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Abstract

It is well known that the H2-norm and H∞-norm of a transfer function can
differ arbitrarily since both norms reflect fundamentally different properties.
However, if the pole structure of the transfer function is known it is possible to
bound the H∞-norm from above by a constant multiple of the H2-norm. It is
desirable to compute this constant as tightly as possible. In this article we derive
a tight bound for the H∞-norm given knowledge of the H2-norm and the poles
of a transfer function. We compute the bound in closed form for multiple input
multiple output transfer functions in continuous and discrete time. Futhermore
we derive a general procedure to compute the bound given a weighted L2-norm.

Keywords: Robust Control; LQR; Confidence Region; Covariance ; Weighted
H2 norm; Supremum norm; H∞ norm; Tight Bound; Reproducing Kernel

1. Introduction

Norms induced by inner products, such as the L2-norm, are important
because they lend themselves to computations and geometric interpretations.
However in many applications the supremum norm is more meaningful. For ex-
ample covariance matrices arising in statistical inference give rise to ellipsoidal
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confidence regions, i.e., weighted 2-norm balls; however, from a robust control
perspective, the confidence regions of interest are those given by supremum norm
balls. Both norms also arise naturally in model order reduction: approximation
criteria based on the 2-norm are appreciated for their rich structure since they
lead to efficient model-reduction algorithms [8, 5, 3]. However, if one thinks of
a transfer function as an operator acting on input signals, a supremum norm
approximation criterion is more natural [4]. This is why it is of special interest
to quantify the deviation of the optimal 2-norm approximation from an optimal
supremum norm approximation.

The problem of bounding the H∞ norm from above by a constant multiple
of the H2 norm has been first addressed in the engineering context in De Bruyne
et al [2]. The main assumption there was that the function space consists of
all strictly proper rational functions with poles ranging over a prescribed set
of simple poles, where complex poles occur in complex conjugate pairs. Under
the assumption that the coefficients of the numerator polynomial are real, as
is obviously frequently the case, the bounds computed have been shown to be
conservative, yet no indication was given on how to remove this conservatism.
In [6] these results have been extended to vector-valued transfer functions which
share the same fixed denominator. Both articles [2, 6] are constrained to the
standard L2-norm and cannot be applied in situations where a weighted L2-
norm is of interest.

In this article we provide a tight bound for the case of vector-valued transfer
functions with fixed, possibly different, scalar denominator polynomials in each
component. We distinguish between real-rational and complex-rational transfer
functions and quantify the amount of conservatism when using the bound which
applies to complex-rational transfer functions in the real-rational case. The
bounds are given by closed form formulas for the H2-norm case and by com-
putational procedures in the weighted L2-norm case. The methods presented
in this article are actually general in the sense that they can be applied to any
finite-dimensional Hilbert space consisting of vector-valued bounded functions.

The paper is structured as follows: In Section 2 we derive the bound for
complex-rational transfer functions corresponding to continuous-time systems.
In Section 3 we study the real-rational case. In Section 4 we comment on how
to apply the results for the discrete-time case. In Section 5 we give a numerical
example before we conclude in Section 6.

Notation: The letters R and C denote the field of real and complex numbers

respectively;  =
√
−1 denotes the imaginary unit; z̄ will be used to denote complex

conjugate of z ∈ C; MT and MH denote the transpose and conjugate transpose of a

matrix M ∈ Cm×n respectively; H+ ⊆ C and Dc ⊆ C denote the closed right half-

plane and complement of the open unit disk respectively; R[s] and C[s] denote the

polynomials in the indeterminant s with real and complex coefficients respectively;

R(s) and C(s) denote real and complex rational functions respectively;
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2. Bounds for complex-rational continuous-time transfer functions

Knowing the poles of a transfer function describing a stable continuous time
system does not suffice to impose a constraint on the value of its frequency
response at a given frequency. If, however, one also knows the “energy” of
its impulse response or equivalently the 2-norm of its frequency response, it
is possible to give a tight upper-bound on the absolute value of its frequency
response for each given frequency. This problem appears to have been first
considered in the engineering context by De Bruyne et al [2]. In Theorem 2 we
generalize the existing results into several directions. We treat the case where
the transfer functions is vector-valued. Moreover the 2-norm need not to be
the standard H2-norm but can be a weighted L2-norm. Last but not least
we remark that the bound we derive in (7) holds not only for s ∈ R but for
all s ∈ C with Re(s) ≥ 0, i.e., all s in the closed right half plane. This is
particularly useful in applications like model reduction by interpolation where
the interpolation points are typically not on the imaginary axis. In Theorem 8
we shall see that for systems with a real-valued impulse response it is possible
to improve the the upper bound obtained in Theorem 2.

