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Abstract—The identification of an undermodeled transfer
function from input—output data is stated as a constrained
optimization problem. The constraints determine the
identification procedure, the residual error and whether on
average the magnitude of the frequency response is
L,-overbiased, L,-underbiased or L,-unbiased, as measured
by a certain weighted L,-bias integral. The L,-unbiased
solutions are linear combinations of L,-overbiased and
Ly-underbiased solutions, which are precisely the classical
least squares estimates. They can be obtained from the
solution of certain eigenvalue problems,

1. Introduction: identification as constrained minimization

IN THIS PAPER, we put some identification approaches for
undermodeling (i.e. the model set does not contain the
“true” system) of SISO (single-input/single-output) systems
into a general framework of constrained minimization. Using
an L,-error criterion, it will be shown that, depending on the
constraints, the corresponding model can be L,-overbiased,
L,-underbiased or L,-unbiased, as quantified by a certain
L,-bias integral, which can be elegantly derived from the
Lagrangean of the optimization problem. The main purpose
of this work is to investigate the interaction between the
specific constraints and some properties of the resulting
identified model.

*Received 4 June 1991; revised 11 February 1993;
received in final form 5 June 1993. Preliminary versions of
this paper were presented at the 9th IFAC/IFORS
Symposium on Identification and System Parameter Estima-
tion which was held in Budapest, Hungary during 8-12 July
1991. The Published Proceedings of this IFAC Meeting may
be ordered from Elsevier Science Limited, The Boulevard,
Langford Lane, Kidlington, Oxford OX5 1GB, U.K. This
paper was recommended for publication in revised form by
Associate Editor B. Wahlberg under the direction of Editor
P. C. Parks. Corresponding author B, de Moor. Tel. +32 16
220931; Fax +32 16 221855; E-mail demoor@esat.
kuleuven.ac.be. .

tDr De Moor is a research associate with the Belgian
National Fund for Scientific Research. The results presented
in this paper have been obtained within the framework of the
Belgian Program on Concerted Research Actions and on the
Interuniversity Attraction Poles initiated by the Belgian
State, Prime Minister’s Office, Science Policy Programming.
The scientific responsibility rests with its authors.

$+ ESAT (Electronics, Systems, Automation, Technology),
Katholieke Universiteit Leuven, Kardinaal Mercierlaan 94,
B-3001 Leuven, Belgium.

§ Centre for Systems Engineering and Applied Mechanics,
Université Catholique de Louvain, Batiment Euler, 4
Avenue Georges Lemaitre, B-1348 Louvain-la-Neuve,
Belgium.

| Centre for Industrial Control Science, Department of
Electrical Engineering and Computer Science, University of
Newcastle, NSW 2308, Australia.

893

This paper is organized as follows: in the remainder of this
section, we formulate the minimization problem that permits
to identify linear models for SISO systems. In Section 2, we
define an L,-bias integral, which can be derived from the
Lagrangean function of the optimization problem. In Section
3, we discuss the constraints that are allowed in our
framework. It is shown how only linear, quadratic and
multiplicative constraints lead to manageable algorithms
(least squares or eigenvalue problems). In Section 4, we
investigate the effects of linear constraints on the
minimization problem (which will be least squares) and on
the L,-bias integral. In Section 5, we discuss quadratic
constraints, which lead to eigenvalue problems, while Section
6 concentrates on multiplicative constraints. It is shown how
the latter ones may result in L,-unbiased models, which is
the main result of this paper. Conclusions are formulated in
Section 7.

