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Fig.  3.  Comparison of  magnitude  frequency  responses. 
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TABLE I 

Integral of Squared Errors 
Impulse 

Response  Impulse unit  step 
Model  Energy  Response  Response 

G(s) 11.400556 
= gds) 
C 2 ( 4  12.254919  0.578921  0.15945 1 

- 
11 S51725 0.082905 

- 
0.035273 

Here,  it should be noted that in this example  an unstable second-order 
reduced model, 

--., . -0.46358-2.92242s 
l i p )  = 

-0.37086-2.20814~+~~ 

will  be obtained if we use the method of Chen  and Shieh [l] which uses 
the Cauer-type continued-fraction expansion about s = 0. It is an 
important advantage of the present method that the instability problem of 
yielding unstable reduced models for  a full system can be partially 
overcome by choosing suitable expansion points a;. 

v. CONCLUDWG REMARKS 

A multipoint continued-fraction expansion about arbitrary points in the 
real axis has  been proposed  for reduced-order modeling of linear time- 
invariant systems. Both the frequency-domain and timedomain  MCFE 
modeling procedures have also been presented. As compared to the 
MCFE of [9], the present MCFE has the following advantages: 1) it 
involves only the operation of real values; 2) it also provides a time- 
domain modeling procedure; 3) it is equally applicable to discrete-time 
systems. 

Finally,  it should be mentioned that the problem of yielding unstable 
reduced  models for  a stable full model can be partially overcome by  an 
appropriate choice of the values of a;. However,  it is difficult to derive a 
relation between the points a; and stability preservation of the full models. 
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Miscellany of Results on an  Equation of Count J. F. 
Riccati 

MARIE-ANTOINETTE  POUBELLE, IAN R. PETERSEN, 
MICHEL R. GEVERS, AND ROBERT  R.  BITMEAD 

Abstract-A collection of results on  the Riccati equation is presented. 
The  questions addressed are the existence of strong  solutions of the 
algebraic Riccati equation  and the convergence of solutions of the Riccati 
difference equation  to those of the algebraic equation.  The results derived 
utilize detestability conditions only. 

I. INTRODUCTION 

In this note  we present some new properties of the following equation: 

P(t)=P(t)FT+FP(t)-P(t)H7HP(t)+Q, P(O)=Po (1.1) 

and its discrete-time counterpart 

P ( t +  l ) = F P ( t ) F T - F P ( t ) H T I H P ( r ) H T + ~ - ’ H P ( t ) F T + Q ,  P(O)=Po 

(1 4 

where F, H ,  Q are constant real matrices with Q symmetric and 
nonnegative definite,  and  where the dimensions of the matrices et), F, 
H,  Q are, respectively, n X n ,  n X n, p X n, and n X n. The  particular 
variants of these equations which  we consider are familiar from an 
optimal filtering context. The  same equations (modulo the classical 
duality substitutions) arise in optimal control problems. 

Although Count  Jacobo Francesco Riccati (1676-1754) did not 
originate these precise  equations, they  have been widely attributed to  him 
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ever since d'Alembert did so after reading [l]. Therefore, following 
popular foklore, we  shall call these  equations  the  Riccati  differential  and 
Riccati difference equations (RDE). Associated  with  these  two  RDE's are 
a  continuous-time  and  a  discrete-time  algebraic  Riccati  equation (ARE): 

PFT+FP-PHTHP+Q=O (1.3) 

P=FPFT-FPHT[HPHT+I]-'HPFT+Q, (1.4) 

The  RDE's  and their  corresponding A R E ' S  are among  the  most  widely 
studied  equations  in linear systems theory. As is well known, the solution 
of the  linear quadratic (LQ) optimal  control  problem  and  the  dual  optimal 
filtering  problem (i.e., Kalman  filtering  problem)  require  the  solution  of 
these RDE's. 