Setup: We consider transfer functions corresponding to asymptotically sta-
ble single input multiple output continuous-time systems. In other words we
consider a Hurwitz-stable vector of transfer functions M ∈ C(s)L of the form

M(s) =

M1(s)
...

ML(s)

 , Ml(s) =
bl,0 + bl,1s+ · · ·+ bl,nl−1s

nl−1

dl,0 + dl,1s+ · · ·+ dl,nl−1snl−1 + snl
. (1)

Here n1, . . . , nL ≥ 1 are s.t. for all l = 1, . . . , L we have Ml(s) = bl(s)
dl(s)

with

bl(s) =

nl−1∑
k=0

bl,ks
k ∈ C[s], dl(s) = snl +

nl−1∑
k=0

dl,ks
k ∈ C[s], (2)

and dl(s) 6= 0 for all s ∈ H+ with H+ := {s ∈ C |Re(s) ≥ 0}.

We consider a weighted L2-norm ‖ · ‖W on L2(R) of the form

‖M‖2W =
1

2π

∫ ∞
−∞

∑L

l=1
|Ml(ω)|2Wl(ω) dω, (3)

where Wl : R→ R≥0 denotes a weight function for each l = 1, . . . , L.
By assuming that ‖ · ‖W is a norm we implicitly impose constraints, like

positivity and integrability, on the weights Wl.

Remark 1. The use of weighted L2-norms is motivated by applications like
system-identification. In the scalar case M = P̂ − P corresponds to the error
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between the estimator P̂ and the true plant P . The probability of the event E
given by the ε-confidence ellipsoid

E := {M | ‖M‖2W < ε} with W =
Φv(ω)

Φu(ω)
, (4)

where the weight W is given by the inverse of the signal-to-noise-ratio, can be
explicitly calculated using standard results on asymptotic normality [7].

In the single-input multiple-output case we have Wl = Φvl/Φu where Φvl is
the spectrum of the noise-process vl at the l-th output channel and Φu is the
input spectrum.

Theorem 2. With respect to the setup described above define

Bl(s) :=
1

dl(s)
[s0, . . . , snl−1]T ∀l = 1, . . . , L, (5)

together with the functions Kl : H+ ×H+ → C given by1

Kl(s, w) := Bl(w)H

(
1

2π

∫ ∞
−∞

Bl(ω)Bl(ω)HWl(ω)dω

)−1

Bl(s). (6)

Then for all l = 1, . . . , L the expression Kl(s, s) is a R-valued function on H+

such that for all M : H+ → CL of the form (1) there holds

∀s ∈ H+ :
∑L

l=1
|Ml(s)|2 ≤ C(s) · ‖M‖2W , C(s) := max

1≤l≤L
Kl(s, s). (7)

If d1, . . . , dL ∈ C[s] are fixed, (7) yields a tight bound in the sense that there
exists an M ∈ C(s)L of the form (1) such that (7) holds with equality.

The proof of Theorem 2 will be given right after the proof of Lemma 7 stated
below. Before we state Lemma 7, a few remarks are in order.

Corollary 3. For all M ∈ C(s)L of the form (1) define

‖M‖2∞ := sup
s∈H+

∑L

l=1
|Ml(s)|2. (8)

Then there holds

‖M‖2∞ ≤ C · ‖M‖2W with C := sup
s∈H+

C(s). (9)

Moreover for d1, . . . , dL ∈ C[s] fixed this bound cannot be improved, i.e., there
exists an M ∈ CL(s) of the form (1) for which (9) holds with equality.