Consider a true linear system Gr(s) with input—output
representation  y(¢) = Gr(s)u(f). The model G(s, 8) is
parametrized as:

B(s, 6)
A(s, 6)

—_ ﬁmsm + ﬁm—lsm_l +eee 4 ﬂls + ﬁﬂ
5"t o, " tastag

G(s, 8)=

in which alt coefficients are real. The parameter vector 8 is
defined as 6 =(a'b’) with a'=(ayo, - o, @,) and
b'=(BoBi Bm-1 Bm)- We can rewrite the true system
equation as:

_B(s, 6)
Y0460

where G,(s, 8) represents the unmodelied dynamics. The
input-output equation can also be written as:

Als, B)y(t) — B(s, O)u(t) = Als, 0)Gals, O)u(). (1)

Although the right-hand side could be considered as an
equation error, equation (1) as such cannot be used for the
purpose of identification because it contains transfer
functions which are not proper, and hence require
differentiation of signals, Therefore, we convert (1) into a
system of proper transfer functions by introducing an
observer polynomial E(s) of degree r=max(m,n).
Moreover, we can improve the signal-to-noise ratio and
avoid aliasing effects by first filtering the data with a filter
with transfer function F(s). This filter can also be used to
focus the model fit into some desired frequency range. Thus
(1) becomes:

Als Bs

A9 ro(0 - Fd P

E(s)
~ F(5)Ga(s)A(s)
C L E@)

u(t) + Gols, Qyu(e),

u() =e(t) (say), (2)
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where e(t) is to be considered as an equation error.{ It can
be easily seen that the equation error is shaped by several
factors, all of which could influence the result. We will
however not concentrate on the precise selection of for
instance the flters E{s) and F(s) in this paper, but refer to
e.g. Ljung (1987) for more details on this matter.

We can rewrite equation (2) as

h‘(r)(g) =e(1)

in which each element of A(¢) is a filtered version of the input
or output signals of the form:

'F;:s);‘y(l), i=0,...,n
or )
j

—fﬁ%zg-u(t), j=0,...,m

~ The object function J(8) is defined as

J(6) =—17-,J;Tez(r) dt

.»:%(a‘b')[ L Th(l)h'(t) dt](g). &)

Observe that this is a quadratic function of the components
of a and b. The “information matrix” D is defined as:

1

D:T

T

h{(O)h' (1) de.
0
1t is positive definite if A(¢) spans R™*1*2 gyer the interval
[0, T]. This will be the case if the input u(¢) is “sufficiently
rich” with respect to the dynamics of Gr(s) over the interval
[0, T} and if G(s) cannot be modelled by a rational transfer
function with polynomial degrees fess than 7 and n.

The problem of estimating the transfer function G(s, 9)
can now be recast as a constrained minimization problem:

over 6’:‘6&2'*"*2 1(0), (4)

subject to constraints on 8 = (a'b*). Without constraints on a
and b a trivial and useless solution to the minimization
problem would be a =0 and b =0.

Using Parseval’s Theorem, the time domain criterion 3)
(with T =) can be rewritten as the following frequency
domain least squares criterion (see e.g. Ljung, 1987):

10 =5 | LG AGa, O)F

—wm

x(|orimy - 202 Vaw,
where ‘ )
L(jw) = %%Z—; U(jo).

The minimization of (4) or equivalently (5), subject to some
specific constraints on a and b, yields a specific parameter
vector & and_a corresponding model G(jw, 8)=
B(jw, 8)/A(jw, 8). The fact that 8 can be described as the
minimizing value of (5) shows how the fit between Gr(jw)
and the estimated model can be affected by specific choices
of the filtered input spectrum L{jw), i.e. how the L,-bias can
be shaped by appropriate frequency weighting.

| Observe that our derivation, especially the introduction
of the observer polynomial, differs slightly from the standard
procedure. Indeed, in for instance Salgado et al. (1990) «,, is

a priori normalized to one. Then, (1) is rewritten as:-

Ay ~Bu+Ey—Ey=AG,u and then as y={E—
A)/E]y +[B/E}u +[AG,/E]u which is suited for a classical
least squares identification algorithm. It is however the
purpose of the present paper to study identification
algorithms in general {not only least squares), hence the
slightly more general derivation.