The solution of the ARE is of  interest  because if the  RDE  has  a 

(1.3) assume  that [H,  F ]  is detectable  and start with "Ea  strong solution 
P exists,  it  has the following  properties." Our first theorem  will prove 
the existence of a strong solution  when [H,  F] is  detectable. The results of 
this  note  therefore fill gaps  in the existing  literature;  they are not 
surprising  because  they  have either discrete-time  counterparts  (in [3]-[5]) 
or continuous-time  antecedents  (in [7]).  However, we  believe  that it 
serves a  useful purpose  to make  these  results  available,  and  they were 
actually  needed to establish the results  of [5] and [6]; as a  matter of  fact, 
the proof  of the main theorem of [5] (Theorem 2) contains an abysmal 
gap, which  the  present  note fills. Finally, it is worth  noting  that the proof 
techniques  of all but one of our  theorems are completely different,  and for 
the most  part  much simpler, than  those of [3]-[7l. 

II. A  CONTINUOUS-TIME ARE ~ U L T  

convergence  point,  then the limiting  solution  of the  RDE must  obey the 
corresponding ARE. 

been  abundant literature (both papers and  books)  devoted to these 

note. The most  central  question  in all this  work  has  been  concerned  with 

Theorem I: If  the pair [H,  F ]  is detectable,  then the continuous-time 

Proof: We construct the  strong solution of (1.3) by considering  a 
Ever since  Kalman's  pioneering  work of the early  1960's,  there  has ARE has a unique 

equations,  and  we  shall  not  attempt to sun~ey this literature  in  this brief sequence Of algebraic  equations and then using a limiting  process. 
Indeed,  for each  integer k ,  we  consider the ARE 

deriving  properties of H, F, Q that  would  guarantee  asymptotic  stability 
of the time-varying  closed-loop  system 

X(t)=[F-P(t)Hr'H]x(f) (1.5) 

in  continuous time, or 

X([+ I ) = {  F-FP(t)H'[HP(t)H'+Z]-')x(t) (1.6) 

in  discrete  time.  Until 1984, the  most  classical  result  was  that the closed- 
loop system is exponentially  asymptotically  stable if the  pair [H,  F] is 
completely  detectable  and the pair [F, L] is completely  stabilizable  (where 
L is a square root  of Q: Q = LL T)(see,  e.g., [2]). It was  widely  believed 
that this was a  necessary  and  sufficient  condition. In [3] Chan, Goodwin, 
and  Sin  presented  a series of  new  results for the  discrete-time  ARE  and 
RDE. Assuming  only the detectability  of [H,  F], they  studied the 
properties of the  solution  of the  ARE and also  the convergence  properties 
of the RDE  under  a  variety of assumptions  on  the  pair [F, L]. They 
introduced  the  notion  of strong  solution defined as follows. 

Definition 1: A real symmetric  nonnegative  definite  solution P of  the 
discrete-time (respectively, continuous-time) ARE is  called strong if  the 
corresponding  closed-loop  state-transition  matrix E = F - 
FPHT(HPHT + I ) - IH (respectively, F = F - PHrH) has all its 
eigenvalues  inside or  on the unit circle (respectively,  in the closed left half 
plane). 

The central ARE result  established  in [3] (and  the  hardest one  to prove) 
was  the  existence  and  uniqueness of a strong solution of (1.4) under  an 
assumption  that  involved only the detectability  of [ H ,  F].  In [4] the  ARE 
results of [3] were strengthened to necessary  and  sufficient  conditions, 
and  the  following  discrete-time RDE result  was  established. 

Proposition I [#, Theorem 4.21: Subject to Po 2 P. then Iirn,-- P(t) 
= P if and only  if [H,  F ]  is detectable,  where P(t) is the solution  of the 
RDE (1.2) and P is the unique strong solution of the  ARE (1.4). 

