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Abstract

In this paper, we illustrate our new results on model validation for control and
controller validation in a prediction error identification framework, developed in a
companion paper (Gevers et al., 2002), through two realistic simulation examples,
covering widely different control design applications. The first is the control of a
flexible mechanical system (the Landau benchmark example) with a tracking objec-
tive, the second is the control of a ferrosilicon production process with a disturbance
rejection objective.
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1 Introduction

In the companion paper (Gevers et al., 2002) we have developed a model val-
idation procedure that consists of a prediction error identification experiment
with a full order model. This procedure delivers an uncertainty set in trans-
fer function space that we have characterized and baptized generic Prediction
Error (PE) uncertainty set. It is defined as a ratio of linear combinations of
known transfer functions, with the coefficient vector constrained to lie in an
ellipsoid. We have derived two sets of results for such PE uncertainty sets:

• Controller validation results in the form of necessary and sufficient condi-
tions for a specific controller to stabilize - or to achieve a given level of
performance with - all systems in such PE uncertainty set;

• Model validation for control results in the form of a measure of size of such
model uncertainty sets that is connected to the size of a set of robustly
stabilizing controllers.

In this paper, we illustrate these technical results with two realistic identifi-
cation and control design applications. These simulation examples have been
chosen to illustrate two typical but very different control design problems.
The first one is the widely publicized Landau benchmark transmission system
(Landau et al., 1995b): a tracking problem with a step disturbance rejection
objective in an essentially noise-free environment. The second is a typical in-
dustrial application: a ferrosilicon production process described in (Ingason
and Jonsson, 1998), in which the main objective is stochastic disturbance re-
jection.

For each of these two applications, we apply our methodology. A PE identifi-
cation experiment is performed on the true system leading to a model Gmod
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and an uncertainty region D containing the true input-output transfer func-
tion G0 at a certain probability level. The worst-case ν-gap is then used to
assess the quality of the pair {Gmod, D} for robustly stable control design,
i.e. one checks whether the worst-case ν-gap δWC(Gmod, D) is much smaller
than the optimal stability margin bopt(Gmod) of the model Gmod. If that is the
case, the model Gmod is used to design a controller satisfying the performance
specifications with this nominal model. The controller validation results are
then used to verify if these specifications are also satisfied with all systems in
D, and therefore also with the true system G0.

In the first illustration, we choose the identified model as the model Gmod

used for control design. In the second illustration, we consider a case where
the model Gmod used for control design is given a priori. We illustrate the
role played by the experimental conditions in our methodology by comparing,

1 The model Gmod can also be given a priori.
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for each application, the results delivered by an open loop PE identification
experiment with the results delivered by a closed loop experiment.

2 The flexible transmission system

2.1 Problem setting

We consider as unknown true system the half-load model of the flexible trans-
mission system used as a benchmark in a special issue of the European Journal
of Control (Landau et al., 1995b).

G0(z) = z−3 0.10276 + 0.18123z−1

1− 1.99185z−1 + 2.20265z−2 − 1.84083z−3 + 0.89413z−4

, z−3 B(z)

A(z)
. (1)

The sampling period is 0.05s. The output of the system is subject to step
disturbances filtered through H0(z) = 1

A(z)
. This means that the plant can be

seen as a nonstandard ARX system described by

A(z)y(t) = z−3B(z)u(t) + p(t) (2)

where u(t) is the input of the plant, y(t) its output and p(t) is sequence of
zero mean step disturbances, modeled as a square wave signal with random
transitions. A standard ARX description of such system with step disturbances
is given by

A(z)∆(z)y(t) = z−3B(z)∆(z)u(t) + e(t), (3)

where ∆(z) = 1 − z−1 and e(t) is a sequence of Gaussian white noise with
zero mean and appropriate variance. The effect of the filter ∆(z) is to put
an integrator in the controller such as to reject the step disturbances. The
standard prediction error identification algorithm for ARX models can be used
to identify the parameters of this system, provided the data are prefiltered by
∆(z).

Our objective is to apply our PE validation methodology to the flexible trans-
mission system G0, considered as an unknown system. In order to illustrate
the role played by the experimental conditions, we shall compare two valida-
tion experiments, one in open loop, one in closed loop. In both cases, we shall
estimate a model Gmod and an uncertainty set containing the true system G0

at a probability level of 95%, compute a nominal controller C from the iden-
tified model Gmod that satisfies some prior specifications with this model, and
apply our validation tools to check whether this controller also satisfies the

3



specifications with the “unknown” G0. The main specifications we shall deal
with here are (Landau et al., 1995b):

• stability of the loop [C G0]
• a maximum value of less than 6 dB for the sensitivity function T22(G0, C) =

1/(1 + G0C).

