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Abstract

In 1994 H. Hjalmarsson, S. Gunnarsson and M. Gevers developed an iterative controller parameter
tuning scheme, which was inspired by iterative identification and control schemes. It was entirely driven
by closed loop data obtained on the actual closed loop system operating under a sequence of controllers.

The simplicity of the scheme made it an obvious candidate for experimentation and industrial appli-
cation. In the two years since the publication of the method, it has been widely experimented with on
laboratory experiments and on industrial processes. Here we briefly present the method and we report
on its application to the optimal tuning of industrial PID controllers at the Solvay S.A. company.
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1 Introduction

Many control objectives can be expressed in terms of a criterion function, LQG and H.. control
being the standard examples. Generally, explicit solutions to such optimization problems require
full knowledge of the plant and disturbances, and complete freedom in the complexity of the
controller. In practice, the plant and the disturbances are seldom known, and it is often desired
to achieve the best possible performance with a controller of prescribed complexity. For example,
one may want to tune the parameters of a PID controller in order to extract the best possible
performance from such simple controller.

The optimization of such control performance criterion typically requires iterative gradient-
based minimization procedures. The major stumbling block for the solution of this optimal
control problem is the computation of the gradient of the criterion function with respect to the
controller parameters: it is a fairly complicated function of the plant and disturbance dynamics.
When these are unknown, it is not clear how this gradient can be computed.

Within the framework of restricted complexity controllers, previous attempts at achieving
the minimum of a control performance criterion have relied on the availability of the plant and
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disturbance model, or on the estimation of a full order model of these quantities. Alternatively,
reduced order controllers can be obtained from a full-order controller followed by a controller
reduction step [1].

In the context of controllers of simple structure for unknown systems, such as PID controllers,
some schemes have been proposed for the direct tuning of the controller parameters. These
schemes are based on achieving certain properties for the closed loop system that are found to
be desirable in general. These properties can then be translated into constraints on the Nyquist
plot (or the Ziegler-Nichols plot) of the controlled system. - We refer the reader to [2] for a
representative of this family of methods.

Recently, so called iterative identification and control design schemes have been proposed in
order to address the problem of the model-based design of controller parameters for restricted
complexity controllers, see e.g. [22], [21] and [15]. These schemes iteratively perform plant model
identification and model-based controller update, with the successive controllers being applied
to the actual plant. Behind these schemes is the notion that closed loop experiments with the
presently available controller should generate data that are “informative” for the identification
- of a model suited for a new and improved control design, and that controllers based on models
that are better and better tuned towards the control objective should achieve increasingly higher
performance on the actual system. See [8], [9] and [6] for a presentation of these ideas.

So far, there are very few hard results to support these expectations, except for the ideal (but
unrealistic) situation where full-order models (and hence full-order controllers) are used: it has
been shown in [11] that, for that situation, closed loop identification with a specific controller in
the loop yields an estimated controller that achieves the best possible performance on the actual
system. In addition, an iterative identification and control design scheme has been proposed
that approaches these ideal experimental conditions.

In the case of low-order controllers, there are reported successes, including experimental and
industrial ones, of the above-mentioned iterative identification-based controller design schemes
[19], but there are also examples where these schemes are known to diverge. Most importantly,
with the exception of some examples analyzed in [3], there is no analysis of the performance
properties of the closed loop systems to which such schemes converge in the cases where they
do so. In [14] it was shown that such iterative identification-based control design schemes do
not converge to a controller that minimizes the control performance criterion, except possibly
for full order models and controllers. :

In the combined identification/control design schemes, the model is only used as a vehicle
towards the achievement of the minimization of a control performance objective. An obvious al-
ternative is to directly optimize the control performance criterion over the controller parameters.
However, as stated above, earlier attempts at minimizing the control performance criterion by
direct controller parameter tuning had stumbled against the difficulty of computing the gradlent
of this cost criterion with respect to the controller parameters.

The contribution of {12] was to show that an unbiased estimate of this gradient can be com-
puted from signals obtained from closed loop experiments with the present controller operating
on the actual system. For a controller of given (typically low-order) structure, the minimization
of the criterion is then performed iteratively by a Gauss-Newton based scheme. At each step
of the iterative design, three experiments are to be performed, two of which consist of collect-
ing data under normal operating conditions, while the third one requires feeding back,'at the
reference input, the output measured during normal operation. Hence the acronym Iterative .
Feedback Tuning (IFT) given to this scheme. No identification procedure is involved. A closely




related idea of using covariance estimates of signals obtained on the closed loop system to adjust
the controller parameters in the gradient direction was used in an adaptive control context by
Narendra and coworkers some 30 years ago: see [18] and [17]. In all other optimization- based
approaches that have appeared in an adaptive control context, the gradient of the criterion was
obtained through the estimation of a full-order model of the plant.