2. Lyoverbiased, L,-underbiased and L,-unbiased estimation
The constraints on a and b that are considered in this
paper are of the form:

v(a, b) =0, (6)

where v is some linear or quadratic function of the
coefficients in a and b. As we wiil show below, only linear
and quadratic constraints lead to “‘manageable” numerical
problems, namely least squares and eigenvalue problems.

Using a Lagrange multiplier A, the Lagrangean for the
optimization problem is given by

Ha, b, 1) =J(a, b) — Av(a, b).

In order to minimize (5) subject to (6) one has to solve the
following set of m + n + 3 equations;

¥ aJ Su , .
Egma_m_ka_ i=0,...,n, M
3¢ &l . dv ) ¢
S m A== () j=0,...,m 8
6o op ! ®
v(a, b)=0. ©

It is straightforward to derive from (5) that (we omit je for
clarity where possible):

OF 1 T i s
50 =35 ) [P [Gw)4°GGt
+(—j0)AGG3~ (jo)GrB* — (~jw)BGH dw
E{___L 20 i) R* —imY
& =5 | Loy + (s
= (—jw)AGr — (juYG1A*] dw.

From this we find:

n _a_i_ m —a!-—“%‘ o , .
;_gr.a‘aa; g,,ﬁ"aﬂ,.'z,, | ILhAl

2
x (|G,.|2—:%7) do =2V(8) (say). (10)

The parameter function V{(6) will be called the L,-bias
integral. The value of (10), for a specific mode! 6, reflects
the bias, in a weighted square sense, between the magnitude
of the true transfer function and that of the estimated model
transfer function. Note that the frequency weighting is the
same in (10) as in the identification criterion (5). Loosely
speaking, the difference between (5) and (10) is that (5) is
the weighted sum of differences squared, while (10) is the
weighted sum of squared differences.

We shall call the estimated model L,-overbiased if
V(8)<0. In this case, the magnitude of the model’s transfer
function as a function of frequency, is on the average larger
than the one of the true system. We call the model
L,-underbiased if V(8)>0. On the average, the magnitude
of the model’s transfer function is smaller than the one of the
true system. The model is L,-unbiased if V(6) = 0. Intervals
where the magnitude of the model’s transfer function
dominates the one of the true model, are “compensated™ by
regions where the true system’s magnitude is larger than that
of the model.

We can now combine equations (7)-(9) and equation (10)
to find that:

S g2 b) 3 du(a b)
2V(e)—a(i§)a,. RS ) a1

The interpretation is the following: While we minimize the
residual mean square error (5) subject to the constraint (6),
we can at the same time obtain the numerical value of the
L,-bias integral (10) by substituting the optimal value of the
Lagrange multiplier 4 and the optimal parameter values in
(11).

In Saigado et al. (1990), it was observed that for a

parametrization of the model transfer function G(s) with

@, =1, the resufting least squares solution provides an
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underbiased model. In Gevers (1990), it was observed that
the constraint B, = [ results in an overbiased model. These
observations and the conjecture formulated in Gevers (1990)
have stimulated the present research, in particular the quest
for an unbiased identification scheme.

The main result of this paper is the observation that the
specific choice for a constraint on the vectors ¢ and &
determines the identification method on the one hand (least
squares, eigenvalue decomposition, etc.), the residual mean
square error (3) and the bias integral (10) on the other hand.

It will be shown how, by a careful choice of the
constraints, one may construct identification schemes that are
unbiased, and at the same time minimize J(6) among all
unbiased models.

Throughout we shall use the following notation: the
information matrix D is partitioned as

n+l m+1
_n+1(Dm, Da,,)
m+1 w Doy J

The inverse of D is partitioned as:

n+l m+1
_,zn+1( P Q )
b m+1I\ Q' R /J

where P= (Dna - Dnth:b[D::b)_l: Q = “D;_alDab(Dbh -
DyD!D,)"" and R =(D,, - D',DID,) ™" 1t is also a
positive definite matrix and both P and R are square,
symmetric, positive definite matrices.