2.2 Open-loop validation experiment

The input signal uol(t) applied to the stable true system G0 for open-loop
validation is chosen as a PRBS with variance σ2

uol
= 0.1 and a flat spectrum.

The output step disturbances p(t) are simulated as a zero mean random bi-
nary sequence with variance σ2

p = 0.01 and cut-off frequency at 0.05 times
the Nyquist frequency; that is, the mean length of the steps of p(t) is about
twenty times longer than that of the steps of uol(t), while the amplitude of the
steps p(t) is

√
10 times smaller than those of uol(t). The spectra and a real-

ization of uol(t) and p(t) are shown in Figure 1. The disturbance signal p(t) is
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Fig. 1. Open-loop validation. Top: uol(t) (−−) and p(t) (—). Bottom: φuol
(ω) (−−)

and φp(ω) (—)

filtered by 1/Ao(z) and added to the output of the system. 256 data are mea-
sured, and the identification is performed with the same ARX(4,2,3) structure
as G0 after prefiltering these data by ∆(z). The numerical values attached to

this open-loop validation experiment are displayed in Table 1, where

∫ π

0
φ

p
y(ω)dω

∫ π

0
φu

y (ω)dω

represents the output noise-to-signal ratio (φu
y(ω) = |G0 (ejω)|2 σ2

uol
is the spec-

trum of the part of the output due to the input, and φp
y(ω) = |H0 (ejω)|2 φp(ω)
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is the spectrum of the part of the output due to the disturbances).

σ2
uol

σ2
p σ2

yol

∫ π

0
φ

p
y(ω)dω

∫ π

0
φu

y(ω)dω

0.1 0.01 0.8932 1.3102

Table 1
Open-loop validation

Using these settings, the identified model Gol
mod = G(z, δ̂ol) is given by:

Gol
mod = G(z, δ̂ol) = z−3 0.1052 + 0.1774z−1

1− 1.997z−1 + 2.23z−2 − 1.876z−3 + 0.9039z−4
. (4)

The parameter vector δ̂ol is the vector made up of the two numerator coeffi-
cients followed by the four denominator coefficients. The covariance matrix of
this estimated parameter vector is

P ol
δ = 0.001×



































0.2034 −0.2970 0.2411 −0.1150 −0.0139 −0.0027

−0.2970 0.5735 −0.5136 0.2397 0.0119 −0.0064

0.2411 −0.5136 0.5725 −0.2962 −0.0130 0.0008

−0.1150 0.2397 −0.2962 0.2013 0.0094 0.0020

−0.0139 0.0119 −0.0130 0.0094 0.0392 0.0126

−0.0027 −0.0064 0.0008 0.0020 0.0126 0.0391



































.

The 95% uncertainty region Dol around Gol
mod can then be expressed as follows:

Dol = {G(z, δ) | G(z, δ) =
ZNδ

1 + ZDδ
with δ ∈ Uol} (5)

Uol = {δ ∈ R6×1 | (δ − δ̂ol)
T (P ol

δ )−1(δ − δ̂ol) < 12.6}, (6)

where

ZN(z) =
(

0 0 0 0 z−3 z−4

)

ZD(z) =
(

z−1 z−2 z−3 z−4 0 0

)

.

The size χ of the ellipsoid Uol is equal to 12.6 since Pr(χ2(6) < 12.6) = 0.95.
This uncertainty region Dol does actually contain the true system since we
have

(

δ0 − δ̂ol

)T
(P ol

δ )−1
(

δ0 − δ̂ol

)

= 5.7555 < 12.6,
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where δ0 =
(

−1.99185 2.20265 −1.84083 0.89413 0.10276 0.18123

)T

denotes

the parameter vector of the true system:

G0 =
ZNδ0

1 + ZDδ0

. (7)

2.3 Closed-loop validation experiment

In order to perform a validation experiment in closed loop, we need to connect
a controller K in feedback with G0. The controller K chosen here is the con-
troller obtained by Landau et al. using a combined pole placement/sensitivity
function shaping method (Landau et al., 1995a). Its feedback part is described
by

K(z) =
0.401602− 1.079378z−1 + 0.284895z−2 + 1.358224z−3

1− 1.031142z−1 − 0.995182z−2 + 0.752086z−3

−0.986549z−4 − 0.271961z−5 + 0.306937z−6

+0.710744z−4 − 0.242297z−5 − 0.194209z−6
· (8)

It also has a feedforward part that we shall not consider here.