As in any numerical optimization routine, a variable step size can be used. This allows
one to control the rate of change between the new controller and the previous one. This is an
important aspect from an engineering perspective. Furthermore, a variable step size is the key
to establishing convergence of the algorithm under noisy conditions. With a step size tending
to zero appropriately fast, ideas from stochastic averaging can be used to show that, under the
condition that the signals remain bounded, the achieved performance will converge to a (local)
minimum of the critérion function as the number of data tends to infinity. This appears to be
the first time that convergence to a local minimum of the design criterion has been-established
for an iterative restricted complexity controller scheme.

The optimal IFT scheme of [12] was initially derived in 1994 and presented at the IEEE CDC
1994. Given the simplicity of the scheme, it became clear (and not just to the authors) that this
new scheme had wide-ranging potential, from the optimal tuning of simple PID controllers to
the systematic design of controllers of increasing complexity that have to meet some prespecified .
specifications. In particular, the IFT method is appealing to process control engineers because,
under this scheme, the controller parameters can be successively improved without ever opening
the loop. In addition, the idea of improving the performance of an already operating controller,
on the basis of closed loop data, corresponds to a natural way of thinking. '

Since 1994. much experience has been gained with the IF'T scheme:

e It has been shown to outperform comparable identification-based schemes in simulation
examples: see [12].

o It has been successfully applied to the flexible transmission benchmark problem posed by
1.D. Landau for ECC95, where it achieved the performance specifications with the simplest
controller structure: see [13].

o It has been tested in real time on the flexible arm of the Laboratoire d’Automatique de
Grenoble [5].

o It has been shown to handle time va,rvlng, and in pa,rticula,r perlodlca,lly time-varving,
systems ll(]]

o It has been applied by the chemical multinational Solvay S.A. to the tuning of PID con-
trollers for a large number of control loops: temperature control in furnaces, in distillation
columns. flow control in evaporators etc. The performance improvements achieved by ap-
plying the IFT scheme to the existing PID loops have been rather striking (see further in
this paper). '

Our objective in this paper is to first present the IFT scheme, and to then review perfor-
mances achieved by the scheme at the S.A. Solvay, where it was used for the optimal tuning
of PID controllers on a number of control loops. We shall leave aside the connections with
identification-based schemes and all other technicalities that might be of interest to theoreti-
cally inclined researchers, but that would otherwise distract the reader from the essential ideas
of the scheme and its potential applications. ‘




The paper is organized as follows. In Section 2 we present the design criterion and in
Section 3 we show how this criterion can be minimized using experimental data. Sections 4,
5, and 6 deal, respectively, with implementation issues, the major design choices and some
practical engineering aspects. Section 7 presents the application of the method to the tuning
of PID controllers on several chemical processes at S.A. Solvay. Some conclusions are offered in
Section 8.

2 The control design criterion
We consider an unknown true system described by the discrete time model
Ye = Goty + vy - ' (1)

where Gy is a linear time-invariant operator, {v,} is an unmeasurable (process) disturbance and
t represents the discrete time instants. We shall consider here, for future analysis purposes, that
{v.} is a weakly stationary (see e.g. [16]) raridom process, but other disturbance assumptions

can also be made. ‘
We consider that this system is to be controlled by a two degrees of freedom controller:

u = Cop)re — Cyl(p)ys (2)

where C,(p) and Cy(p) are linear time-invariant transfer functions parametrized by some pa-
rameter vector p, and {r,} is an external deterministic reference signal, independent of {v,}. It
is possible for C,.(p) and Cy(p) to have common parameters. =

Whenever signals are obtained from the closed loop system with the controller C'(p)
{C:(p),Cy(p)} operating, we will indicate this by using the p-argument; on the other hand, to
ease the notation we will from now on omit the time argument of the signals. Thus, y(p), u(p)
will denote, respectively, the output and the control input of the system (1) in feedback with
the controller (2). -

Let y¢ be a desired output response to a reference signal r for the closed loop system. This
response may possibly be defined as the output of a reference model Ty, i.e.

