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Performance Analysis of a New Structure for Digital
Filter Implementation

Gang Li, Member, IEEE, Michel Gevers, Fellow, IEEE, and Youxian Sun

Abstract—It is well known that for a digital filter of order
n the number of nontrivial parameters in the classical optimal
state-space realizations is proportional to n?. In this paper, a
new structure is proposed for digital filter implementation. This
structure possesses 5n — 1 nontrivial parameters and is shown to
be equivalent to the discrete-time counterpart of the well-known
orthonormal ladder filter in [13]. A new property of this ladder
filter is revealed. The performance of the proposed structure
is analyzed. Expressions for evaluating the sensitivity measure
and the roundoff noise gain are derived. A numerical exampie
is presented to illustrate the design procedure. Simulations show
that the performance of the proposed structure is almost the same
as that of the fully parameterized optimal realizations.

Index Terms—Realizations, roundoff noise, sensitivity, struc-
tures,

1. INTRODUCTION

UCH attention has been paid to the numerical problems
caused by the finite word length (FWL) effects in digital
filter implementation for more than two decades, The optimal
FWL state-space realization design has been considered as one
of the most effective methods (see, e.g., [1]-[6]) to minimize the
effects of FWL errors on the performance of digital filters and
controllers, It is well known that for a digital filter there exist a
number of different representations/parameterizations. Theoret-
ically, they are equivalent since they represent the same system
transfer function. However, different representations have dif-
ferent numerical properties and for a given application (measure
or criterion) one representation can be better than another. A dig-
ital filter transfer function can be implemented with anyone of
its state-space realizations. In digital filter implementation, the
optimal FWL state-space design is to compute those realizations
that minimize the degradation of the filter due to the FWL ef-
fects. These effects are classified into two categories: parameter
perturbation and roundoff noise. During the last fifteen years,
many results have been achieved in terms of finding optimal re-
alizations that optimize a certain FWL effect related cost func-
tion such as sensitivity measure and roundoff noise gain; see,
(11-(6].
It has been noted that optimal realizations are usually fully
parameterized, In practice, it is desired that the filter have a nice
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performance as well as a very simple structure ! that possesses
many trivial parameters?, which can be implemented exactly
and produce no rounding errors. Noting this fact, some mod-
ified measures were proposed (see, e.g., [7}-[9]). A lot of ef-
fort has been made to achieve sparse optimal or quasi-optimal
realizations. For minimal sensitivity realizations, even though
the number of nontrivial parameters can be much reduced using
the degrees of freedom in the optimal realizations, the amount
of nontrivial parameters is still proportional to n?, where n is
the order of filter (see, e.g., (10], [11}). Noting that the degrees
of freedom in the optimal roundoff noise realizations are very
limited, sophisticated numerical algorithms were developed to
obtain the so-called quasi-optimal realizations that have a very
sparse structure {7}, [12]. Besides the numerical difficulty in-
volved in those algorithms, the position of each trivial parameter
in the obtained structure is not predictable. In fact, the quasi-op-
timal sparse structure for one digital filter may be very different
from that for another.

Johns et al. [13] introduced a state-space structure for imple-
menting analog filters. This structure, referred as JSS-structure
in the sequel, has a very good sensitivity and dynamic range
performance comparable to a cascade of biquads. Filters imple-
mented with such structure are called orthonormal ladder filters
and ensure optimum dynamic range scaling with an Ls-norm.
Another interesting property of the JSS-structure is that it is very
sparse. Its discrete-time counterpart, obtained with the bilinear
transformation, is called DJSS-structure and can be shown to be
inherently I-scaled. The FWL effects can be greatly reduced
when a digital filter is implemented with the DJSS-structure.
Unfortunately, the DJSS-structure, unlike the JSS-structure, is
fully parameterized.