For reasons explained in De Moor and Vandewalle
(1986, 1990), the kth column of D~ will be referred to as
the kth least squares solution.

Estimates are denoted by a superscript “*", The notation
1, refers to the unit vector, which is zero everywhere, except
for its kth component, which is one.

3. What constraints are allowed?

Before considering in detail some possible constraints for
the optimization problem (4), let us first determine what type
of constraints are allowed. The model class in which we are
interested is completely specified by the degrees of the
numerator and denominator of the transfer function G(s, ).
Constraints on the coefficients of both numerator and
denominator must not further restrict this model class. For
instance, two constraints of the form a'a=1=bb are not
allowed since generically a transfer function with numerator
degree m and denominator degree n will not satisfy these
constraints simultaneously. In general, we can only allow
constraints that leave the ratio of the polynomials A(s, 6)
and B(s, 8) unmodified for all values of 5. This requirement
is satisfied by the following constraints:

Linear constraints: a linear constraint of the form aj = 1
for any & with 0<k =<n will be discussed in Section 4. A
constraint of the form B,=1 for O0=<k=m leads to
completely similar conclusions,

Quadratic constrainis: quadratic constraints of the form
a‘a=1or b'b =1 are treated in Section 5, together with a
quadratic constraint of the form a'a + b = 1.

Multiplicative constraints: constraints of the form a,f, =
+1 are investigated in Section 6, where we also treat

,
constraints of the form k}]l B = +1 with r=m,

Observe that for the last case, the “+” refers to the fact
that we are not allowed to impose a priori the sign of the
(sums of) product(s) since this would imply a restriction of
the model class. For instance, a constraint of the form
ayBy =1 would imply that the static gain, which is B,/ a,, is
positive. This constraint is obviously restricting the model
class. For a given transfer function G(s) = B(s)/A(s), one
can always find a real scalar p such that G(s)=
(PB(s)}/(pA(s)) and the coefficients of the polynomials
pA(s) and pB(s) satisly any of the mentioned constraints.
While from the theoretical point of view all these models are
equivalent, their application in the minimization problem (4)
will yield different results,

4. Linear constraints
Consider the minimization of (4) with a linear constraint on
the kth component of a:

o, =1, (12)
where & is a fixed, user-defined index (but the user can of
course pick out any index she would desire). We then find
from (7)-(9) that:

D(g) = 1,A/2.

Hence
(Z) =D 'L/,

which implies that the solution vector (a‘5*)' is proportional
to the kth column of D~'. The Lagrange multiplier A can be
determined from the constraint a,_, = 1:

J(8)=A/2=1/pu>0.
For the L,-bias (10) we find from (11):
V(@)= A/2.

Hence, the bias integral is precisely equal to the kth least
squares residuall Its positivity implies that the linear
constraint (12) leads to an L,-underbiased model [which was
observed in Salgado et al. (1990) for the constraint g, = 1].

Similarly, it can be derived from (7)~(9) and (11) that a
constraint of the form:

Be1=1, (13)

where again, k is a fixed index, leads to an L,-overbiased
model: :

V(8) = ~J(8) = -+ <.

Tex
This was observed in Gevers (1990) for the constraint
B, =1 Here we find the more general result that the
overbiasedness holds for all constraints (13). The solution
vector {a’ b") is now proportional to the (k + n + 1)th column
of D7° and the Lagrange multiplier follows from the
constraint (13).

Because all the solutions from the linearly constrained
optimization problems of this section can be obtained via a
“classical” linear least squares scheme (see e.g. De Moor
and Vandewalle, 1986, 1988, 1990; Swevers et al., 1991), we
propose to call the columns of D~' (normalized such that the
constrained component is one), the linear least squares
solutions. Hence there are m+n+2 linear least squares
solutions, corresponding to the m+#n+2 possible con-
straints (12) and (13).