>

yd =Ty r . . (3)

but for the control desigﬁ method that will be developed later the knowledge of the signal y¢ is
sufficient. The error between the achieved and the desired response is

- d Cr(p)Go 4) 1
o — e e ——— ), 4
ulp) = y(p) —y* (1+Cy(p)Go' y f1+C'y(p)Gov (4)
When a reference model (3) has been defined this error can also be written as
. Cr(p)Go ) 1 ' :
= ——l T * ———— . 5
() (1 T C0G ) T TTEmG” (5)

This error consists of a contribution due to incorrect tracking of the reference signal r and an
error due to the disturbance.




For a controller of some fixed structure parametrized by p, it is natural to formulate the
control design objective as a minimization of some norm of §(p) over the controller parameter
vector p. In the IFT design scheme the following qnadratic criterion is adopted:

N

Is(p) = 5o S (L, A z Lo (p))? (6)

~ where E[] denotes expectation w.r.t. the weakly statlonary disturbance v. The optimal con-

troller parameter p is defined by .
p" = argminJ(p), - (7)

The objective of the criterion (6) is to tune the process response to a desired deterministic
response of finite length N in a mean square sense. The first term in (6) is the frequency
weighted (by a filter L,) error between the desired response and the achieved response. The
second term is the penalty on the control effort which is frequency weighted by a filter L. The
filters L, and L, can of course be set to 1, but they give added flexibility to the design. As
formulated, this is a model reference problem with an additional penalty on the control effort.
With T = 1 this becomes an LQG problem with tracking.

With Ty(p) and So(p) denoting the achieved closed loop response and output sensitivity

function with the controller {C,(p), Cy(p)}, i.e.

_ Cr(p)GO
"l = e pe | ®
v 1
0= mepe B

and given the independence of r and v, J(p) can be written as

Z{L Y’ + 52 [(LSolp)o}] + A 51 B [X(Luuxp)f]ﬁ (10)

-The first term is the trackmg error, the second term is the disturbance contnbutwn and the
last term is the penalty on the control effort.

In the case where a reference model y¢ = T,r is used, the problem setting has close con-

nections with model reference adaptive control (MRACQ): see e.g. [4]. MRAC is based on the
minimization of a criterion of the same type as (6) with respect to the controller parameters. To
carry out the minimization it is necessary to have an expression for the gradient of this criterion
with respect to the controller parameters. As will be seen below this gradient depends on the
~ transfer function of the unknown closed loop plant. The MRAC solution to this minimization
problem is then to, essentially, replace the true closed loop plant by the reference model in the
gradient computation. The novel contribution of the IFT approach [12] was to show that, in
contrast to the MRAC approach, the gradient can be obtained entirely from input-output data
collected on the actual closed loop system, by performing one special expemment on that system.
Thus, no approximations are required here to generate the gradient.

3 Criterion minimization

We now address the minimization of J(p) given by (6) with respect to the controller parameter
. vector p for a controller of prespecified structure. We shall see later how the method can be
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adapted to handle controllers of increasing complexity. To facilitate the notation we shall in
this section assume that L, = L, = 1. In Section 4 we show how the frequency filters can be
incorporated. It is evident from (4) that J(p) depends in a fairly complicated way on p, on the
unknown system G and on the unknown spectrum of {v}. |

To obtain the minimum of .J(p) we would like to find a solution for p to the equation

8J 1 8
8/3 = _13 ZJt yt p)+ A Z“t p) - (11)

If the gradient % could be computed, then the solution of (11) would be obtained by the
following iterative algorithm: .
—_ JR— . _1.........—. :

Pit1 = Pi 7:Ri 3;) (,01). (12)
Here R; is some appropriate positive definite matrix, typically a Gauss-Newton a,pprox1ma,t10n
of the Hessian of J, while ~; is a positive real scalar that determines the step size. The sequence
{%;} must obey some constraints for the algorithm to converge to a local minimum of the cost
function J(p): see [12]. ’ '

As stated, this problem is intractable since it involves expectations that are unknown. How-
ever, such problem can be solved by using a stochastic approximation algorithm of the form
(12) such as suggested by Robbins and Monro [20], provided the gradient 3 2J 5, (pi) evaluated at
the current controller can be replaced by an unbiased estimate. In order to solve this problem,
one thus needs to generate the following quantities:

1. the signals §(p;) and u(p,-);
2. the gradients §Z(p;) and §%(ps);

3. unbiased estimates of the products g (p,)ap (p:) and u(p; )ap (ps).