In this paper, we develop a new structure for digital filter
implementation. This structure, referred to as LGS-srructure, is
very sparse. The basic idea in the development is to factorize
the transition matrix of the DJSS-structure into a series of very
sparse matrices, With such a factorization, the LGS-structure
possesses 5n. — 1 nontrivial parameters instead of n? + 2n + 1.
For each output, 7n — 3 multiplications and 6n — 3 additions are
required, compared with n? + 2n + 1 and n® + n, respectively.
One of the interesting properties of this structure is that the po-
sition of each parameter is always fixed. Performance analysis
on this structure is conducted by deriving the expressions for
the sensitivity measure and the roundoff noise gain. It should
be pointed out that the LGS-structure does not belong to the

1Throughout this paper, a structure means a way in which the digital filter is
implemented.

2 P
“Here, by trivial parametcrs we mean those that are 0 and =+ 1. Other paramy-
elers are, therefore, referred 1o as nontrivial parameters.
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state-space realization set though it is theoretically equivalent
to the DISS-structure. The sparseness of this structure makes
it a very attractive candidate for digital filter implementation.
Simulations show that its performance can be even better than
that of the fully parameterized DJSS-structure and of the op-
timal roundoff noise realizations.

An outline of this paper is given as follows. Section II pro-
vides some preliminaries on the optimal FWL state-space real-
ization design. The JSS-structure is introduced in Section ITI.
As our first contribution in this paper, a new stability property
of this structure is also revealed in this section. Based on the
DIJSS-structure, the LGS-structure is developed in Section IV.
Section V is devoted to analyzing the performance of the LGS-
structure. In this section, the analytical expressions for com-
puting the sensitivity measure and the roundoff noise gain are
derived. A design example is given in Section VI to illustrate
the design procedure and to compare the performance of the
proposed structure with that of five well-known realizations.

II. PRELIMINARIES

Consider a single-inpuf\single-output time-invariant linear
digital filter H(z) implemented with its state space equations

z(t + 1) = Az(t) + Bu(t)
y(t) = Ca(t) + du(t) (0

where u{t) and y(¢) are the scalar input and output

of the filter, respectively® R = (A, B,C,d) with

A e R B eR™ C e R>¥ andd € R is called a
realization of H(z), satisfying
H(z)=d+C(z - A)7'B. )
Denote Sg 2 {R: R satisfies (2)}. Sy is characterized by
A=T"'4,T, B=T"'B,, C=CT (@3

where Ry 2 (Ao, By, Co,d) € Sy and T € R™™ is any
nonsingular matrix.

A. Sensitivity Measure

For an actual implementation, the ideal parameters in

(4, B, C, d) have to be truncated into FWL coefficients. There-:

fore, the actually implemented transfer function, denoted by
. H(z), is different from H({z). In the traditional FWL analysis,
the parameter errors are modeled as zero mean uniformly
distributed independent random variables [6], (18], {19].
Keeping this in mind, one can show (see; ¢.g., [6] and [14])
that the variance of the degradation AH(2) = H(z) ~ H(z) is
proportional to the following sensitivity measure:

N, 2
A || 0H(2)
My, = 4)

31t should be pointed out that the (time) index ¢ is normally used for contin-
uous-time systems. Throughout this paper, since the letters such as ¢, j, k, m,
and n will be used for defining other variables, t € {0,1,2,..
the time index for discrete-time systems.

.} is defined as .

where {px} are the nontrivial parameters in the realization
(A, B,C,d) and || - {|2 is the Lqo-norm defined below with
q=2

Definition 1: Let f(z) € C™*™ be any complex matrix-
valued function of the complex variable z. The Lg-norm of f(z)
is defined as

2 1/q
1912 (5 [ ao) ®

where || f(e/)||r is the Frobenius norm of the matrix f(e’*)

n m 1/2
17(e)]lr (Z > |fik(eju)|2)

i=1 k=1

= {tr{f7T (e79¥) f(e?)]}/? (6)

with tr(-) and 7 denoting the trace and transpose operations,
respectively.
The parameter sensitivity (0H /Bpk) can be found from

ABH()

542 B8 ~ 6P ()
Sp(z) 2 'Bg 1(32) = G(2)
se 2 2 = r), s 2B =1 )
where
F() 2 (= A7 B = [A) o ()]
T LOGI- A7 = [0 ) ®

It is easy to see that different realizations have different

sensitivity measures. The optimal sensitivity realization design

problem is to identify those realizations that minimize M, .
Since the minimization of M, was a hard problem, it was

initially replaced by the minimization of the following L;/L

mixed sensitivity measure [4]:

02

Mas, 2 g‘j ‘ “ 3cT ||, ‘ - O
It can be shown [4] that
My, r, < tr(We) tr(W5) + tr{We) + tr(Wo) + 1
£ My, (10)
and
A Muyia © o, Mo, an

where W, W, are the controllability and observability
gramians of (4, B, C, d), respectively, which are the solutions

of the Lyapunov equations
W, = AW.AT + BBT, W,=ATW,A+07C. (12)

The optimal realizations, denoted by Ry, /1, , are characterized
by the following identity:

W, = Wo,. (13)
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The use of the L / L, mixed sensitivity measure leads to an easy
treatment of the optimal realization problem. The pure L-based
sensitivity measure is more logical since it has a clear physical
interpretation [6], [8], [14].
Returning to the measure M7, , for fully parameterized real-
izations one has
L5+l 5

The problem of minimizing M L2 within the fully parametenzed
realization set, denoted with st 4, has been solved; see, e.g., [61,
[14], and [15]. The corresponding realizations are denoted by
Ry,.

For sparse realizations, it can be shown [8] that My, can be
evqluated with

2

My, = (14)

A ||,

M =33 0u(C ORL(C O

I=1 k=1

+ > [k Wolk, k) + oxWelk, ) + v (15)

k=1

~ where W, W, are deﬁncd in (12), Ry is the solution of the
following Lyapunov equation:

7 A 7\7
le“'(é elj")le(O eljik‘)

T
0 0 .
“(B)(B) VLR (16)
with ¢; denoting the ith elementary (column) vector, and
i = 0, if A(l,k)is trivial
=31, if A(l,k) is nontrivial
_ [0, if B(k)is trivial
¥k =11, if B(k) is nontrivial
e = 0, if C(k) is trivial
k=11, if O(k) is nontrivial
_J 0, ifdis trivial
v= { 1, if dis nontrivial. an

Though for a given realization one can compute this sen-
sitivity measure, how to minimize My, within the realization
space of sparse realizations, denoted with Sj;, is very difficult,
and as far as we know this is still an open problem.

B. Roundoff Noise Gain

Another FWL effect is due to the rounding of the states in
(1). Consider the situation where the rounding operation is per-
formed after a multiplication (RAM). It can be shown [1], [2],
{6] that the variance of the output error due to the roundoff is
given by

o%, = [r(WQ) + musi)og (18)
where ¢ is a constant, determined by the word length used for
representing the states, Q = diag(my, ..., Mg, My) With
my the number of nontrivial parameters in the row vector kth

row of (A B) for k = 1,...,n, and m,4) is the number of
nontrivial parameters in the row vector (C d).

In the actual implementation, all states in (1) have to be main-
tained in the same dynamic range, which is achieved with the
following l5-scaling {1], [2):

W.(i, i) =1, Vi (19)
Equation (19) defines a subset, denoted S%. of the realization
set Sy defined in (3). The optimal roundoff noise reahzatxon
problem is to find those realizations in 53 3 that minimize 0% Ay
or, equivalently, the roundoff noise gain defined as

AT

2
G ﬁ = tr(W,oQ) + Mnt1. (20)
0

If the realization is fully parameterized, thatis my = n + 1,
VEk, one has

= [tr{W,) + 1}(n + 1). 1)
The following optimal realization problem:
min G = [tr(W,) + 1)(n + 1) ©2)
Rest,

was solved in [1] and [2] independently. The corresponding re-
alizations are denoted by Rg.

The optimal realization problem defined over the set of sparse
realizations

"min G (23)
ReS3,

just as the optimal sensitivity realization problem, seems very
difficult and is still an open problem. In {7], a numerical algo-
rithm was proposed to solve a suboptimal problem.

It is interesting to note that for all I;-scaled realizations in
S$};, one has -

A-{L;/Lz =G ) (24)
where M L1/L, and G are defined in (10) and (21), respectively.
Equation (24) implies that any minimal roundoff realization Rg
is also a minimum sensitivity realization in this subset. There-
fore, R should yield a very good performance in terms of re-
ducing FWL effects. R¢, however, possesses n” + 2n + 1 non-
trivial parameters, which limits its applications in digital filter
implementation. In what follows, based on a well-known con-
tinuous-time realization, we will develop a new structure which
is sparse and yields a performance comparable to the fully pa-
rameterized Rg. .