In [5]  and [6] a  new  closed-loop  stability  problem  was  considered. 
different from  that  of ( l S ) ,  (1.6). Sufficient  conditions on H,  F, Q, and 
Po were  derived  that  guarantee the asymptotic  stability  of  the  time- 
invariant  closed-loop  system 

PFT+FP-PHTHP+Q+-Z=O. 1 
k 

Given  that the matrix Q + (1 /k)Z is positive-definite  and the pair [H,  F] 
is detectable, it follows  that  there  exists  a  unique  positive-semidefinite 
symmetric  solution Pk to (2.1) such  that 

F -  PkH'H 

is a  stability  matrix; see [8, Theorem 4.111. Now  using [7, Theorem 11 it 
follows  that PI 2 P2 . . . 2 Pk . . . . Thus, each  matrix Pk is contained  in 
the set S 2 { P  E P x n :  0 < P < PI and P i s  symmetric). This set is 
bounded,  since if we consider  the matrix  norm llPll = X,, (P'P) then for 
any P E S, llPll < IIP111. Furthermore, S is closed, and hence S is a 
compact set. Therefore, the sequence PI,   P2 ,  . * . must  have  a  convergent 
subsequence PC + P E S (see [9, Ch. 91). This is the crucial  existence 
step. We  will  show  that P is the required strong solution  of (1.3). We have 

P~FT+FPc-PcHTHP~+Q+=Z=O. 1 
k 

Taking the limit as k + 03, it follows  that 

P F ~ + F ~ P - P H ~ H P + Q = o ,  

i.e., P satisfies (1.3). Furthermore,  for each E the eigenvalues of F - 
PiHrH lie in the open left half  plane. We note  that the eigenvalues  of F 
- PHTH are continuous  functions  of P .  Thus, taking the limit as --t 03, 
it follows  that  the  eigenvalues  of F - PHTH lie in  the  closed left half 
plane. This proves  that P is a strong solution to (1.3). Given  that there 
exists  a  strong  solution to ( I  .3), it follows from [7, Theorem 31 that  this is 
the  unique  strong  solution. 0 

In  [14]  Molinari  establishes  the  existence  of  a  unique  strong  solution 
when either [H, F ]  is observable [14, Theorem  5a]  or [H, F ]  is 
detectable  and the associated  Hamiltonian  matrix  has  no  imaginary 
eigenvalues [ 14, Corollary  p. 3541. Our result fills the gap between  these 
two. 

i ( t )=[F-P(s)H'H]x(t)  

in  continuous  time (see [6]), or 

(1.7) JII. TWO CONTINUOUS-TIME RDE RESULTS 

We first prove an  inequality,  whose  discrete-time  counterpart  was 

in discrete time [ 5 ] ,  for arbitrary but fixed s .  

time  results of [5]. In the process of proving  the  continuous-time  results of 
[6], it was  found  that the continuous-time  counterparts  of  the  most  crucial 
discrete-time  results of [3] and [4] were not only  not  available in the 

counterpart (see [5] or 16, Lemma I]) relies on an inequality  obtained  by 
Nishimura [lo]. Our continuous-time  proof  uses  a  simple  optimal  control 

Theorem 2: Consider  the  continuous-time  RDE (1 .1 )  with initial 

The results of [3] and [4] were instrumental  in  establishing  the  discrete- argument. 

condition Po 3 0 and  the following RDE: 

literature,  but were apparently  unknown to authoritative  experts  in  the 
field. For example, all the  theorems  of [7] on the  continuous-time  ARE S(t)=s(t)Fr+Fs(t)-s(t)HrHS(t)+M, S(O)=S, 2 0. (3.1) 
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Suppose the solutions to both RDE's exist.  If Po 2 So and Q 2 M ,  then 
P(t) 2 S(t)  for all t 2 0. 

Proof: If the solutions exist, then  given arbitmy but  fixed X I ,  and 
t l  2 0, we  have (see [ll, Ch. 211): 

[ ~ ~ ( u ) ) ~ ( u ) + x ~ ( u ) M x ( u ) ]  du+xr(0)Sox(O) 

(3.3) 

subject to 

X= - F r x x + H T ~ ,   x ( t l ) = ~ l .  (3.4) 

Let C(.) and $ e )  be the optimal  solution to (3.2)  and (3.4),  and evaluate 
the right-hand side of  (3.3) for this control C(.). Then the corresponding 
cost is 

=x:P(tl)xl+ f r ( ~ ) [ M - Q ] f ( ~ )  d ~ + f ~ ( O ) [ S , - P , ] f ( o )  Sf 
< x ~ P ( f l ) x I  by our  assumptions. 