The closed-loop system [K G0] is excited by means of a reference signal r(t)
injected at the input of G0, while the disturbance p(t) is the same as in the
previous subsection. In order to establish a fair comparison with the results
obtained in open-loop validation, r(t) is a PRBS with a variance σ2

r = 0.5541
that is chosen such that the total output variance is the same in closed loop as
in open loop: σ2

ycl
= σ2

yol
= 0.8932. Other choices could have been made, but

from an industrial user’s point of view, it is usually the total output variance
that matters. Other numerical values attached to this closed-loop validation
experiment are displayed in Table 2. φr

y(ω) and φp
y(ω) are the part of the

output spectrum due to the reference and the disturbance, respectively; thus
∫ π

0
φ

p
y(ω)dω

∫ π

0
φr

y(ω)dω
represents the output noise-to-signal ratio. Observe that in closed

loop identification, the disturbance contribution in the input signal does not
contribute to the estimation of the plant model G0 (Gevers et al., 2001).

σ2
r σ2

ucl
σ2

p σ2
ycl

∫ π

0
φ

p
y(ω)dω

∫ π

0
φr

y(ω)dω

0.5541 0.6475 0.01 0.8932 0.2389

Table 2
Closed-loop validation
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The controller K has unstable poles and nonminimum phase zeros. There-
fore, the indirect closed-loop identification method cannot be used for vali-
dation, as it would deliver a model Gcl

mod that would be destabilized by K
(see (Codrons et al., 1999), (Codrons, 2000)). We therefore use a direct ap-
proach to perform the closed-loop identification. Once again, 256 data samples
{ycl(t), ucl(t) : t = 1...256} are measured, and a model Gcl

mod with the same
ARX(4,2,3) structure as G0 is identified after prefiltering these data by ∆(z).

The model identified under those closed loop experimental conditions is:

Gcl
mod = G(z, δ̂cl) = z−3 0.1016 + 0.1782z−1

1− 1.986z−1 + 2.187z−2 − 1.824z−3 + 0.8897z−4
.

The estimated covariance matrix of the identified parameter vector is:

P cl
δ = 10−3 ×





























0.0840 −0.1166 0.1024 −0.0532 −0.0062 −0.0027

−0.1166 0.2145 −0.1966 0.1009 0.0057 0.0008

0.1024 −0.1966 0.2184 −0.1197 −0.0074 −0.0041

−0.0532 0.1009 −0.1197 0.0853 0.0063 0.0037

−0.0062 0.0057 −0.0074 0.0063 0.0064 0.0021

−0.0027 0.0008 −0.0041 0.0037 0.0021 0.0061





























.

The 95% uncertainty region Dcl around Gcl
mod = G(z, δ̂cl) can then be expressed

as follows:

Dcl = {G(z, δ) | G(z, δ) =
ZNδ

1 + ZDδ
with δ ∈ Ucl}, (9)

Ucl = {δ ∈ R6×1 | (δ − δ̂cl)
T (P cl

δ )−1(δ − δ̂cl) < 12.6}, (10)

where ZN and ZD are defined in (5). This uncertainty region Dcl contains the
true system since we have

(

δ0 − δ̂cl

)T
(P cl

δ )−1
(

δ0 − δ̂cl

)

= 4.7050 < 12.6

where δ0 denotes the parameter vector of the true system.

2.4 Robust stability measure of Dol and Dcl

In the previous section, we have performed two different validation experi-
ments leading to two uncertainty regions (Dol and Dcl) with different nominal
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models (Gol
mod and Gcl

mod). Each validation experiment has delivered a pos-
sible pair “model for control design-uncertainty region” i.e. {Gol

mod Dol} and
{Gcl

mod Dcl}. Let us first assess the quality of both pairs with respect to robustly
stable control design. For this purpose, the results of Sections 5-6 in (Gevers et

al., 2002) are used in order to verify whether all models in Dol (resp. Dcl) are
stabilized by a large set of controllers designed with the identified model Gol