[II. THE JSS STRUCTURE

In this section, we introduce the J§S-structure used in {13]
for analog filter implementation. A new stability property of this
structure is revealed. Based on the JSS-structure, a new structure
will be developed for digital filter implementation in the next
section,

It is well known that the continuous-time counterpart of
H(z), denoted with F(s), can be obtained with the bilinear
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transformation s = (z — 1/z + 1), 0t 2 = (1 4+ s/1 ~ s}, such
that

F(s) = H(z)

144 .

&=
“T1

(25)

-3

Clearly, H(z) has all its poles in |z| < 1if and only if F(s) has
all its poles in Re{s) < 0, where Re(x) denotes the real part of
any complex number z.

Let (4, B,C,d) € Sy and let F'(s) be defined from H(z) as
in (25). It can be shown that there exists a realization of F(s)
given by

K=V2(I+A)'B
D=d-C(I+A)'B (26)

o=(+A)"HA-D),
L=v2C0(+4)™,
such that
F(s) =D+ L(sI - ®)7'K. Q7

The continuous-time gramian pair (P, @) of (&, K, L, D) sat-
isfies the following equations:

o3P + PoT = -KKT, 87Q+Q®=-LTL (28)
It is interesting to note that
P=W, Q=W, 29)

where (W.,W,), as defined before, is the gramian pair of
(A, B,C,d).

Like H(z),F(s) also has an infinite number of realiza-
- tions. Consider the following continuous-time realization
(q)in: Kim Lin) D) of F(S):

0 231 0 O 0 0
—ay 0 oy 0 - 0 0
ga=| O T2 0 e 00
0 0 0 0 0 Qp_1
0 0 0 0 —-Qp1 —0Qn
0
0
’ 0
Kn=| . (30)
0
V2o,

where o, are real Yk and Ly, has no special structure.

This state-space structure, proposed by Johns er alt for
implementing a given continuous-time transfer function F'(s),
was shown to have a very good behavior against FWL effects
[13] and leads to the so-called orthonormal ladder filters.
We note that P = [ if {®, K) is replaced with (@4, Kia)
in (28), and with (29) one can see that the JSS-structure is
inherently Lg-scaled [13] and its discrete-time counterpart
(Ain, Bia, Cin, d), called DJSS-structure, is automatically Iz
scaled. For other nice properties of the JSS-structure, we refer
to [13]. '

“In the sequel, we will refer to this structure as the JSS-structure.

Before going to the issue of computing the JSS-structure, let
us reveal a new property of this structure.

A. A New Property of the JSS-Structure

Let A be any eigenvalue of ®;,. We show that @y, is (strictly)
stable, that is the real part of A is negative, iff ax # 0,k =
1,2,...,n— 1 with &, > 0. To prove this claim, one needs the
following lemma.

Lemmal: Let M € R™*™and M = M, + M,y with M, =
MT and My, = —MJ. Denote {A;} = A(M) and as the
eigenvalue set of M. Then

M, Ty

Re(/\k) = fﬂﬁk Yk
k

(3D
where %y, is an eigenvector corresponding to A and H denotes
the transpose-conjugate operator. .

Proof: Let T, be an eigenvector of Ay, that is M, =
AeZx. Clearly, i MZ, = A\eZ} k. With the decomposition
M = M, + M,y, one has T M,%; = Re(A\)ZH Tk, which
leads to (31). [

Theorem 1: Let &, be given by (30). Denote
(M} = A(®in), then &y, is strictly stable iff ax # 0 for
k=1,2,...,n—1land &, > 0.