5. Quadratic constraints
With a quadratic constraint of the form:

a'‘a=1, (14)

we find from (7)-(9) that
D,a+ D,b=al, (15)
D!+ Dyyb =0. (16)

Since D is invertible and positive definite, it follows from
Cauchy’s eigenvalue interlacing property (Golub and Vaan
Loan, 1989, p. 411) that the submatrix D,, is also invertible.
Hence b = —D,,!D!,a, so that

(Doa —~ Dy DoiDiYa=ak, a'a=1.

Hence, we need to solve the eigenvalue problem for the
Schur complement of the matrix D, in D (which is
symmetric and positive definite} for its minimal eigenvalue
and corresponding eigenvector. Observe that:

©)-(5p
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Hence in this case the solution is a linear combination of the
first n + 1 columns of D™, which are the n + | least squares
solutions of our identification problem, corresponding to the
n+ 1 possible constraints ap=1,..., ¢, =1

We also observe from (15) and (16) that the optimal value
J(6) is given by:

1(9) = (@ 5')0(‘;) =1
Using (10) together with (15) and (16} we find:

v(B)=J(8)=21>0.

The last two expressions show that this identification scheme,
which gives as a result a linear combination of L,-
underbiased models, is itself L,-underbiased.

Similarly, for the constraint

bb=1, a7

the solution vector b is the eigenvector of the Schur
complement of D, in D, corresponding to the smallest
eigenvalue A that satisfies:

(Dys — DDt Dop)b = b, b'b=1. (18)

The residual mean square error (3) is equal to the smallest
eigenvalue A of Dy, — D%Dz'D,, (which is a positive
definite matrix). The solution in this case’ is a finear
combination of the fast m + 1 columns of D", which are the
m+ 1 least squares solution of our identification problem,
corresponding to the m+1 possible constraints S, =
1,..., B = 1. The value of the bias integral (10) is given by
—2 and is always negative. Hence, we have a systematic
overestimation of the magnitude: the identified model is
L,-overbiased. -

Observe that the identification method which follows from
b'b=1 [i.e. the eigenvalue problem (18)] might be
advantageous from the computational point of view if the
numerator degree m is small.

Obviously, the constraint (14) can be viewed as a special
case of constraints of the form:

Gl
2 o=1 (19)

i=Q
with r, < n. This constraint will lead to an r+)xH+1)
symmetric positive definite eigenvalue problem. The solution
will be a linear combination of the first , +1 columns of
D™", which are the least squares solutions corresponding to
a=1,..., &, =1, The L,-bias integral will be negative and
hence we have an L,-underbiased identification scheme. It is
interesting to note that, while all identifications with (19) are
L,-underbiased, the minimum of the residual mean square
error (3) decreases for increasing values of r,. This is a direct
consequence of the eigenvalue interlacing theorem applied to
the upper (r,+ 1) X (r, +1) blocks of the matrix D! for

n= 0,...,n :

Similar conclusions hold of course for constraints on b of

. n
the type _Xn B2 =1 with r,=m. In this case, we have always
I~

an L,-overbiased identification.
We can also combine the quadratic constraints (14) and
(17) into one constraint as

aa+b'b=1 (20)
It now follows from (7)-(9) that:

a a
p(5)= ()
Obviously, the optimum vatue of 4 is precisely the smallest

eigenvalue A, of the matrix D. The solution for the vectors
of polynomial coefficients @ and b is given by:

(&)
5 = Ymins

where v, is the eigenvector of D corresponding to the

smallest eigenvalue, normalized such that its norm equals
one. From (11) we find that:

V(0) = Ainld'd = 5'5).

Hence, the value of the L,-bias integral depends not only on
the smallest eigenvatue of D, but also on the difference of
the norms of the vectors of polynomial coefficients [which are
constrained by (20)]. This identification scheme is Lo-
underbiased if @a — b'6 >0 and L,-overbiased if 4 — b0 <
0.