1The inverse in (6) exists because the components of Bl are linearly independent functions
and ‖ · ‖W is a norm.
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Remark 4. For the case where the 2-norm is given by the standard H2-norm,
i.e., W ≡ 1, the celebrated Christoffel-Darboux identity, see e.g. [1], states that

Kl(s, w) :=
1−Ql(s)Ql(w)

s+ w̄
with Ql(s) =

dl(−s̄)
dl(s)

. (10)

Remark 5. If Tl ∈ Cnl×nl is invertible and Al = TlBl then it is easy to check
that Kl given by (6) can equivalently be written as

Kl(s, w) = Al(w)H

(
1

2π

∫ ∞
−∞

Al(ω)Al(ω)HWl(ω)dω

)−1

Al(s). (11)

In particular for dl(s) =
∏nl

k=1(s+ ak) with ak 6= ak′ for all k 6= k′ then

Al = [1/(s+ a1), . . . , 1/(s+ anl
)]T ∈ C(s)L, (12)

is given by Al = TlBl where the non-singular matrix Tl ∈ Cnl×nl is obtained via
partial-fraction expansion. In [2] this special choice of basis, which is possible
only if the pole locations are distinct, was used for the scalar unweighted case,
i.e., for L = 1 and W ≡ 1. In this case the diagonal elements of (11) are given
by

Kl(s, s) =
2 Re (a1)

|s− a1|2
+ · · ·+ 2 Re (anl

)

|s− anl
|2
. (13)

We remark that (13) is valid also in the case of multiple poles, a fact which can
be verified directly from the Christoffel-Darboux formula (10).

Remark 6. The key ideas which will allow us to prove Theorem 2 are sum-
marized in Lemma 7. It is possible to state the problem in the language of
functional analysis. Using this language the statement of Lemma 7 is that, for
d1, . . . , dL ∈ C[s] fixed, the functions Kl, given by (6), form the reproducing
kernel of the linear space consisting of all transfer functions of the form (1) with
respect to the inner-product (14) induced by the weighted L2-norm.

Lemma 7. Let d1, . . . , dL ∈ C[s] denote fixed Hurwitz-stable polynomials and
define

〈M,N〉W :=
1

2π

∫ ∞
−∞

L∑
l=1

Nl(ω)M(ω)Wl(ω) dω, (14)

for all M,N of the form (1). Moreover for s, w ∈ H+ define

K(s, w) :=

K1(s, w)
. . .

KL(s, w)

 ∈ CL×L, (15)

where Kl is given by (6). For w ∈ H+ and c ∈ CL define

Kw,c(s) := K(s, w)c. (16)
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Then there exists N ∈ C(s)L of the form (1), with the same fixed denominator
polynomials d1, . . . , dL, such that Kw,c = N . Moreover

〈M,Kw,c〉W = cHM(w) and 〈Kw,c,Kw,c〉W = cHK(w,w)c, (17)

holds for all M ∈ C(s)L of the form (1).

Proof. For M = [M1, . . . ,ML]T ∈ C(s)L of the form (1), let the nl-vector
ml = [bl,1, . . . , bl,nl

]T ∈ Cnl denote the coordinate-vector of Ml. In other words
we have Ml(s) = Bl(s)

Tml. Let

Gl =

(
1

2π

∫ ∞
−∞

Bl(ω)Bl(ω)HWl(ω)dω

)T

for l = 1, . . . , L.

It follows from (3) and (6) that

Kl(s, w) = Bl(s)
TG−1

l Bl(w)H,T and ‖M‖2W =
∑L

l=1
mH
l Glml.

For c ∈ CL there holds

Kw,c(s) = [B1(s)T · c1G−1
1 B1(w)T,H, . . . , BL(s)T · cLG−1

L BL(w)T,H]T,

which proves that Kw,c is of the form (1) for any fixed w ∈ H+. In particular
there holds that

〈M,Kw,c〉W =
∑L

l=1
(cl ·G−1

l Bl(w)T,H)HGlml

=
∑L

l=1
c̄lBl(w)TGH,−1

l Glml = cHM(w),

since Gl = GH
l and, by construction of ml, Bl(w)Tml = Ml(w). This proves the

first part of (17), and also the second part of (17), by using M = Kw,c.