Proof: First of all, let M = ®;, in Lemma 1. Noting all
the elements of the symmetric matrix M, are zero except the
last diagonal element, which is ~a,, it follows from (31) that
Znleal®

Re()) = (32)

at
where z = (Z1%2...TkTn-1%a)7 is an eigenvector corre-
sponding to A € A(®in). Clearly, the sufficiency part of the
theorem can be proved if one can show that ax # O for k =

'1,2,...,n — 1 and a, > 0 implies z, # 0. In fact, it follows

from ®;,z = Az that

01Ty = ALy
—apTh + k1 Th42 = Apy1, k=1,2,...,mn—2
(33)

—Qp1Tn-l — AnTn = ATn.

It is easy to see that with all o # 0, z, = O means z =
0, which contradicts the assumption that z is an eigenvector .
corresponding to A € A(®in). :

Now, assume that @, is strictly stable. The necessity part of
the theorem is proved if one can show that no oy, is zero and that
o, > 0. '

It is easy to see from (32) that o, is necessarily positive
and from (30) that oy # 0 if @y, is stable. Assume g = 0
for all & = 2,...,n — L Then &, = (%), where
3, € RUHUX(E+D and @, € R—F-Dx(=k=1) and k is
any number between 2 and n — 1. Noting the fact that @, is
a skew-symmetric matrix, it follows from (31) that all eigen-
values of ®, are imaginary. This means that ®;, is marginally
stable, which is against the assumption. O

B. Computing the JSS-Structure

Now, let us consider the problem of computing the JSS-struc-

ture for a given H(z). First of all, suppose F(s) = N(s)/D(s)
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is obtained by (25). Let the denominator be decomposed as
D(s) = E(s) + O(s), where E(s) and O(s) are the even-
and odd-power terms of D(s), respectively. Define Z(s) =
O(s)/E(s), if the order of D(s) is odd, or Z(s) = E(s)/O(s),
if the order of D(s) is even. Then we have the following con-
tinued fraction form:

1

Z(s) =rps+ T (34)

3
Tn-ast ey
e

Tn-18 +

Gt
The Hurwitz test (see, e.g., [16] and [17]) says that D(s) is
(strictly) stable iff rx > 0, Vk. It was shown in [13] that 30)
can be obtained by diagonally transforming the realization of an
orthonormal ladder filter derived from a singly terminated LC
ladder filter with a unit valued resistor, where the states corre-
spond to the capacitor voltages and inductor currents, and 7%
defined in (34) is either the capacitor or inductor value for all
k. The corresponding diagonal similarity transformationis T’ =

Diag(+/(1/271),/(1/272),...,+/(1/27x)), which leads to

oy = 1 , k=1,2,...,n—-1
TeTha41

1
= ¢/ —.
Tn

(35)

®;,, and K, can directly be defined from the o obtained above.
Let (®,, K., L., d) be any realization of F(s), say the con-
trollable realization. With ®;, and K;,, one can find the simi-
larity transformation T}, that transforms (®., K¢, L, d) into the
JSS-structure and hence also L;, with Liy = L Tin. '

IV. The LGS Structure
1t follows from (26) that the DJSS-structure is given by

A= I+ 33)(I = &)~}

2
Bin = —\é—_(l + Ain) = Kin
Cin = \/7§Lin(I+Ain)

d= D+ Cin(I + Ain)" ' Bin. (36)

It can be shown that the expression for computing the sensitivity
measure for analog filters has the same form as that given in
(10) [20]. Let Rj, be a continuous-time realization and R, the
corresponding digital realization, for k = 1, 2. Equation (29)
implies that the JSS-structure and the DJSS-structure have ex-
actly the same sensitivity behavior in the sense that if R] has
a smaller sensitivity measure than Rj, then the same holds for
R; vis-a-vis Ry. Noting the fact that the JSS-structure has a
very small sensitivity measure {13], it follows from (24) that
the the DJSS-structure has a very small sensitivity as well as a
very small roundoff noise gain.

One would therefore suggest using this DJSS-structure for
digital filter implementation. However, it has been noted that,
unlike ®;,,, A;, obtained with (36) is fully parameterized due to
the matrix inversion involved in (36). A direct implementation
of A;, leads to n? multiplications for computing Ain(1) in (1).

In this section, we show that A;, can be factorized into a series of

simple (sparse) matrices. Using this factorization, computation
for Ainz(t) can be much simplified.

