The second controller again fulfills the tracking
performance requirement. Although its tracking behavior
is almost identical to the first controller, the gain margin
is higher as can be seen from the corresponding output
sensitivity response in Figure 3 (dashed line). The sensitivity
maximum is now1.65dB, which represents a gain margin of
about 0.83. Hence using a supplementary robustness index
in the IFT criterion we have increased one of the main
robust stability measures without any tracking performance
degradation.

Controller 3: This controller is designed using the same
criterion as the 2nd controller but with the scaling factorλS

set to0.01 in order to accentuate the robustness requirement.
The obtained controller has the following form:

CPID3(z
−1) =

0.61199 + 0.29753z−1

(1 − z−1)(1 + 0.79105z−1)
(35)
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Fig. 4. Frequency response modulus for the weighting filterLS(z−1).

The closed-loop step response for the 3rd controller is shown
in Figure 2 (solid line), the resulting criterion value isJ(ρ) =
6.8 ·10−6+8.1 ·10−4. The controller guarantees the required
tracking performance and the sensitivity maximum is now
1.45dB, which gives a gain margin of 0.85. The sensitivity
response in shown in Figure 3 (solid line).

V. CONCLUSIONS

In this paper we have presented a simple and flexible
approach to adding some robustness measures to the clas-
sical IFT optimization criterion. The approach allows one
to optimize or design a controller using the model-free
IFT methodology, while considering not only the tracking
performance and the energy preservation but also the robust
stability. The robust stability is treated by a sensitivity
shaping approach, which gives the designer a simple and
flexible tool. The presented model-based controller design
example illustrates transparently the proposed approach.
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