The constraints (14), (17), (19) and (20) may all be
considered as a special case of a constraint of the form:

4] T2
> at+ ) Br=1, @1
i=0 j=0

with 0= r, < n and 0 = r, = m. This type of constraint teads to

can (n+r+2)X(n+rp+2) eigenvalue problem for a

symmetric submatrix of D (which is necessarily positive
definite because of the eigenvalue interlacing property).
However, also because of the eigenvalue interlacing
property, we know that only with the full quadratic
constraint (20) (i.e. for ry=n and r,=m), we get the
minimal possible eigenvalue over all quadratic constraiats,
which is the minimal eigenvalue of D.
As an example, consider the constraint

: ad+ pE=1, (22)
we find & &
a, 0
D = A,
Ba Bo
b, 0

where a, and b, contain the components of @ and b except
for the first one. Observe that

&g ®o
a, | 0

=D 1, 23
o By @)
b, 0

which demonstrates that the solution vector is a linear
combination of the frst and the (n + 2)th column of D,
which are two least squares solutions, corresponding to the
constraints @, =1 and §, = 1. The coefficients @, and B can
be determined from the 2x2 symmetric positive definite
eigenvalue problem: .

P ‘!11)(0‘0)=(%>K 24

(‘hl ru/\o Bo/™’ @9
where x =1/A and py,, g, and ry, are the leading elements
of P, Q, R. Obviously, we must take the solution
corresponding to the maximal eigenvalue k, the inverse of
which will be the minimum of the residual mean square error
J(6) (3). The coefficients of a, and b, follow from (23). Itis
also easy to find that the value of the bias integral V(8) (10)
is given by A(ad—f3). Depending on its sign, the
identification will be L,-over- or L,-underbiased.

As another example, consider the constraint:

A+ a4+ pi+pi=1

We now need to find the maximal eigenvalue k of the 4 x4
symmetric positive definite eigenvalue problem:

Pu P 9u G2\ /% Xy

P2 P2z 21 92 = % (25)

@,
qu 9u fu Mz )\ Bo Bo
Giz 922 T2 T2/ \B B\

The minimum value of the residual mean square error (3)
will then be given by 1/x. It is a direct consequence of the
eigenvalue interlacing theorem that the maximal eigenvalue
of (25) will be larger than the maximal eigenvalue of (24).
Hence, the corresponding residual mean square €rrof J(9)
(3) will be smaller! So the prize to be paid for a smaller
residual is the solution of a larger eigenvalue problem.
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We can however not control the L. -(ungbiasedness a priori
as this depends on the sign of ).(a§+ o~ B2~ B2), which
can only be determined a posteriori,

One might even consider constraints that are asymmetric
in the number of components of @ and b, for instance:
a5+ o} + Bo=1. Now, we need to solve a 3 X 3 symmetric
positive definite eigenvalue problem.

We may conclude that with this type of quadratic
constraints, one can decrease the norm of the residual by
solving increasingly larger eigenvalue problems. The
resulting sign of the L,-bias integral however can not be
predicted a priori.

6. Multiplicative constraints

All identification schemes so far minimize the residual
mean mean square ecror (3) but are L,-biased with respect to
the frequency criterion (10). The question remains whether
there are certain types of constraints that give an
L,-unbiased model. Consider the minimization problem (4)
with a constraint of the form:

B =7, (26)

where k and [ are fixed indices and y is a given real number.

We will show that this type of constraints leads to
L,-unbiased models. First observe that we are not free in the
choice of the sign of y. Indeed, assume that k =/=1, then
the real number By/a, is the static gain of the transfer
function. Therefore, fixing the sign of y corresponds to fixing
the sign of the static gain, which implies a restriction on the
model class. However, for the moment, we shall assume that
we know the sign of y. It will be shown below that we really
do not need this information a priori. As a matter of fact, the
identification scheme will always automatically allow both
choices,

From (7)-(9) we find:

Dy,a+ Db=1,8,_,4/2, @n
D:,,,a + Dbbb = I,ak_[lll (28)
It follows from the invertibility of D that:
a | lk.Bi—l)
(5) =D (110’k_1 Al2. 29

From this equation, we see that the optimal § can be
obtained as a linear combination of two columns of D™,
which are precisely two least squares solutions! The
coefficients a;,_, and B;,_, can be calculated from the 2 x 2
eigenvalue problem:

Qi Pkk)(a’k-—t) - (a’k—:) 10
(fu Gu/ \Bi-y Biy o @0

where x = 2/A. The eigenvalues are given by:
K =G & Vryprs (31

and are always real since the diagonal elements of P and R
are positive, The 2X2 matrix in (30) is obtained by
interchanging the columns of the 2 X 2 matrix:

(pkk ‘Ikl)_ (32)

Gix Ty

But the 2X2 matrix in (32) is positive definite as a
consequence of the eigenvalue interlacing property. In
particular this implies that p >0, 7,>0, prery > qugne
Hence there is always a positive and a negative eigenvalue in
(31). Recall that we could not a priori fix the sign of ¥ in
&..18;-, = y. But here we find precisely that such an a priori
preference is not needed because we will always have the
choice between a positive and a negative eigenvalue. In
particular, when k=1 and / =1, the product a8, is either
positive or negative, corresponding to a static gain fy/a,
which is either positive or negative. We are interested in the
eigenvalue x with the largest absolute value (which
corresponds to the A with the least absolute value). Its sign
will also determine the sign of y. The eigenvectors have to be
normalized such that |e,_,8,_,)=|yl. Having determined

the coefficients @, |, B;_, and A, the remaining coefficients
are determined from (29). )

Premultiplying (27) with 2‘ and (28) with &' and adding, we
find:

J(é) =(@ EI)D(Z‘) = ﬁ'k—lﬁl—l'l = yh.

Obviously, from J() >0, we have that if ¥ >0, then A>0
and if y <0, we must have A <0. For any specific choice of
¥, we want to minimize J{8), hence it suffices to look for the
value of A with least absolute value. From (10), it follows
that

2W(0) = (@1, 8-, ~ 'L, DA/2 =0,

Hence, this identification scheme is L,-unbiased!

The results just derived have a very appealing inter-
pretation: recall that the columns of D' are precisely the
least squares solutions. The first n + 1 columns of D™ are
the solutions to the optimization problems (4) with one linear
constraint (12) on a coefficient of A(s), while the remaining
m+ 1 columns are the solutions for a linear constraint (13)
on a coefficient of B(s). The former ones vyield
Ly-underbiased models while the latter ones yield L,-
overbiased models. For the constraint (26), we now see from
(29) that the solution is described as a linear combination of
the two least squares solutions obtained with a linear
constraint on a,_; and one on f,_,. The respective weights
attached to these two solutions follow from the 2x2
eigenvalue problem (30). The resulting solution is L,-
unbiased. Hence, we find that a certain linear combination of
an Lj-overbiased and an L,-underbiased solution, results in
an L,-unbiased one!

The multiplicative constraint (26) can be generalized to a
constraint of the form:

Z G B =y 1=r=m+1, (33)
i=1

where r is fixed and y € R is given. For the same reason as

‘before, the sign of y is not fixed but will be determined’

furtheron. For the time being however, it is assumed that y is
a fixed given real number. Using the notation g, =
(@' - a_1) and b, =By B,_.) we find from (7)~(9)
that:

o
~

Af2.

>}
Py
S
s —
fi
2o

r

0

Observe that if @ is a solution, then
J(B) = (& 5’)0(5) = yh.

Since J(8) is always positive, it follows that A and Y must
have the same sign. We need to find the least absolute value
of A. It aiso follows from (10) that:

V(d)=0

Hence, the resulting identification scheme is L,-unbiased!
From the nonsingularity of D, it follows that:

b,
O-G 9k e
.