Denote by U(4,7,z) the unit matrix except that its (¢, j)th
elementis z,V(7, 5),and let Ty = U(2,2,m)U(2,1, —a1) with
1 = 1/(1+ o?). Now we note that

I- ¢)in
=17 NI - @)
1 -y O o -~ 0 0
0 1 B O 0 0
0 o 1 -« 0 0
- Tl_l ) '2 3
0 0 0 o0 .- 1 —Oin_1
6 0 0 O on-1 14 an
where 82 = —a3/(1 + a?). Repeating this procedure, one can
show that

=S =TT Y (37
where U is the unit matrix except U(k, k + 1) = B, Yk with
B given by the following recursive equations:

Ot

Brg1 = = ) k=1,...,n-2
Sk

(38)

sk =1 — owbr,
B = —ay, Sn_1 =1+ an + an-108n-1
and

Ty =Ulk+ 1L,k+ 1,v)Uk+ 1k, —oy),
k=12,....,n—-1 (39)

where v = s;l with s defined in (38).
Noting that

Ul =U(1,2,-B).. Uk +1,k+1,-5)

LU= 1,0, —Bao1) (40)
one has the following:
A = I+ 0)(J ~ &)
= (I +®,)U(L,2,-61) ... Uln—1,n, = Bn-1)
x Uln,n,yo-1)U(n,n ~ 1, —0n_1)
L U(2,2,)U0(2,1, —ay) 41)

which shows that A;, is factorized with N & 1+3(n—1) sparse
matrices

I\Y
A= ADDAN=D 4@ A0 2 T[40 @2)
k=1
where AN) = [ 4 &;,. Clearly, A;, is parameterized with
3(n — 1) different nontrivial parameters {ax, Bk, vr} in (41)
or (42) (noting By = aj).
Taking advantage of this factorization, one can see that with
the DJSS-structure (1) can be rewritten as

z® (1) = AR *-D(1),  2O(t) = a(t),
k=1,2,...,N
z(t+ 1) = 2 (1) + Biyult)

y(t) = Cnz(t) + du(t). (43)
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Note that z(V)(¢) = A;,x(#). Simple calculations show that
computing (V) (¢t) with (43) requires only 5n - 4 multiplica-
tions and 4n — 3 additions, rather than n% and n{n — 1), respec-
tively, as required in the DJSS-structure. This is a significant
reduction of computational complexity.

For convenience, (43) is referred to as the LGS-structure, Be-
fore turning to the next section, we point out that the LGS-struc-
ture, though equivalent to the state-space DJSS-structure, does
not belong to the state-space realization set. Equation (43) yields
a different class of implementation structures.

V. PERFORMANCE ANALYSIS OF THE LGS STRUCTURE

In this section, we analyze the performance of the structure
proposed in the previous section in terms of sensitivity measure
and roundoff noise.

A. Sensitivity Analysis
First of all, it follows from (41) and (42) that

1

A(28) 4(2k=1) - ”

1

AWN=R) = 1 (44)

fork = 1,2,...,n — 1, and AW) = I 4 &;,. Therefore, the
LGS-structure (43) is parameterized with Biy, Cin, d, and three
parameter sets {ax}, {Ox}, {7k} Noting that Bj, and Cj, are
generally fully parameterized with nontrivial parameters, one
can see that the LGS-structure has 5n — 1 parameters to be
implemented with 8; = «,. The transfer function sensitivities
OH/8Bi,, 8H/8C;y, and O H /9d can be obtained with (7)-(8).

Now, let us consider 8H/0p,¥p € S, where S, denotes
the parameter set containing the parameters that define Aj,: o

479

fork = 1,...,m 0 fork = 2,...,n~— 1, and v for k =
1,...,n — L. Denote
N1 2(n—-1)
Ap=AM T 4O [ 492 4™ a,4,,
i=N—(n—-1) i=1
It follows from H(z) = d + Cin(24in) ! Bia that
OH _1 04
'%‘ = Cm(ZI Am) ! n( I - Am} 1Bm (45)
where
84 9AW) 0Aq 94
n = Agdy + AN ZZ2 4, 4 AW L,
oy - op 7 g T AT A
(46)