The computation of the last two quantities has always been the key stumbling biock in solving
this direct optimal controller parameter tuning problem. The main contribution of [12] was to
show that these quantities can indeed be obtained by performing experiments on the closed loop
system formed by the actual system in feedba.ck ‘with the controller {C,(pi), Cy(pi)}. We now
explain how this can be done.

' Output related signals

From (4) it is clear that §(p;) is obtained by taking the difference between the achieved response
from the system operating with the controller C(p;) and the desired response. As for p)

first note ‘—;%(p) = 2¥(p). We then have the following expression

ap
dy Gl aC, C.(p)G: 8C, Go oC,
= - - T - 5 r— = v
8,0( 2 14 Cy(p)Go 9p (p) (14 Cy(p)Go)” 9p (o) (14+Cy(p)Go)” Op (p)
= L 9% npyr - =250 ) (ITF () + To()Sole)v) (13)
- C‘(p)a P)Lolp C()ap 0 P olP)oo\p ‘< ‘
In this expression the quantities C,(p), "ac; (p) and 2 (p) are known functions of p which

depend on the parametrization of the (restricted complex1tv) controller, while the quantltles
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To(p) and Sp(p) depend on the unknown system and are thus not computable. Therefore. unless
" an accurate model of the system is assumed to be available (assumption which we shall not
make), the signal 3%(19) can only be obtained by running experiments on the actual closed loop

system.
Now observe that the last two terms in (13) involve a double filtering of the signals r and v

through the closed loop system. More precisely, notice that
[Tg] r+ T()S()'U = Toy

Therefore, (13) can be rewritten as

gy, . 1 [0C., . ac,, ...

%) = g o emer - G eme)]
1 [(aa( !

Crlp) L\ dp P O

The last term in (14) can be obtained by substracting the output signal from one experiment
on the closed loop system from the reference, and by using this error signal as reference sagnal
in a new experiment. This observation leads us to suggest the following procedure.

In each iteration i of the contloiler tunmg algorithm, we will use three experiments, each of
duration N, with the fixed controller C(p;) = {C (pi), Cy(pi)} operating on the actual plant,
Two of these experiments (the first and third) just consist in collecting data under normal
operating conditions: the second is a real (i.e. special) experiment. We denote N-length reference
signals by {r{}, j = 1.2, 3, and the corresponding output signals by {y#(p;)(}, J = 1,2,3." Thus
we have

) T+ GRODAC 0] (9

rl=r, y (pi) = To(pi)r + SO(P:)U}a (15)

ri =r—y'(pi), y*(pi) = To(pi)r - [To(Pz)]2 P TO(P:)SO(P:)U + So(pi)v; ’
= To(ps)(r = ¥ (p)) + So(pi)v} (16)

rf=r, v (pi) = To(p:)r + Solpi)vi. (17)

Here v“" denotes the disturbance acting on the system during experiment j at iteration 1.
These disturbances can be assumed to be mutually independent since they come from different
experiments, provided the length IV of one experiment is large compared to the correlation time

"of the disturbances. These experiments yield an exact realization of §(p:): '

Jpi) = y' (o) — v ' (18)

while ‘ | - .

ay a 1 [(80, ac, ) aC, ]

i) = =7y AP T T i + i H 19

2, = o L\ Bp (pi) = =5, (s *(p) (p)y (p) (19)

is a perturbed version (by the disturbances v} and v?) of 5%’(;);). Indeed by comparing (19) with
(14}, using (15)-(17). it is seen that :

é;/ dy Solpi) [(9C, ac, s, 9C, 2
=500+ s (G- b))+ St o)

!The signals {r/} mentioned here are all considered to be small signal deviations with respect to constant
reference values. :




Two things are worth observing. First, the disturbance generated in the first experiment is not
a nuisance. The output of the first experiment is used in (18) to create an exact version of the
signal §j(p;) which is used in the criterion J: see (4). Secondly. the output of the first experiment
(with the disturbance) is exactly what is needed as reference signal in the second experiment
to generate an estimate of —3. compare (16) with the second term of (13). The only nuisances
that are introduced are the dlsturbance contributions from the second and third experiments.