Proof of Theorem 2. First we note a preliminary result which states that∑L

l=1
|Ml(w)|2 = sup

cHc≤1

|cHM(w)|2. (18)

This is easy to show if one uses the Cauchy-Bunyakovsky-Schwarz (CBS) in-
equality. Next, because as established in Lemma 7, there holds

cHM(w) = 〈M,K(·, w)c〉W ,

the CBS inequality shows that, for fixed vector c ∈ CL, and for all functions M
of the form (1) there holds

|cHM(w)|2 ≤ ‖M‖2W · ‖K(·, w)c‖2W . (19)

Moreover this bound is tight over M ∈ C(s)L of the form (1) since it becomes
an equality for M ∈ C(s)L given by M(s) = K(s, w)c. Now supremizing over
all possible c ∈ CL with norm 1 yields

sup{cHK(w,w)c | c ∈ CL, cHc ≤ 1} = λmax[K(w,w)]. (20)

Then, by using (19), equation (7) follows since K(w,w) is a diagonal matrix.
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In Section 3 we address the question of how to improve the bound given by
(7) for the case where the transfer functions are known to be real-rational.

3. Bounds for real-rational continuous-time transfer functions

The main result of this section is Theorem 8 which states that the bound
in the real-rational case is up to two times smaller than in the unconstrained
case we already discussed. Moreover Theorem 8 shows that the bound can be
computed in a similar fashion to the bound in the complex case.

Theorem 8. Let M̃ ∈ R(s)L denote a real-rational Hurwitz-stable transfer
function of the form (1) and assume that the matrix inverted in (6) is real-
valued, i.e.,

1

2π

∫ ∞
−∞

Bl(ω)Bl(ω)HWl(ω)dω is a nl × nl real-valued matrix, (21)

for all l = 1, . . . , L. We note that this is the case for Wl ≡ 1 and weights given
by Wl = |Rl|2 where Rl ∈ R(s) is real-rational. Then for all s ∈ H+ there holds

∑L

l=1
|M̃l(s)|2 ≤ C̃(s) · ‖M̃‖2W , C̃(s) := max

1≤l≤L

Kl(s, s) + |Kl(s, s̄)|
2

, (22)

with ‖·‖W and Kl given by (3) and (6), respectively. For fixed d1, . . . , dL ∈ R[s]
this bound is tight in the sense that there exists a M̃ ∈ R(s)L of the form (1)
such that (22) holds with equality. Moreover for all s ∈ H+ there holds that

C(s)/2 ≤ C̃(s) ≤ C(s), (23)

with C(s) given by (7). In particular for ‖ · ‖∞ defined by (8) there holds

‖M̃‖2∞ ≤ C̃‖M̃‖2W with C̃ := sup
s∈H+

C̃(s). (24)

Moreover, for d1, . . . , dL ∈ R[s] fixed, this bound cannot be improved, i.e., there
exists an M̃ ∈ R(s)L of the form (1) for which (24) holds with equality.

Proof. The proof of Theorem 8 is based on Lemma 9 and is located right after
the proof of this Lemma.

Lemma 9. Let d1, . . . , dL ∈ R[s] denote Hurwitz-stable polynomials with real
coefficients, and let Kl(s, w) be defined as in the statement of Theorem 2. For
l = 1, . . . , L we define real-valued 2× 2 matrices via

K
(2)
l (s, w) =

Re
(
Kl(s,w)+Kl(s̄,w)

2

)
−Re

(
Kl(s,w)−Kl(s̄,w)

2

)
Im
(
Kl(s,w)+Kl(s̄,w)

2

)
−Im

(
Kl(s,w)−Kl(s̄,w)

2

)
 . (25)
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And futher define the block-diagonal matrix K(2)(s, w) ∈ R2L×2L via

K(2)(s, w) :=


K

(2)
1 (s, w)

. . .

K
(2)
L (s, w)

 , (26a)

K(2)
w,r(s) :=

1 
. . .

1 

K(2)(s, w)r ∀r ∈ R2L, s, w ∈ H+. (26b)

Then K
(2)
w,r ∈ R(s)L is of the form (1), and for all M̃ ∈ R(s) of the form (1)

there holds that〈
M̃,K(2)

w,r

〉
W

=
∑L

l=1
[r2l−1, r2l]

[
Re M̃l(w)

Im M̃l(w)

]
∀ r ∈ R2L, w ∈ H+. (27)

The eigenvalues λ+ and λ− of K
(2)
l (w,w) are real, non-negative and given by

λ±

[
K

(2)
l (w,w)

]
=
Kl(w,w)± |Kl(w, w̄)|

2
for all w ∈ H+. (28)

In particular the maximum eigenvalue λmax of K(2)(w,w) is given by

λmax

[
K(2)(w,w)