Noting 8; = a1, one can show (47), as shown at the bottom of
the page. Similarly, we have (48) and (49), shown at the bottom
of the next page. Noting that Bj, and Cj, are generally fully
parameterized, and assuming that ¢ is nontrivial, the Lo-sensi-
tivity measure for the proposed structure is
+ 8H|®
|51,

Migs= )
PESy
(50)

-5

pES,

Bp |, aBm ” 3Cin ||,

—EM2 + tr‘(Wtﬁ‘")) +(n+1)

where Wf") is the observability gramian of (Ain, Bin, Cin) for

which W% = I.
Noting the following equality:
N M, -Mx\"'[0
-a o ) (7)
A Ain @_gi_m - 0
o< o (% )7 ()2
2 Cinlzlan — Ain) ' Bin &)

it follows from (45) that
OH

where I,, denotes the unit matrix of order m and Os are zero

matrices of proper dimension. It is easy to show that

M Mo MG

(52)

wherew(Ws, W,) is the gramian pair of the realization
(Ain, Bin, Cin) defined in (31).

A% = ekekTﬂ ext1; k=1,2,...,n-1

Oag —enel LE=n

oa, [~ AWyl k=1

a1 P ._HQ(ndl) A(l) T rr2(k-1) A(,) 9 < k <n-1

day, 418 H n

0 k=mn

8—A~?~ = {_6162 H(TNZ)(,‘ 1) ABD k=1 @
e L0 k#1
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Therefore, - s II(0H/8p)||3 and hence Mygs can be
computed using (52) with (46)—(50).

B. Roundoff Noise Analysis

In an actual implementation, all intermediate variables should
be maintained to a certain wordlength, say B, bits. Therefore,
the product of any nontivial parameter and an intermediate vari-
able has to be rounded to B, bits. So, the actual model of the
LGS-structure (43) with all intermediate variables rounded is

e (t+1)=Q [A(N)Q [a [49q [A(l)x*(t)]] . ]]
+ Q[Binu(t)]
y*(t) = Q[Cinz™ ()] + Qdu(t)] (53)

where Q[Mu] is the quantizer that rounds all products occurring
in the multiplication Mwv into B, bits.
Denoting

A0 29 [A(2("“’)) Q [A(Ux*(t)] . ]
Z() 2 Q [A<N-1) .Q [A(N'("“l))Zl(t)] .. ] (54)
. it then follows from (53) that '
g (t 4 1) = AN Zy(t) + Binu(t) + ealt)
() = Cinz™ (2) + du(t) + n(t) (55)

where e3(t) and 5)(%) are the roundoff noises in Q[A¢Y) Z,(t)] +
Q[Binu(t)] and Q[Cinz* (1)} + Q| du(t)] respectively. Their co-
variance is given by

Similarly

Z](t) = A].’E*(t) + C1(t) (59)

where ¢; (1) is the roundoff noise, satisfying
Rey = E [e1(t)e] (1)]

. 9D
= diag (0,1+13,1+,...,1+ 7,) 0 = Dr0g.

(60)
Combining (55}, (57) and (59), one has
¥ (t + 1) = Aipz*(t) + Binu(t) + €(2)
y (t) Cina™ (t) + du(t) + n(t) (61)
where .
e(t) = AN Agey () + AN ey (t) + es(t). (62)

Denoting Ay(t) = y*(t) — y(t) and E(t) = z*(t) = z(t), it -
follows from (43) and (61) that

E(t+1) = AnB(t) +€(t)

Ay(t) = CinE() + nt).

Keeping in mind the assumption that all roundoff noises are
independent and white, it turns out from (63) that

(63)

o3, & El(Ay(1)!] = CuPCE + R, (64)