Since the optimal  cost for problems  (3.3),  (3.4) is x ~ S ( t l ) x l ,  we have 

x:S(tl)xl d tl d x:P(tl)xl. 

Since this is true  for any xI  and any tl 2 0, we have S(t)  < P(t) V t  2 
0. 0 

The next theorem is a  continuous-time  version  of [4, Theorem 4.21. 
Theorem 3: Consider the  RDE (1.1)  with [H,  F] detectable.  Let P be 

the unique strong solution of  the corresponding ARE (1.3)  and let 0 0 )  2 
P .  Then lim,,, et) = P .  

Proof: Note first that P exists  and is unique by Theorem  1. 
Furthermore, with the given initial condition, the existence  of  a  solution to 
(1.1) follows from remark M in  [12].  Now  define 

V ( t )  P ( r ) - P ,  F 2 F-PHTH. 

Then V(t) obeys the RDE 

V ( t ) =  V ( t ) E T + E V ( r ) -  V(t)HTHV(t)  (3.6a) 

and by assumption 

V(0) = P(0) - P 2 0. (3.6b) 

Notice  that Re Xi@) < 0, i = 1, * e ,  n since P is strong. 

matrix  equation: 
Now,  for a given V(0) satisfying  (3.6b),  consider the following  linear 

S ( t ) =  -FTS(t)-S(t)E+HrH (3.7a) 

with 

S(0) So P P-l(O)>O and P(0) 2 V(0). (3.7b) 

It can be verified  by  substitution  that  the  solution  of (3.7) is 

S(t)=e-E'ts,e-Er+ ~ ( t )  (3.8) 

where 

W ( t )  2 I' e-ET(r-r)HTHe-F(t-r) d7. (3.9) 
0 

Since So > 0, it follows  that S(t) > 0 for all t 2 0. Therefore, we can 
define p(t>_ S-I( t ) .  Then p(t) satisfies the RDE (3.6a)  with initial 
condition V(0) satisfying  (3.7b). The remainder of the  proof  will be to 
show  that  Iimr+- X- (S(t ) )  = 00. This will  imply h1-- p(ct) = 0, from 
which liml.+m V(t) = 0 will  follow by Theorem 2,  using  (3.7b). 

Since [H,  E ]  is detectable,  we  shall  assume  without loss of  generality 
that [H,  has been  transformed  into 

1 

where H2 and Fu have  compatible  dimensions,  with Re X,{FII) < 0 for  all 
i, and [Hz, Fu] completely  observable.  Consider  now an arbitrary 
constant  nonzero  vector x E R" and partition it as x = with dim xI  
= dim Fll. We  show  that  1imI+- xTS(t)x = 03, by  considering two cases 
separately. 

Case 1: Suppose first that x2 = 0, so that xI # 0. Then 

xTS(t)x=xre I '  Slle-F*lkl  
- F T  I  

where 

S o =  [ ;; 
with dim SI, = dim Fll ,  and  where y( t )  is the  solution of y( t )  = - 
Flly(t) with y(0) = x1 # 0. Since Re X,{-Fll) > 0, it follows  that 
1imr-- IIy(t)l12 = 03 and  since So > 0 it follows  that  IimI-- x'S(t)x = 
03 for all such x .  

Cme 2: Suppose  now  that x2 # 0. Then 

Call R(t) the  matrix  within the braces.  Then R(t) is the solution  of the 
equation 

and R(t) 2 0 by  definition. We  prove that h1+- &in R(t) = 00. Since 
the pair [Hz, - F A  is completely  observable  (and R(t) is the  observabil- 
ity  Grammian  of  that pair), it follows  that R(6) > 0 for  some 6 > 0. Also 
R(t) is monotonically  nondecreasing, Le., R(tl) 2 R(t2) for t l  2 t 2  since 
the integrand is nonnegative definite. 