]
= max

1≤l≤L

Kl(w,w) + |Kl(w, w̄)|
2

for all w ∈ H+. (29)

Proof. For all real rational functions M̃, Ũ , Ṽ ∈ R(s)L of the form (1) there
holds 〈

M̃, Ũ + Ṽ
〉
W

=
〈
M̃, Ũ

〉
W︸ ︷︷ ︸

∈R

−
〈
M̃, Ṽ

〉
W︸ ︷︷ ︸

∈R

, (30)

by assumption (21). Let e1, . . . , eL denote the standard basis of RL and, for
fixed w ∈ H+, define

Ũl(s) =
Kl(s, w) +Kl(s̄, w)

2
el and Ṽl(s) =

Kl(s, w)−Kl(s̄, w)

2
el.

From this it follows that Ũl, Ṽl ∈ R(s)L are of the form (1) and Kw,el = Ũl+Ṽl.
By property (17) of Kw,el and the decomposition (30) it follows that〈

M̃, Ũl

〉
W

= ReMl(w) and
〈
M̃,−Ṽl

〉
W

= ImMl(w).

Moreover
Ũl(s) = K(2)

w,e2l−1
(s) and Ṽl(s) = K(2)

w,e2l
(s),

which follows from the defining equations (25) and (26). We may thus conclude
that (27) indeed holds. We now show that (28) holds. From (6) it follows that
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for all s, w ∈ H+ there holds Kl(s, w) = Kl(w, s). Writing Re(a) as (a + ā)/2,
Im(a) as (a− ā)/2 and utilizing the fact that K(s, w) = K(w, s) we can rewrite
(25) as

[K
(2)
l (s, w)]1,1 =

K(s, w) +K(w, s) +K(w, s̄) +K(s̄, w)

4

[K
(2)
l (s, w)]2,2 =

K(s, w) +K(w, s)−K(w, s̄)−K(s̄, w)

4

[K
(2)
l (s, w)]2,1 =

K(s, w)−K(w, s) +K(w, s̄)−K(s̄, w)

4

and [K
(2)
l (s, w)]1,2 = [K

(2)
l (w, s)]2,1 for all s, w ∈ H+. In particular for w = s

the expression for (25) simplifies and one obtains

K
(2)
l (w,w) =

1

2

[
Kl(w,w)

Kl(w,w)

]
+

1

2

[
ReKl(w, w̄) ImKl(w, w̄)
ImKl(w, w̄) −ReKl(w, w̄)

]
,

for which an easy calculation shows that (28) is satisfied. The result of (29)
follows from the fact that K(2)(w,w) is block-diagonal.

Proof of Theorem 8. We adapt the proof of Theorem 2. First we note that∑L

l=1
|M̃l(w)|2 = sup

rTr≤1

∣∣∣∑L
l=1 r2l−1 · Re M̃l(w) +

∑L
l=1 r2l · Im M̃l(w)

∣∣∣2, (31)

which follows, just like (18), from the CBS inequality. By the CBS inequality
one also verifies that, for fixed r ∈ R2L, we have∣∣∣∣∑L

l=1
r2l−1 · Re M̃l(w) +

∑L

l=1
r2l · Im M̃l(w)

∣∣∣∣2 ≤ ‖M̃‖2W · ‖K(2)
w,r(s)‖2W , (32)

for all M̃ ∈ R(s) of the form (1). Here we used that K
(2)
w,r given by (26) satisfies

(27), which we proved in Lemma 9.
Moreover this bound is tight over M̃ ∈ R(s)L of the form (1) since it becomes

an equality for M̃ ∈ R(s)L given by M̃ = K
(2)
w,r. By utilizing property (27) we

see that 〈
K(2)
w,r,K

(2)
w,r

〉
W

= rTK(2)(w,w)r (33)

which, when supremized over all possible r ∈ R2L with norm 1, yields

sup{rTK(2)(w,w)r | r ∈ R2L, rTr ≤ 1} = λmax[K(2)(w,w)]. (34)

From this and (29), which we proved in Lemma 9, it follows that (22) holds. It
is clear, e.g., from (33), that for all w ∈ H+ the matrix K(2)(w,w) in R2L×2L is
positive-semidefinite. This, together with (28), implies that

|Kl(w, w̄)| ≤ Kl(w,w) for all l = 1, . . . , L. (35)