mod

(resp. Gcl
mod). This is done by computing the worst case ν-gap δWC(Gol

mod, Dol)
(resp. δWC(Gcl

mod, Dcl)) and comparing it with the optimal stability margin
bopt(G

ol
mod) (resp. bopt(G

cl
mod)). The optimal stability margin can be computed

using expression (19) in (Gevers et al., 2002) and the worst case ν-gap can be
derived from the LMI-based computation of the worst case chordal distances
at each frequency. The worst case chordal distances κWC(Gol

mod(e
jω), Dol) and

κWC(Gcl
mod(e

jω), Dcl) are represented in Figure 2 where they are compared
with the actual chordal distance κ(Gcl

mod(e
jω), G0(e

jω)) between the model
Gcl

mod identified in closed-loop and the true system G0. We have not repre-
sented κ(Gol

mod(e
jω), G0(e

jω)) in order to keep the figure sufficiently readable.

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

Omega

Fig. 2. κWC(Gol
mod(e

jω),Dol) (solid), κWC(Gcl
mod(e

jω),Dcl) (dashdot) and
κ(Gcl

mod(e
jω), G0(e

jω)) (dotted) at each frequency

Using Lemma 1 and expression (19) of (Gevers et al., 2002), we obtain the fol-
lowing values for δWC(Gol

mod, Dol), δWC(Gcl
mod, Dcl), bopt(G

ol
mod) and bopt(G

cl
mod):

δWC(Gol
mod, Dol) = max

ω
κWC(Gol

mod(e
jω), Dol) = 0.2214 bopt(G

ol
mod) = 0.4685

(11)

δWC(Gcl
mod, Dcl) = max

ω
κWC(Gcl

mod(e
jω), Dcl) = 0.1097 bopt(G

cl
mod) = 0.4650

(12)

As δWC(Gcl
mod, Dcl) is much smaller than bopt(G

cl
mod), we conclude that the

set Cδ(G
cl
mod, Dcl) of Gcl

mod-based controllers that are guaranteed by the ν-gap
theory to robustly stabilize Dcl, is relatively large: see sections 5.3 and 6.2 of
(Gevers et al., 2002). The difference between δWC(Gol

mod, Dol) and bopt(G
ol
mod)
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is much smaller. Therefore, there is a strong incentive to give preference to
the pair {Gcl

mod Dcl} for robust control design. Nevertheless, for the sake of
illustration and comparison, we will also keep this pair {Gol

mod Dol} for further
analysis.

2.5 Control design based on the identified model

The identified model Gol
mod (resp. Gcl

mod) would normally be used in order to
design a controller Col (resp. Ccl) such that the nominal closed loop system
satisfies the specifications presented at the end of Section 2.1. However, for
comparison purposes, we will consider here the same controller C for both
models. This controller is the robust controller for the Landau benchmark that
was obtained by Nordin and Gutman using Quantitative Feedback Theory
(QFT) design (Nordin and Gutman, 1995):

C(z) =
0.0355 + 0.0181z−1

1− z−1
× 18.8379− 43.4538z−1 + 26.4126z−2

1 + 0.6489z−1 + 0.1478z−2

×0.5626− 0.7492z−1 + 0.3248z−2

1− 1.4998z−1 + 0.6379z−2
× 1.0461 + 0.5633z−2

1 + 0.4564z−1 + 0.1530z−2

×1.3571− 1.0741z−1 + 0.4702z−2

1− 0.6308z−1 + 0.3840z−2
.

This controller has not been designed from either Gol
mod or Gcl

mod, but it satisfies
all specifications with both models.

We now verify whether this controller satisfies these specifications with all
plants in Dol and Dcl, respectively (and therefore also with the true system
G0). Let us begin by the validation of C for stability.

2.6 Controller validation for stability

Following the procedure of Section 3 in (Gevers et al., 2002), we build the dy-
namic vectors MDol

(ejω) and MDcl
(ejω) corresponding to the candidate con-

troller C and the uncertainty sets Dol and Dcl, respectively, and we compute
their stability radius at each frequency according to Theorem 1 in (Gevers et

al., 2002). These stability radii are represented in Figure 3.

The maximum values of the stability radii are, respectively:

max
ω

µ(MDol
(ejω)) = 0.3244
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Fig. 3. µ
(

MDol
(ejω)

)

(solid) and µ
(

MDcl
(ejω)

)

(dashdot) at each frequency

max
ω

µ(MDcl
(ejω)) = 0.2375

Since this maximum value is smaller than one in both cases, we may conclude
that the controller C stabilizes all plants in both uncertainty sets Dol and Dcl.
Consequently, we can also guarantee that the “to-be-validated” controller C(z)
stabilizes the true flexible transmission system G0 with probability 95%. The
first specification presented at the end of Section 2.1 (i.e. the stability of the
achieved loop [C G0]) is thus satisfied.