Input related signals

It is possible to use the measurements of the process input generated from the three experlments
using the reference signals (15) —(17) to generate an estimate of the sensitivity function 2% 35 (pi)-
From ‘ '

L. Cp) Cylp) |
u(p) = 5 TC,0G T TEC,(0G T So(p) [Cr(p)r = Cy(p)v]

and
v 05y, . 1 e
“5'0—(10)'— C%Tﬂ(p)sﬂ(p) o (p)

it follows that _ ,
du raC. aC,

B0 = o) [ = G0 P) (To(p)r + Sa(p)0)]
= So(p) _8;; f‘—%(p)y} )
= 50 [(G20) - 20 1+ G- ). )

The experiments with reference signals defined as in (15)-(17) give the following input signals

u(ps) = Solpd) [Crlpi)r — Cylpi)vi] ' (22)
w?(p:) = Solps) [Crlpi)(r — ¥ (p3)) = Cylpi)vi] (23)
w(p:) = Solps) [Crlpi)r = Cylpi)vi]. (24)

Thus u!'(p;) is a perfect realization of u(p:),

u(ps) = u!(pi), - (29)
while . . |
Ju 1 [(80,. aC, ) 3 ac, ) ]
i : i) — (o) Jur(pi) + o pi)u”(pi 26
%P = e g, P = =5, () (1) 3P(p)‘(p) (26)
~is a perturbed version of §* (p,- . Indeed a comparison of (26) with (21) shows that

du du Cy(p:)Solps) [0C, ,  ,  (OC. ac, s
S = o) - L0 [_8’9 ot + (o0 - Ge0) ] @)




An estimate of the gradient

With the signals defined in the preceding subsections, an experimentally based estimate of the
gradient of J can be formed by taking

—

C'T du .
5, P =5 Z (Jt (pi) - (pi) + Awe(pi) apt (pf)) - (28)
For a stochastic approximation algorithm to work, it is required that this estimate be unbiased,
that is we need:

= "5;(91‘)! A (29)

8J aJ
E la_p(P:)]

The key feature of our construction of 2 (p,) and also the motivation for the third experiment,
is that this unbiasedness property hoids It would indeed be tempting to use the data from the
first experiment instead of the third one in (19) and (26), but then (29) would not hold because

the error between —"i(p,) and —&(p,) would be correlated with §(p;), and the error between ——(p,)
and aﬁ (p:) would be correlated with u;. :

The algorithm

We now summarize the algorithm.

Algorithm 3.1 With a controller C(p;) = {Cy(ps),C, (p,)} operating on the plant, generate
the signals yl(Pi) y*(pi )1y (pi) Of (15)-(17), the signals u (,0;) u?(pi), ud(pi) of (22)-(24) and
compute §(p;), 2 5L(pi). ulpi) and 3 bu 52 (pi) using (18) (19), (25) and (26). Let the next controller

parameters be computed by:

, _ 3J .
piy1 = pi — Vil la_p(Ps) » (30)

where (p,) is given by (28), where {v:} is a sequence of positive real numbers that determines
the step size and where {R;} is a sequence of positive definite matrices that are, for ezample.
~ given by (32). Repeat this step, replacing i by ¢ + 1.

4 Implementation issues

In this section we briefly comment on some aspects of the implementation of the scheme.

Non-minimum phase or unstable controllers

Notice that the computation of -‘331( ;) in (19) and &% “(pi) in (26) requires the filtering with the
inverse of C,. If C, is' non-minimum phase, as may happen, this is not feasible. A similar
problem occurs if the gradients of C, and/or C; are unstable. These problems can be overcome
by extending L, and L, with an &ll—pass frequency weighting filter L,, which leaves the objective
function J{p) of (6) unchanged. We illustrate the procedure for the case of a non-minimum phase

Cy.




Let C,(p;) be factorized as
Ty

d 1

C,.(p;) =

where the factor n, v
‘ Ny = H’i;nzi(l - qu'“l)

contains all the unstable zeros and nothing else. At iteration i let L, be the following all-pass

filter

L2,
where
ny =L, (1—27'g7h).
Then o .
%) = (%) 9%, 0+ L |
L"ap(p‘)_n;n, ap( pi) — o (pi ) ¥ (pi) + oy (p)y”(pi) (31)

which is stable. Thus, if L, and L, both contain L, it is possible to compute the gradients. If
necessary, this filtering operation should be performed at each iteration.

Modification of the search direction

There are many possible choices for the matrix R; in the iteration (12). The identity matrix
gives the negative grad1ent direction. Another interesting choice is

R; = 7 z (83}» . [ai’: (Pf)} +/\%1~:~)£(Pf) l:%%t“(p.)] ) ) | (32)

for which the signals are available from the experiments described above. This will give a biased
(due to the disturbance in the second experiment) approximation of the Gauss-Newton direction.
It is the authors’ experience that this choice is superior to the pure gradient direction.