In particular we verified that (23) indeed holds.
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continuous-time discrete-time

1) M(s) ∈ CL for s ∈ H+ M(z) ∈ CL for z ∈ Dc

d1(s), . . . , dL(s) Hurwitz-stable d1(z), . . . , dL(z) Schur-stable

2)
∫∞
−∞

∑L
l=1 |Ml(ω)|2Wl(ω) dω

∫ π
−π
∑L
l=1 |Ml(e

ω)|2Wl(ω) dω

3.1)
1−Ql(s)Ql(w)

s+ w̄
−1−Ql(z)Ql(w)

1− w̄z
3.2) Ql(s) = dl(−s̄)/dl(s) Ql(z) = znldl(z̄−1)/dl(z)

Table 1: Correspondence between continuous-time and discrete-time constructions. 1) Defines
a stable transfer function, 2) the weighted L2-norm ‖·‖W , 3.1) the Christophel-Darboux kernel
Kl, with symbol Ql given by 3.2).

4. Bounds for discrete-time transfer functions

In Section 2 and Section 3 the bounds for Hurwitz-stable continuous-time
systems are given by Theorem 2 in the complex-rational case, and by Theorem 8
in the real-rational case.

These bounds apply mutatis mutandis in the discrete time case. The right
half-plane H+ has to be replaced by Dc = {z ∈ C | |z| ≥ 1} which denotes
the complement of the open unit disc. In other words Hurwitz-stability gets
replaced by Schur-stability. All other modifications are listed in Table 1.

5. Numerical Example

We consider the class of Hurwitz-stable transfer functions of the form

M(s) =

[
b1,0
s+ 1

,
b2,0 + b2,1s

25/4 + 3s+ s2

]T

. (36)

In Fig. 1 we illustrate the behavior of the bound in four cases which correspond
to real or complex-valued numerator polynomials andH2-norm (Wa,l := Wa ≡ 1
for l = 1, 2) or weighted L2-norm with weight Wb,l(ω) = Wb(ω) = 4 ·(1+4ω2)−1

for l = 1, 2, i.e., we assign the same weight to both output channels.
Compared to the uniform weight Wa, the weight Wb emphasizes the behav-

ior of the transfer function for low frequencies. This is why, in the low frequency
region, the bound Cb corresponding to Wb is smaller than the bound Ca cor-
responding to Wa. Similarly, compared to Wb, the weight Wa emphasizes high
frequencies. Therefore, in the high frequency region the bound Ca correspond-
ing to Wa is smaller than the bound Cb corresponding to Wb. Finally we remark
that inequality (23) is indeed satisfied for C = Ca and C = Cb.
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Figure 1: Bottom: weight-functions Wa ≡ 1 and Wb(ω) = 4 · (1 + 4ω2)−1. Top: Ca and Cb

denote the bounds for complex-rational case, given in (7), with weight Wa and Wb respectively.
Similarly C̃a and C̃b denote bounds for the real-rational case, given in (22), with weight Wa

and Wb respectively. The fact that Ca and C̃a coincide for ω < 0.9 and similarly that Cb and
C̃b coincide for ω < 0.3 is a particular feature of this example and has no general implications.

6. Conclusions

We have addressed the problem of bounding the value of a vector-valued
transfer function at a given interpolation point, e.g., a frequency point, via its
weighted L2-norm under the assumption that the poles of the transfer function
are known. We have done this for continuous-time and discrete-time single input
multiple output systems in the complex-rational and real-rational case. We have
derived a constructive method to compute the bound for the real-rational case
using the result of the complex-rational case. Using this we have been able
to show that the bound for the complex-rational case can be up to twice as
conservative as the bound in the real-rational case. We have established the
connection to reproducing kernel Hilbert space theory which has proven to be
of great interest due to the availability of Christoffel-Darboux type formulas
which clarify the dependence of the bound on the pole structure.
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[1] H. Akçay and B. Ninness. Orthonormal basis functions for modelling
continuous-time systems. Signal Processing, 77(3):261–274, 1999.

[2] F. D. Bruyne, B. D. O. Anderson, and M. Gevers. Relating H2 and H∞

bounds for finite-dimensional systems. Systems & Control Letters, 24(3):173
– 181, 1995.
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