2.7 Controller validation for performance

The second requirement presented at the end of Section 2.1 was that the
designed controller should ensure a maximum value of less than 6 dB for

the sensitivity function. Since the true system is assumed unknown, we verify
whether the controller C achieves these requirements with all systems in Dol

and/or Dcl. For this purpose, we choose the following worst case performance
criterion: the largest modulus of the sensitivity function T22 over all models
in D, denoted by tD(ω, T22). This worst case performance criterion can be
computed using the LMI procedure presented in Theorem 2 of (Gevers et al.,
2002) using the following weights: Wl = Wr = diag(0, 1). Using this worst case
performance criterion, the controller C is termed validated for performance if

max
ω

tD(ω, T22) < 6 dB.

We compute this criterion for the uncertainty sets Dol and Dcl delivered by
our two validation experiments. Figure 4 presents tDol

(ω, T22), tDcl
(ω, T22), and

compares them with the actual sensitivity |T22(G0, C)|. We observe that

max
ω

tDol
(ω, T22) = 5.97 dB, max

ω
tDcl

(ω, T22) = 5.00 dB < 6 dB.
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frequency

This means that the open-loop validation procedure nearly leads to rejection
of the controller, while the closed-loop validation procedure leads to its accep-
tance.

With the controller validation procedures for stability and for performance, we
have thus been able to establish that the “model-based”controller C achieves
the specifications presented at the end of Section 2.1 with the true system G0

since it achieves these specifications with all systems in Dcl. Furthermore, we
have also shown that, whereas the controller C is clearly validated with the
uncertainty set Dcl delivered by a closed loop PE identification experiment, it
is nearly rejected when we apply our controller validation procedure with the
uncertainty set Dol delivered by open loop identification. This fact illustrates
the important role played by the experimental conditions in our validation
procedure.

3 Ferrosilicon production process

The first illustration was representative of a mechanical engineering control
problem, in which there was no stochastic noise, and where the control ob-
jective was one of tracking and of rejection of step disturbances. In order to
illustrate the generality of our validation theory, we now present an applica-
tion that is representative of industrial process control applications, in which
the control objective is one of reducing the effects of stochastic disturbances.
In this second illustration, we will assume that the model Gmod for control
design has been given a priori.
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3.1 Problem setting

The plant model and the controllers used in this simulation example are taken
from a paper by Ingason and Jonsson (Ingason and Jonsson, 1998). Ferrosilicon
is a two-phase mixture of the chemical compound FeSi2 and the element silicon.
The balance between silicon and iron is regulated around 76% of the total
weight in silicon, 22% in iron and 2% in aluminium by adjusting the input
of raw materials to the furnace. Those are charged batchwise to the top of
the furnace, each batch consisting of a fixed amount of quartz (SiO2) and a
variable quantity of coal/coke (C) and iron oxide (Fe2O3). The quantity of
coal/coke which is burned in the furnace does not influence the silicon ratio
in the mixture, hence the control input is the amount of iron oxide.

The authors of (Ingason and Jonsson, 1998) have obtained the following ARX
model for the process:

y(t) + ay(t− 1) = bu(t− 1) + d + e(t) (13)

where the sampling period is one day, y(t) is the percentage of silicon in the
mixture that must be regulated around 76%, u(t) is the quantity of iron oxide
in the raw materials (expressed in kilogrammes), d is a constant and e(t)
is a stochastic disturbance. The nominal values of the parameters and their
standard deviations are:

a = −0.44, b = −0.0028, d = 46.1,

σa = 0.07, σb = 0.001, σd = 5.6.
(14)

Here, for the sake of illustrating our theory, we make the assumption that the
true system is 2

G0(z) =
−0.0032z−1

1− 0.34z−1
=

b0z
−1

1 + a0z−1
,

H0(z) =
1

1− 0.34z−1
=

1

1 + a0z−1
, d0 = 44.