Therefore, R(t) > 0 for all t 2 6.  Define M(t) 2 R - ' ( t )  for all t 2 6. 
Then for t 2 6, M(t) satisfies the  RDE 

h?(t)=M(t)F~+F~M(t)-M(t)H:H2M(t), M(6)=R-I(6).  (3.12) 

The fact  that R(t) is monotonically  nondecreasing  implies  that M(f)  is 
monotonically  nonincreasing  and  since R(t) > 0 and  finite for all finite f 
2 6,  it follows  that M(t) 2 0 for  all t 2 6. Therefore, applying  the 
"remarkable  monotone  sequence  theorem" (see [13,  Theorem 1, p. 1691) 
it follows  that M(t) converges. C d  A its convergence  point;  then M is a 
nonnegative  definite  solution  of the ARE 

MF f, + F22M- MH:HzM= 0. (3.13) 

However, h,{F2) 6 0 for  all i and,  hence, M = 0 is the unique  strong 
solution of (3.13) by Theorem 1. Moreover, by [7, Theorem 21 the  strong 
solution of (3.13) is its maximal  solution; therefore A? must  be the strong 
solution; Le., A? = 0. We have  thus  shown  that 1iml+- M(t) = 0; hence 
1imI.+- A- R(t) = 00 and therefore I i m r + -  xTS(t)x = 00 for all x with x2 
# 0, and (by Cases 1 and 2) for all x # 0. 

It follows  that  1iml4- p(t) = 0. Since V(0) < p(O), and V(t) and p(r) 
are both  solutions of (3.6a), it follows  by Theorem 2 that lim,-- V(t) = 
0. Hence, l i m t - ,  f i t )  = P .  

Under the additional  assumption  that the associated  Hamiltonian  matrix 
has no imaginary  eigenvalues and has a simplified  eigenstructure, 
Theorem 3 can also be obtained from 112, Theorem 41. One  motivation 
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for our deriving these new Riccati results was a signal processing 
application where  the  Hamiltonian naturally has multiple imaginary 
eigenvalues [ 151. 

IV. A DISCRETE-TIME ARE RESULT 

We  now prove a result for  the discrete-time ARE (1.4): it is a special 
case of a continuous-time result proved by Wimmer [q. 

Theorem 4: Consider the ARE (1.4) with [H, F] detectable. Let PI be 
the unique strong solution for Q = Q1 2 0, and let P2 be the unique 
strong solution for Q = Q2 2 0. Then Q1 2 Q2 implies PI 2 Pz. 

Proof: The existence and uniqueness of the strong solutions follows 
from [3 ]  and [4] .  We prove  the inequality using a dual optimal control 
problem. Define 

Ji(xo, N ,  U)=xT(N)Pfx(N)+ 2 [ x T ( f ) Q i x ( t ) + u T ( t ) u ( t ) ] ,  i =  1, 2 
N -  I  

f = O  

(4.1) 

where Pf is a symmetric nonnegative definite matrix such that Pf 2 PI 
and PI 2 P2, x, is an arbitrary  nonzero vector and U denotes { u(O), * * * , 
u(N - 1 ) ) .  If  we minimize JI  and Jz w.r.t. U subject to 

x(t+  l)=FTx(t)+NTu(t),  x(O)=x, (4.2) 

then the optimal costs  are  given, respectively, by 

J : ( x ~ ,  N)=x:Pl(N)xo and J:(x0. N)=x,TPz(N)x, (4.3) 

where P,{N), i = 1 ,  2 are the solutions of the RDE 

VI. CONCLUSIONS 

We  have filled some existing gaps in the literature on the Riccati 
equation, both the RDE and the ARE, in  both discrete-time and 
continuous-time. Although  none of our results are  surprising, these are all 
fundamental properties. Three of the authors of this note  needed  them in 
proving results of [5 ]  and [6] .  We hope that their publication will prove 
useful to other researchers in deriving their own results. To paraphrase 
Frank Zappa: “All our results are Australian made; they are a little bit 
cheesy  but  nicely displayed.” 
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4 J?(xo, N) = ~ ~ P , ~ N ) x , ~ x , z P 2 ~ N ) x o = J : ~ x , ,  N). 