. where

Re, = B [es(t)e] (1)) = diag(2,3,3,...,3,3)0% & Dso? P = AinPAT + R.
Ry = eln(tyn” ()] = (n + 1)} ($56) B2 Ble()e ()
with o a constant depending on B,. = A [AyR,, AT + R, (A(N))T +R.,
It is easy to see that _ I
: — N T N 2
Za(t) = ArZ5(8) + ex(2) 57 = {A‘ ) (420147 + D) (A7) + Da} %
- where eg(t) is the quantization error of Z»(t) given by (54). 2p 002, (65)
Noting the structure specified in (44), one can show that
[ T ( )] ) 5 Doo? It can then be shown that
R., = E |ea(t)e; ()| = diag(l,1,...,1,0)05 = Doy, .
- 2 ° %53) ohy =tr (W,S'“)Re) + R, (66)
(N)
oA®) _ oAy
e OBk :
94 |- Hg.f;i)l-—k ADerel (TINTTMA® 2<k<n—2 8)
e - HE:;EI{)—I)+2 AWeq_re] k=n-1
oAM) 0k
e Ok
04y [T AWepel  TIRETMAD 1<k <n—2 )
B | enel [IZ4 701 46 k=n-1.
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Fig. 1. Magnitude responses—solid line: ideal; dotted line: R with B, = 10; and dashdot line: Regs with Be = 10.

TABLE [

Structure R, Ry L,

R, Rg Rpyss Rics

My, 1.9072 x 10* | 184.9349 | 163.9790 | 168.0311 | 221.1138 | 270.8383

G - -

- 16.3306 | 21.6053 | 18.2649

N, 13 49

49 49 49 29

The roundoff noise gain for the proposed structure (43) is there-
fore
2

o . ) '
G="5t =t (W§*“)Ro) +(n+1) (67)

9

where Ry is defined in (65).

VI. A NUMERICAL EXAMPLE AND SIMULATION RESULTS

In this section, we present a design example to illustrate the
performance of the proposed structure and compare it with five
other structures: the controllable realization R., Rpjss, and
fully parameterized optimal realizations Ry, /r,, Rr, and Rg.

Example: This is a sixth-order narrow band low-pass filter
used in [6]. The normalized passband frequency f, is 0.03125,
the stopband frequency f, is 0.0390625, and the passband
ripple is 1 dB. The attenuation in the stopband is greater than
46.68 dB. The corresponding magnitude response is depicted
in Fig. 1 with solid line.

Table I shows the statistics on the sensitivity measure My,
the roundoff noise gain® G, and the number of nontrivial param-
eters N, involved in implementation for the six structures.

In this example, one can see that R, is very sensitive to the
parameter errors. This is due to the very narrow bandwidth of the
filter. The other five structures have a much smaller sensitivity
measure. The proposed Rpas yields aslightly larger My, value
than Rg and Rpyss. In fact, all five structures yield almost the
same frequency response for a given parameter perturbation. Let
us truncate all nontrivial parameters of a structure into B, bits in

5The roundoff noise gain G is defined with lx-scaling, It is meaningless to
present the G value for Re, Ry, /2, and Ry, since they are not {;-scaled.

their fractional part. The magnitude responses of Rg and Rigs,
both truncated with B = 10, are depicted in Fig. 1 with the
dotted and dashdot lines, respectively. It clearly shows that both
structures yield almost the same response, which is very close
to the desired one, especially in the passband. To achieve the
same response, R, requires at least B, = 22 bits, In terms of
roundoff noise gain, Rygs is quite close to Rg and better than

" Rpiss. :

Comment 6.1: The relationship between the G values of Eg
and RLgs depends on examples. In fact, Ryigs may yield a
smaller roundoff noise gain than R¢. This is due to the fact that
Rg is optimal in the set of the fully parameterized state-space
realizations, while Bgs does not belong to the state-space real-
izations Sg and in Rpgs there is a smaller number of rounding
operations. Other examples also show that the My, value for
Ry,qs can be smaller than that for Rpjss.

VII. CONCLUSION

In this paper, the digital filter structure problem in FWL im-
plementation has been discussed. Our contribution is three-fold.
Firstly, a new stability property of the JSS-structure has been re-
vealed. Secondly, based on the DJSS-structure a new structure
has been developed, which is sparse and yields a very nice per-
formance. The performance of this proposed structure has been
analyzed by deriving the corresponding expressions for sensi-
tivity measure and roundoff noise gain. A design-example has
been given, with which it is shown that the proposed structure
is not only simpler than the DJSS-structure but also generally
yields a better performance which is very close to that of the
fully parameterized optimal roundoff noise realizations.
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