The nominal model chosen for control design is the one obtained by Ingason
and Jonsson (Ingason and Jonsson, 1998):

Gmod(z) =
−0.0028z−1

1− 0.44z−1
=

bz−1

1 + az−1
,

Hmod(z) =
1

1− 0.44z−1
=

1

1 + az−1
, d = 46.1,

2 Since we have no access to the real plant, we have randomly selected one system
in the two-standard-deviation confidence interval around the nominal model and
used it as a surrogate true system.
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This model Gmod was used by the authors of (Ingason and Jonsson, 1998) to
compute a GPC controller. The control law that minimizes the cost function

Ju = E





2
∑

j=1

(y(t + j)− r(t + j))2 +
2

∑

j=1

λ (∆u(t + j − 1))2


 (15)

with ∆(z) = 1− z−1, is given by

u(t) =
[

1 0

]

(

HT H + F T ΛF
)

−1 (

HT (w(t)− v(t))− F T Λg(t)
)

(16)

where

H =







b 0

−ab b





 , (17)

F =







1 0

−1 1





 , (18)

v(t)=







−ay(t) + d

a2y(t)− ad + d





 , (19)

w(t)=
[

r(t) r(t + 1)

]T

, (20)

g(t)=
[

u(t− 1) 0

]T

, (21)

Λ= λI. (22)

λ is a tuning parameter. The resulting controller, Cλ(z), is made up of three
parts:

u(t) = Cλ(z)















r(t)

−y(t)

d















=
(

Cr
λ(z) Cy

λ(z) Cd
λ(z)

)















r(t)

−y(t)

d















(23)

where

Cr
λ(z) =

b3 + 2bλ− abλ

(b4 + 3b2λ + a2b2λ + λ2 − 2ab2λ)− (b2λ + λ2)z−1
,

Cy
λ(z) =− ab3 + abλ − a2bλ + a3bλ

(b4 + 3b2λ + a2b2λ + λ2 − 2ab2λ)− (b2λ + λ2)z−1
,

Cd
λ(z) =− b3 + bλ + bλ(1− a)2

(b4 + 3b2λ + a2b2λ + λ2 − 2ab2λ)− (b2λ + λ2)z−1

13



The controller Cd
λ(z) aims at rejecting the constant disturbance d. The feed-

back controller Cy
λ(z) is the only part that has an impact on closed loop sta-

bility. The reference signal r(t) is generally constant and given by r(t) = 76.

Our objective is to use the validation tools developed in (Gevers et al., 2002)
to check whether the controller Cλ(z), with λ = 0.0007, that is based on the
model Gmod, can be applied with confidence to the true system G0, that is
to say with the assurance that the closed loop [Cλ=0.0007 G0] will satisfy the
following specifications 3 :

• stability of the loop [Cλ=0.0007 G0]
• rejection of the stochastic noise v(t) = H0e(t).

To check this, we have used the surrogate true plant model (G0, H0) as a
simulator on which validation experiments have been performed. As with the
first illustration, we have performed two validation experiments: one in open
loop and one in closed loop.

3.2 Open-loop validation experiment

The “true plant” model (G0, H0) was excited with u(t) chosen as a PRBS
with variance σ2

uOL
= 20, which is the maximum input variance admissible

for this process (Ingason and Jonsson, 1998). The noise e(t) was chosen as a
Gaussian white noise sequence with variance σ2

e = 0.078, which corresponds
to the noise acting on the real process, as shown by experiments made by the
authors of (Ingason and Jonsson, 1998). The variance of the output was then
σ2

yol
= 0.0884. Recall that the validation experiment, i.e. the construction of a

validated uncertainty set Dol, consists of performing a PE identification using
a full order model structure. Therefore, 300 input-output data samples were
collected, corresponding approximately to one year of measurements. These
data were used to identify an ARX model with exact structure

G(z, δol) =
δ2z

−1

1 + δ1z−1
, H(z, δol) =

1

1 + δ1z−1
. (24)

Recall that this model is only a vehicle for the construction of an uncertainty
region Dol since the model Gmod used for control design has been given a priori.

3 The controller of course achieves these specifications with the nominal model
Gmod.
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We found

δ̂ol =







δ̂1

δ̂2





 =







−0.3763

−0.0073





 , P ol
δ =







2.8131× 10−3 −1.2784× 10−5

−1.2784× 10−5 1.4887× 10−5





 ,

(25)

The 95% uncertainty region Dol around G(z, δ̂ol) is then given by

Dol = {G(z, δ) | G(z, δ) =
ZNδ

1 + ZDδ
with δ ∈ Uol}

Uol = {δ ∈ R2×1 | (δ − δ̂ol)
T (P ol

δ )−1(δ − δ̂ol) < 5.99},
where

ZN(z) =
(

0 z−1

)

and ZD(z) =
(

z−1 0

)

.