This is a contradiction, since J,*(x,, N) is the optimal cost.  Hence, Pl (N)  
2 P2(N) for all N 2 0. Now,  since Pf 2 Pi, i = 1 ,  2, it follows by [4, 
Theorem4.31 that limN,, P i ( N )  = Pi,  i = 1,2.  Therefore, PI 2 P2.0 

v. COMMENTS ON A RESULT OF [5]  

The results of the previous sections allow us to  correct an erroneous 
argument in the proof of Theorem 2 of [5] ;  at the time of the writing of [5]  
the present results were not available. Theorem 2 of [5] gives a set of 
sufficient conditions under which the system (1.8) is  exponentially 
asymptotically stable,  where P(s) is the solution of the RDE (1.2) frozen 
at an arbitrary but fixed iteration s. 

In the proof of Theorem 2 of [ 5 ] ,  Proposition 2 of the same paper was 
used to establish that the solution et) of (1.2) converges to the strong 
solution P of (1.4). However,  to use Proposition 2 requires [F, Q”*] 
stabilizable in (1.2), which is not assumed  in the theorem. The  argument 
should go as follows. Condition ( 3 )  of Theorem 2 of [ 5 ]  implies, by 
Theorem 4 of the present note, that P, 2 P ,  where P is the unique strong 
solution of (1.4), which exists because [H,  F] is detectable. It then 
follows from 14, Theorem 4.31 that limt+- P(t) = P,  where PO) is the 
solution of (1.2).  The  other  parts of the proof remain unchanged. 

(4.4b) 

H. K. Wimmer,  “Monotonicity of maximal solutions of  algebraic Riati 
1985. 

equations,” Syst.  Contr.  Lett.. vol. 5, pp.  317-319.  1985. 
H. Kwakernaak  and R. Sivan, Linear Optimal  Control  Systems. New  York: 
Wiley.  1972. 
H. L.  Royden, Real Analysis. New  York:  McMillan,  1968. 
T. Nishimura, “On the a  priori information in sequential  estimation  problems,” 
IEEE  Trans. Automat.  Contr., vol.  AC-I 1. pp.  147-204, Apr. 1966;  and IEEE 

R. W. Brockett, Finite  Dimensional  Linear Systems. New  York:  Wiley,  1970. 
Trans. Automat.  Contr., vol.  AC-12, p. 123.  Feb.  1967. 

F. M. Callier  and J .  L. Willems,  “Criterion for the  convergence  of  the  solution  of 
the  Riccati  differential  equation,” IEEE  Trans. Automat.  Contr.. vol.  AC-26, 

L. V. Kantorovich  and G .  P.  Akilov, FunctionalAnalysis, 2nd Ed. New York: 
pp. 1232-1242, Dec. 1981. 

Pergamon,  1982. 
B. P. Molinari, “The time-invariant linearquadratic optimal  control  problem,” 
Automatica, vol. 13, pp.  137-357,  July  1977. 
R.  R. Bitmead, A. C. Tsoi.  and P. J .  Parker, “A Kalman filtering approach to 
shon-time  Fourier  analysis.’’ IEEE  Trans. Acoust., Speech,  SignalProcessing, 
to  be  published. 

Trace Bounds on the Solution of the  Algebraic  Matrix 
Riccati  and  Lyapunov  Equation 

SHENG-DE  WANG,  TE-SON KUO, AND CHEN-FA HSU 

Abstract-Lower and  upper  bounds  on the trace of the positive 
semidefinite solutiou of the algebraic matrix Riccati and  Lyapunov 

Manuscript  received  September 27, 1985;  revised  March 11, 1986. 
The  authors are with  the  Department of Electrical  Engineering.  National  Taiwan 

IEEE Log Number  8608735. 
University.  Taipei,  Taiwan.  Republic of China. 

0018-9286/86/0700-0654$01 .oO 0 1986 IEEE 

Authorized licensed use limited to: Michel Gevers. Downloaded on July 7, 2009 at 18:45 from IEEE Xplore.  Restrictions apply.