From this equation we see that the solution will be a linear
combination of the first  + 1 columns of D ™! and its columns
(n+2) up to {n+r+2). The coefficients a;, f;,i=
0,...,r~1 can be determined from the 2r X 2r eigenvalue

problem:
(& 2))=Cox 35)
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TABLE 1, THIS TABLE SUMMARIZES THE MAIN RESULTS. LINEAR CONSTRAINTS LEAD TO LEAST SQUARES PROBLEMS AND SOLUTIONS
THAT ARE L, UNDER- OR OVERBIASED, QUADRATIC CONSTRAINTS LEAD TO EIGENVALUE PROBLEMS AND ARE L, UNDER- OR
OVERBIASED. MULTIPLICATIVE CONSTRAINTS GIVE L, UNBIASED RESULTS,

Constraint Linear relation Residual error J(6) Bias V(6)
a, =1 kth least squares kth least Underbiased
solutions squares residual
Be=1 (k + n + 1)th least (k + n + 1)th least Overbiased
squares solution squares residual
a'a=| Eigenvector Smallest eigenvalue Underbiased
bb=1 of Schur complement of Schur complement Overbiased
aa+b'b=1 Eigenvector of D Smallest Overbiased {a'a — b’ <0)
eigenvalue of D Underbiased (a'a — b6 > 0)
[ AR Linear combination Eigenvalue Unbiased
of two least squares of 2 X 2 matrix
solutions ) :
4 Linear combination Eigenvalue of Unbiased
}Q, %GB = of 2r least squares 2r X 2r matrix
solutions .

where k=2/A. Here P, O, and R, are the r Xr leading
submatrices of P, Q and R respectively. The matrix in (35) is
obtained by interchanging the relevant block columns of the
partitioned matrix D~'. We are interested in the real
eigenvalue x of maximal absolute value. The corresponding
eigenvector should be normalized so as to satisfy (33). The
other coefficients can be determined from (34). It is
interesting to note that all eigenvalues of (35) are real and
that there are r positive and r negative ones. This is a direct
consequence of the following lemma:

Lemma 1. Let T be a 2q X2q real, symmetric, positive
T T)
T T

) are real,

definite matrix with square g X ¢ blocks: T=(

. (T, T
Then the eigenvalues of the matrix ( oo
7‘22 12

q of them are positive and g negative.

Proof. Define the block permutation matrix [ as [=

0 -
(1 3’) We are interested in the eigenvalues & of T/, which
are the roots of the characteristic equation det (77 — ALy =
0. Let the eigenvalue decomposition of T be T =XAX'
Then:

det(f~AT" Y =0&det({ - AXA™'X) =0
e det (XATAVXIX AV
— M)A XY =0
@ det (APXUIX A~ Ay,) =0.

So the eigenvalues of 77 are the eigenvalues of
AX'IXAY, which is symmetric, hence has real eigen-
values. Furthermore, AY2X'IXA' is congruent to [, the
eigenvalues of which are +1 (g times) and —1 (g times).
Sylvester’s Theorem (Golub and Van Loan, 1989, p. 416)
states that a congruence transformation preserves the inertia,
which completes the proof. [

7. Conclusions

In this paper, we have shown how the estimation of
undermodelled dynamics can be formulated as a constrained
optimization technique. The constraints determine the
identification method to be used (solving sets of linear

equations or eigenvalue problems), the vaiue of the residual
mean square error and whether the magnitude of the
estimated transfer function is L,-overbiased, L,-underbiased
as measured by a frequency weighted L,-bias-integral. A
survey of the results is given in Table 1. “Square root”
versions of the algorithms in this paper are derived in
Swevers ef al. (1991). These are algorithms where the explicit
formation of the matrix D is avoided and the data matrix
itself is used, The least squares solutions are obtained from
QR-decompositions of the data matrix while the eigenvalue
decompositions are replaced by singular value decomposi-
tions. In Swevers et al. (1991) we show that these square root
versions are much more robust in certain modelling
situations.
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