The size χ of the ellipsoid Uol is equal to 5.99 since Pr(χ2(2) < 5.99) = 0.95.
The validated uncertainty region Dol contains both the “unknown” surrogate
true system G0 and the model Gmod used for controller design.

3.3 Closed-loop validation experiment

The closed-loop validation was performed with a sub-optimal GPC controller
obtained by setting λ = 0.001 in (23). We added a PRBS signal to the constant
reference r(t) = 76, with variance σ2

r = 0.014 so as to obtain the same input
variance as in the open loop experiment, i.e. σ2

ucl
= 20. The white noise e(t) had

the same properties as in open-loop validation. With these settings, the output
variance was σ2

ycl
= 0.0880, very close to that of the open-loop experiment.

Again, 300 input-output data samples were collected and used to identify an
ARX model with the same structure as in open-loop validation (24), using a
direct prediction error method. We found

δ̂cl =







δ̂1

δ̂2





 =







−0.3575

−0.0067





 , P cl
δ =







2.8323× 10−3 −8.7845× 10−6

−8.7845× 10−6 6.2416× 10−6





 .

(26)

We then designed a 95% uncertainty region Dcl around G(z, δ̂cl) defined by:

Dcl = {G(z, δ) | G(z, δ) =
ZNδ

1 + ZDδ
with δ ∈ Ucl},

Ucl = {δ ∈ R2×1 | (δ − δ̂cl)
T (P cl

δ )−1(δ − δ̂cl) < 5.99},

with the same ZN and ZD as in Dol. As with Dol, this uncertainty region Dcl

contains both the true system G0 and the model Gmod.
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3.4 Comparison of Dol and Dcl

The worst case ν-gap is now used to compare the two uncertainty sets deduced
from the two validation experiments. For this purpose, we first compute the
worst case chordal distances at each frequency for Dol and Dcl using the LMI
tools developed in Section 5 of the companion paper (Gevers et al., 2002).
According to Lemma 1 of that paper, and since Gmod lies in both uncertainty
sets, we can derive the worst case Vinnicombe distances from the worst chordal
distances as follows:

δWC(Gmod, Dol) = max
ω

κWC(Gmod(e
jω), Dol) = 0.0225

δWC(Gmod, Dcl) = max
ω

κWC(Gmod(e
jω), Dcl) = 0.0156

Observe that the worst case gap is again smaller for the set validated under
closed loop experimental conditions than it is for the set validated in open
loop. Since the optimal stability margin bopt(Gmod) is equal to 0.99, the sets
Cδ(Gmod, Dol) and Cδ(Gmod, Dcl) of controllers that robustly stabilize Dol and
Dcl, respectively, are both large. Indeed, the worst case ν-gaps δWC(Gmod, Dol)
and δWC(Gmod, Dcl) are very small with respect to bopt(Gmod). Consequently,
both uncertainty sets are well tuned for robustly stable controller design based
on Gmod. We can therefore keep both uncertainty sets for further analysis and
controller valiation procedures.

3.5 Controller validation for stability

We now examine whether the controller Cλ=0.0007 stabilizes all models in Dol

and/or Dcl, using the robust stability analysis tools developed for such PE
uncertainty sets in (Gevers et al., 2002).

3.5.1 Test based on sufficient condition

We first consider the sufficient robust stability condition based on the worst
case ν-gap , in order to show that this condition can be conservative with
respect to the necessary and sufficient condition developed in Theorem 1 of
(Gevers et al., 2002).

The nominal stability margin achieved by the controller Cλ=0.0007 with the
nominal model Gmod is very small: bGmodC

y

λ=0.0007
= 0.0169. We conclude that

the controller Cλ=0.0007 lies in Cδ(Gmod, Dcl) but not in Cδ(Gmod, Dol) since

δWC (Gmod, Dol) > bGmod Cλ=0.0007
= 0.0169 > δWC (Gmod, Dcl) . (27)
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Therefore, from this sufficiency test, we can conclude that Cλ=0.0007 stabilizes
all plants in the set Dcl, but we cannot conclude that it stabilizes all plants
in Dol. To ascertain this, we need to consider the necessary and sufficient
condition for robust stability.