One degree of freedom controllers

In the case where the simplified controller structure ‘C,. =Cy 2Cis used, i.e.
u=C(p)(r - y),

the algorithm simplifies because the third experiment becomes unnecessary. Indeed, it follows
~ immediately from expressions (14), (19), (21) and (26) that the first term in all these expressions

is zero. Therefore, in the case of a one degree of freedom controller, the first two experiments
are run with the same reference signals as indicated in (15) and (16), and the gradient estimates
are obtained as special cases of (19) and (26):

Oy, v _ L 9C .\ a0 o
du 1 aC .
%(Ps) = m‘a‘;(ﬂn) (o). (34)
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These are perturbed estimates of the actual gradients:

dy 1 aC

5, = a()+cm)3()&mw3
.g—ﬁ(m = %%w %‘(p,-)so'(mv? -89

Disturbance rejection problefn

The disturbance rejection problem is a special case of the one degree of freedom controller. The’
controller can be optimally tuned using iterations consisting of the same two experiments as just
described in which the reference sqgnal is put to zero. Thus, do two experiments with reference

" signals

_ o, (36)
~ e o

Then take (33)-(34) as gradient estimates. Observe that, in the disturbance rejection case, the
tuning of the controller parameter vector is entirely driven by the disturbance signal. This is
in contrast with all identification-based iterative controller tuning schemes, where identifiabil-
ity requires the injection of a sufficiently rich reference signal even in a disturbance rejection

framework.

r

. ho W

r

Disturbance attenuation

As noted earlier, (20) contains an undesirable perturbation from the disturbances in the second
and third experiments. Even though the influence of these disturbances is partly averaged out
when —(p,) is formed, it is of course of interest to make this perturbation as small as possible.
One way to decrease the influence is to increase the signal-to-noise ratio in these experiments.
Let W7, j = 2,3 be two stable and inversely stable filters and replace (16) and (17) by

= WEr—yte)), =W . ' (38)
respectively, and replace 3/ (p;) in (19) by [W{]~'3?(p;). Then -
dy Ay So(pi) [(ac, ac, ) 51,9 ac,
z . )= =2 (p:) ) (Wi + W: . 39
3,7 = 3, o g ) W@)[] %(M] (39)

Thus. for frequencies where W/ has a gain larger than one, the influence of the nuisance distur-
bances is decreased.

5 DeSIgn choxces

The scheme is so simple that it might appear not to leave much room for freedom in the
achievement of specific performance specifications. Indeed, once the criterion is posed, the
procedure is fully automatic, except for the choice of the step size. In this section, we discuss
the various design choices which allow the user to inject prior information or to translate time or
frequency domain performance %peclﬁcations in the framework of the minimization of a LQG-like
performance index.
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Adjusting the reference model or reference trajectory

The choice of reference model or of reference trajectory is perhaps the key design choice. This is
where the user can increase the speed of convergence of the algorithm significantly by injecting
prior information (if any) about quantities like the delay of the system or the achievable closed
loop bandwidth. If the initial controller gives bad performance, it can be quite tricky to find the
optimal controller, i.e. the surface of the criterion can be very rough, thus allowing only small
steps in each iteration. However, it is the authors’ experience that the problem is simplified
by starting with an objective that is easier to achieve (lower bandwidth) and then successively
increasing the bandwidth as the achieved performance is increased. The easiest method of
implementation of this principie is not to use-a reference model, but rather to draw the new
desired reference trajectory y¢ as a small modification (i.e. a small improvement) over the last
achieved output response y. This has close ties with the so called windsurfing approach [13] to
iterative control design.

Frequency weighting

In Section 3 the algorithm has been derived under the assumptlon L, = L, = 1, for simplicity.
In the general case we obtain the following.

7o) = Ly (y' (o) — v (40)

is a realization of §(p;), and the gradient sighal is obtained by the filtering operation

Qg.eLyiﬁ._%.s.‘%.z.]
) 2 s (G0 = 520 1600 + 2000 ) (1)
Thus, a frequency weighting of the output is obtained by simply filtering all output signals
through L,. By the same arguments, a frequency weighting on u is obtamed by filtering the
input SIgnaEs from the three experiments (22)-(24) through L,.

The frequency weighting filters can be used to focus the attention of the controller on specific -
frequency bands in the input and/or output response of the closed loop system, e.g. to suppress
undesirable oscillations in these signals. Conversely, they can be used as notch filters in the
frequency bands where the measurement noise dominates. They can also be used to meet
specific frequency domain performance specifications, such as constraints on the sensitivitiess.
The use of these filters has been illustrated in the benchmark application described in [13].