3.5.2 Test based on necessary and sufficient condition

We first check whether Cλ=0.0007 stabilizes the nominal models G(z, δ̂ol) and
G(z, δ̂cl). Since this is indeed the case, we build the dynamic vectors MDol

(ejω)
and MDcl

(ejω) corresponding to the candidate controller Cλ=0.0007, and we
compute their stability radii according to Theorem 1 of (Gevers et al., 2002).
Their maximum values are, respectively,

max
ω

µ
(

MDol

(

ejω
))

= 0.6572 < 1, max
ω

µ
(

MDcl

(

ejω
))

= 0.2111 < 1, (28)

Since these two values are smaller than one, Cλ=0.0007 stabilizes all systems
in both uncertainty sets Dol and Dcl. This is remarkable, given that Cλ=0.0007

has a very small nominal stability margin with Gmod. This quantitative result
confirms our earlier qualitative observation that both uncertainty sets are well
tuned for robustly stable controller design based on Gmod, even though that
qualitative observation is based on a sufficient condition that would have in-
validated the particular controller Cλ=0.0007 when Dol is considered (see (27)).

We also observe that, just as with the first application, the stability radius
is much smaller for the set Dcl obtained by closed loop validation than for
the set Dol obtained by open loop validation. Finally we conclude from these
stability tests that the “to-be-validated” controller Cλ=0.0007 is guaranteed to
stabilize the surrogate G0 of the true ferrosilicon production process.

3.6 Controller validation for performance

The second specification presented at the end of Section 3.1 is to reject
the noise v(t) = H0(z)e(t), which is essentially located at low frequencies
(H0(e

jω) is a first order low-pass filter; see Figure 5). A performance spec-
ification in the frequency domain is therefore that the sensitivity function
T22(G0, C

y
λ=0.0007(z)) = 1/(1 + G0C

y
λ=0.0007(z)) be low at low frequencies in

order to attenuate v(t). We thus define the worst-case performance criterion
as

tD(ω, T22) = max
G(ejω ,δ)∈D

∣

∣

∣

∣

∣

1

1 + G(z, δ)Cλ=0.0007(z)

∣

∣

∣

∣

∣

(29)

This worst case performance criterion can be computed using the LMI proce-
dure presented in Theorem 2 of (Gevers et al., 2002). We will call the controller
Cλ=0.0007(z) validated if tD(ω, T22) is high-pass with maxω tD(ω, T22) < 1 dB.
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The Bode diagrams of the worst-case and achieved sensitivity functions are
depicted in Figure 5. Clearly, the controller is validated by the closed-loop val-
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1
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Fig. 5. Open-loop and closed-loop controller validation for performance: tDol
(ω, T22)

(−·), tDcl
(ω, T22) (—), |T22(G0, Cλ=0.0007)| (−−), |T22(Gmod, Cλ=0.0007)| (· · · ) and

|H0| (·)

idation experiment yielding Dcl but not by the open-loop experiment yielding
Dol.

The main conclusion we can derive from this performance test is that the con-
troller Cλ=0.0007 will achieve the desired performance (i.e. sufficiently decrease
the output variance) when applied to G0. We have indeed proved that, for the
uncertainty set Dcl containing G0, the worst case modulus of the sensitivity
function is a high pass filter with a reasonably small reasonance peak allowing
rejection of the noise v(t). This application shows once again the important
role played by the experimental conditions. Indeed, the controller C designed
from Gmod is validated with the uncertainty set Dcl delivered by a closed loop
PE identification experiment, but is invalidated with the uncertainty set Dol

delivered by an open loop PE identification experiment.

Remark. Even though the uncertainty region Dol is well tuned with respect
to robustly stable controller design with Gmod (i.e. it has a large set of stabiliz-
ing controllers), our analysis shows that the worst case performance achieved
by the controller Cλ=0.0007 with all plants in Dol is really bad. This is a con-
sequence of the fact that the worst case ν-gap is only an indicator of robust
stability and not an indicator of robust performance. This observation has
recently led us to extend our results to an indicator of robust performance for
the uncertainty set D delivered by PE identification (Bombois et al., 2002).
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4 Conclusions

Using two control design applications that are representative of a noise-free
mechanical tracking problem and of an industrial problem with a noise rejec-
tion objective, respectively, we have illustrated the various model and con-
troller validation results developed in the companion paper (Gevers et al.,
2002). In doing so, we have not only illustrated the relevance and practical
usefulness of our prediction error framework for model and controller vali-
dation, but we have also highlighted the important role of the experimental
conditions under which the validation experiments are performed.
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