Controller complexity modification

The method has been described as one in which successive adjustments are being made to the
controller parameter vector of a controller of fixed complexity. However, it is straightforward
to extend the complexity of the controller at any given iteration if the parametrization of the -
new one is an extension of the old one. This is useful if one realizes that the current controller
is incapable of achieving the desired objective even after convergence to its optimal value. This
idea has also been illustrated in [13].
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Interactive controller update

The step size can be used to control how much a controller changes from one iteration to another.
Before actually implementing a controller it is possible to compare the Bode plots of the new
controller with the previous ones to see whether they are reasonably consistent. If one doubts
whether it will work or not one has the possibility of decreasing the step size and/or of extending
the experiment so as to reduce the effects of the disturbances in the gradient calculation. The
situation is quite comforting: one is backed up by the knowledge that for a small enough step
size and large enough data set.one will always go in a descent direction of the criterion. The
step size can also be optimized along the gradient direction by line search optimization.

Prediction of the new control performance

In addition to plotting the Bode plot of a new controller, one can also predict its effect on the
closed loop response and on the achieved cost using a Taylor series expansion. To see this. we

denote

Api = pit1 - pi- (42)
Using Taylor series expansions, we have the following predictions: ‘
o . o, |
Glpiv) = Gelps) + l—a-;; (Ps’)] Ap; | (43)
' — T
w(piy1) = w (pi) + {%(P:)} Ap; » - (44)
ar, 1" 8 -
In(piv1) = JInlpi) — v la—p(P:‘)} R ["5;(,01’)} 1 B (45)

where the last expression follows from (30). A comparison of §(pi+1) with §(p;), of u(pit1)
with u,(p;), and of Jy(pis1) with Jy(p;) can help the user decide whether the step size that has
~ led to the new controller was appropriate or not. In section 7 we shall illustrate on an industrial
~ application how the predicted performance compares with the performance that was actually
achieved with the new controller.

6 Engineering aspects

The IFT method is simple and applies to tuning of simple PID controllers as well as more
complex controllers. For a given controller structure (example, a PID controller) it will converge
to the controller that minimizes the mean square criterion for the signals (reference signals and
noise signals) that are applied to the system during the controller parameter tuning. In section 7
we shall, for example, illustrate the use of this scheme for the optimal tuning of a PID controller
that is aimed at obtaining ramp-like changes from a desired setpoint to another one.

On-line considerations

The second experiment is the only special purpose ezperiment, in that it uses a different reference
signal than the desired one, namely r —y'. This experiment reinjects into the closed loop system
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a signal, ', that contains noise, thereby producing an output, denoted y?, that contains the
sum of two noise contributions. However, note that the contribution from the disturbance v? is
exactly as under normal operating conditions. As for the contribution from the disturbance in
the first experiment, To(p;)So(p;)v}, it is essentially a bandpass filtered version of the normal
disturbance contribution So{p;}v;} and should normally be small since (at least for a one degree
- of freedom controller) Sy + Ty = 1.

There are cases, however, where the additional noise injected in the reference input during
the second experiment causes unacceptable behaviour in some of the states or even in the out-
put of the system during that experiment, This has been observed, for example, in mechanical
applications with flexible structures, where the noise present in the reference input during the
second experiment caused excessive vibrations. This problem essentially arises during the initial
iterations of the controller tuning, i.e. before the improvements in achieved controller perfor-
mance outweigh the deterioration due to the noisy reference signal. One way to address this’
problem is to replace, in the initial iterations, the data-driven computations of the gradient of
the cost criterion by an estimate of this gradient based on an identified model of the closed
loop system. As soon as the improvement in closed loop performance achieved by the successive
controllers outweighs the degradation due to the second experiment, one can then switch to the.
data-driven (i.e. IFT-based) computation of the gradient. This idea of using identified models
during the initial iterations has been proposed and studied in [7].

7 Applications in the chemical industry

The IFT scheme has been applied by the chemical multinational Solvay S.A. for the optimal
tuning of PID controllers operating on a range of different control loops. In each of these loops.
PID controllers were already operating. Important performance improvements were achieved
using the IFT method, both in tracking and in regulation applications. The reductions in
variance achieved after a few (typically 2 to 6) iterations of the algorithm range from 25 % in
a flow regulation problem in an evaporator, to 87 % in a temperature control problem for the
tray of a distillation column, with other applications involving temperature control in furnaces.
Here we present the results obtained on two such control loops. The first one is a temperature
regulation problem for a tray of a distillation column, while the second illustrates the application
of the algorithm to a setpoint modification problem in the flow of an evaporator.

The PID controller

The same controller has been used in both loops. It différs slightly from standard PID in the
following aspects :

o The derivative action is calculated on y and not on the control error.

o In order to limit the gain of the controller at high frequencies when the derivative action
is used. a first*order filter is applied to y before any calculation. The time constant of -
this filter is expressed as T'd/N, T'd being the derivative time constant and N the high
frequency gain (fixed to 8 in our case).

The PID must therefore be considered as a 2-degree-of-freedom controller with common param-
cters. ‘
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Temperature regulation in a distillation column

This first industrial application is a temperature regulation problem in a tray of a distillation
column. Figure 1 presents temperature deviations with respect to setpoint in a tray of a distil-
lation column, over a 24-hour period, first with the original tuning, then with the PID controller
obtained after 6 iterations of the new scheme. Figure 2 shows the corresponding histograms of

~ these deviations over 2-week periods. The control error has been reduced by 70 %.

. Controte

8

Temperature

Figure 1: Control error over a 24-hour period before optimal tuning and after 6 iterations of the

rror over 1'day ~ initial tuning
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IFT algorithm

- In Figure 3 we show the Bode plots of the two-degree of freedom controller (C',Cy) before
optimal ‘tuning (full line), after 3 iterations of the IFT algorithm (dashed line) and after 6
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- Control error over 1 day — after 8 iterations
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iterations (dotted line). The gain was too low and the derivative action underused.

As mentioned in Section 3, an estimation of the new cost J can be made at the end of
each iteration using a Taylor series expansion. Table 1 shows, for the 6 iterations, the cost
J calculated with the first experiment as well as the predicted value with the new controller
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Figure 2: Histogram of control error over 2-week period before optimal tuning and after 6
iterations of the IFT algorithm :
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Figure 3: Bode diagram of the two-degree-of-freedom controller before tuning (full), after 3
iterations (dashed) and after 6 iterations of the algorithm (dotted).
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parameters. The prediction is good except for the 2nd iteration which was perturbed by an
abnormal disturbance.

[teration Cost Next cost
(measured) | (predicted)

1 .+ 0.80 0.36

2 1.00 - 0.59

3 0.57 0.35

4 0.37 0.18

5 0.22 0.15

6 0.14 0.11

Table 1 : Calculated and predicted cost

Flow control of an evaporator

In this case, the objective was to increase the tracking performance of the control loop during
changes of production rate. We chose a 2-phase reference signal r4: a ramp of 3 minutes followed
by a constant value of 12 minutes. The top part of Figure 4 shows the closed loop response
during the transient (first 5 minutes of the experiments) with the initial tuning and after 3
iterations. The bottom part represents a histogram of the corresponding tracking error y4 — y.

Figure 5 represents the control error over a 5-day period. The dispersion has been reduced

by more than 25 %.

First experiment of tirst iteration First experiment of third iteration

(o] 1 =2 '3 4 o . 1 2 . a a4
Minutes . Minutes .
Tracking error during third iteration

il

Flow

Figuré,-l: Evaporator: reference signal » (dotted), desired response y¢ (dashed) and closed loop
response (full) during first experiment of first and third iteration, with corresponding histograms

8 Final Discussion

In this paper we have examined an optimization approach to iterative control design. The
important ingredient is that the gradient of the design criterion is computed from measured
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Figure 5: Evaporator: histogram of the control error over a 5-day period, with initial tuning
and after 3 iterations

closed loop data. The approach is thus not model-based. The scheme converges to a local
minimum of the design criterion under the assumption of boundedness of the signals in the loop.

From a practical viewpoint, the scheme offers several advantages. It is straightforward to
apply. It is possible to control the rate of change of the controller in each iteration. The objective
can be manipulated between iterations in order to tighten or loosen performance requirements.
Certain frequency regions can be emphasized if desired.

This direct optimal tuning algorithm is particularly well suited for the tuning of the basic
control loops in the process industry. These primary loops are often very badly tuned, making the
application of more advanced (e.g. multivariable) techniques rather useless. A first requirement
in the successful application of advanced control techniques is that the primary loops be tuned
properly. This new technique appears to be a very practical way of doing this, with an almost
automatic procedure. The application of the method at Solvay, of which we have presented a
few typical results here, certainly appears promising. ‘
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