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Roundoff Noise Minimization Using Delta-Operator
Realizations

Gang Li and Michel Gevers, Fellow, IEEE

Abstraci—We examine the possible advantages of using delta
operator state space realizations rather than shift operator re-
alizations of transfer functions in terms of minimizing the
roundoff noise gain of the realization. We first give several con-
ditions under which the optimal roundoff noise gain for delta
operator realizations is smaller than the optimal gain for shift
operator realizations. We then illustrate that even sparse (and
hence nonoptimal) delta operator realizations can have smaller
roundoff noise gain than the optimal shift operator realiza-
tions.

I. INTRODUCTION

NE of the interesting problems in the state-variable

implementations of transfer functions using finite
arithmetic computations is the search for implementations
that minimize the roundoff noise gain of the realization.
Within the class of usual shift operator state realizations,
the roundoff noise gain G. is equal to the trace of the ob-
servability Gramian. Subject to a commonly used dy-
namic range constraint on the states of the realization, the
set of realizations minimizing this roundoff noise gain has
been completely characterized by Hwang [1] and Mullis
and Roberts [2].

In [3], Williamson proposed the use of residue feed-
back to reduce the roundoff noise gain for shift-operator
realizations and compared it with the optimal gain for re-
alizations without residue feedback. He introduced the
concept of residue modes and showed that the superiority
of the optimal realizations with residue feedback over the
optimal realizations without residue feedback hinged on
whether the sum of the residue modes was smaller than
the sum of the Hankel singular values.

In this paper, we study the roundoff noise gain G; for
state variable realizations implemented in the delta oper-
ator popularized by Middleton and Goodwin [4]. with the
aim of examining under what conditions the optimal
8-operator realization roundoff noise gain G is smaller
than the optimal shift-operator realization roundoff noise
gain G™". We first show that the §-operator implementa-
tion is in fact a special case of residue feedback. There-
fore, following [3], G5 will be smaller than G™" if and
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only if the sum of the residue modes is smaller than the
sum of the Hankel singular values. We give a few new
conditions (i.e., sharper than those in [3]) under which
this holds.

A drawback of optimal realizations (i.e., realizations
minimizing roundoff noise gains) is that they are typically
fully parametrized. This is of course a disadvantage be-
cause it maximizes the number of computations. In the
last part of this paper, we show that in situations where
G™ is smaller than G™", one can obtain nonoptimal
sparse d-form state space realizations whose roundoff
noise gain could still be smaller than G™".

II. THE RouNDOFF NOISE GAIN OF SHIFT- AND
DELTA-OPERATOR REALIZATIONS
A stable strictly causal linear time-invariant system is
parametrized as follows in the usual shift operator z:
n
Z b_7n—i
iZ
i=1
H.(2) & —— % (2.1)
!+ z (I,'Z"_i . ’
i=1
Defining & = (z — 1)/A, with A > 0, we can alterna-
tively represent the transfer function (2.1) as

Z Bi‘sn_i
- R — (2.2)

n

B4 % o

i=1

H;(6) =

The introduction of 8-operator realizations in digital fil-
tering with a view to reducing coefficient sensitivity and
signal roundoff noise can probably be traced back to the
work of Agarwal and Burrus [5]. This technique was later
called ‘‘delay replacement’” in [6] and [7]. The reasons
for using 6-operator models rather than z-operator models
have been abundantly developed by Middleton and Good-
win [4]. For reasons of brevity, we shall in future often
use the operator g to denote either z or é. Each of the
transfer functions (2.1) and (2.2) can be realized in state-
variable form. Using the g-operator, we obtain

ox, = A,x, + B,u
{ v RERLE (2.3a)
Yo = ngl
with ’
H,() = C,(ol — A,)"'B,. (2.3b)
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For g = z, (2.3a) is Implemented in the usual way using
shift registers

X4 = A.x, + By,
Vi = C:xr

For g = 4, the é-operator state-model can be directly eval-
uated using

(2.4a)

{,\‘, = 6“'(A5,\‘, + Bju,) (2.4b)

yo= Csx,.

It uses the basic building block § ' instead of the classical
shift operator z™'. Denoting A;x, + Byu, = w,, then

x, £ 67w, meansthatx,,, =x + Aw,. (2.5
! f

We shall denote by S, (¢ = z or §) the followmg sets
of equivalent state-space realizations:

S, £ {(4,, By, C: Hy(@) = Cylol — 4)7'B,}.

It is easy to verify that to each realization (45, Bs, C;) €
S5 as in (2.4b) there corresponds a realization (A., B., C.)
€ §, as in (2.4a) through the following relationship:

(2.6)

A: = AA‘s + [
B: = ABa (27)
C: = Cﬁ.

Besides the theofetically interesting property that when

the sampling time goes to zero the §-operator models of-

sampled data systems approach the continuous-time
models (see [4]), the main potential advantage of 6-op-
erator models is numerical, in the case of finite arithmetic
urider fast sampling. In [8} we have compared absolute
and relative sensitivities of z- and d-operator state space
models w.r.t. the parameters of the state space matrices.
Our purpose here will be to compare their respective
roundoff noise gains.

We first recall a few basic facts concerning roundoff
noise propagation in state-variable realizations when the
quantizations are carried-out before multiplication. We re-
fer to [3] for more details. Assuming that the coeflicients
of (4,, B,, C,) are represented exactly with B, fractional
bits, that the state and the output have B fractional bits (B
> B.), and that the input signal has B — B, fractional

bits, then the finite word length (FWL) implementation of = .
- To compute G in the special cases of z- and é-operator

(2.3a) is
= A,0(x") + Byu,

{”’* 2.8
wo=Gouh. ¢

Here Q represents the quantizer: it rounds the B bit -

fraction x* to (B — B,) bits before multiplication. The

roundoff noise
- Q& 2.9

is usually modeled as white noise of zero mean with co-
variance ¢*1, with ¢* = (1/12)2 2B~ 589,

e &yt

Comment 2.1: Expression (2.8) represents the FWL
implementation of (2.3a) under the assumption that the
operator g is implemented exactly. This is the case when
o=2z,0rp=08withA = 1.Ifg = (z — 1)/A, the actual
implementation of the §-operator model (2.8) is as fol-
lows [see (2.5)]:

"
vy
o

it

X+ A QW + Bsu,)

i (2.10)
G Q).

- We have shown in [8] that, in order to minimize the sen-
sitivity of the transfer function to coefficient errors, A

should be chosen as small as possible, but compatible with
the dynamic range constraints on the coefficients of A;,
B;. and C;. This often allows one to choose values A <
I yielding a minimal sensitivity. Clearly, when A < 1,
an additional noise is introduced by the multiplication of
Aby w, = A; Q%) + Bsu, in (2.10). Indeed, if the im-
plementation of A requires B, bits, then w, must be
rounded off to B — B, bits to produce a B-bit number in
(2.10). A complete analysis of this additional roundoff
noise can easily be performed. In practice B, << B, (for
example. B, = 1, B. = 8 is typical), and the analysis then
shows that this additional noise introduced by the multi-
plication with A in (2.10) can be neglected.

Comment 2.2: One procedure that has been advocated
to reduce the effect of roundoff noise in digital filter re-
alizations is the use of integer residue feedback [3], [9],
and [10]. In such case, the FWL shift-operator state-space
realization (2.8) is modified according to

{x,*” = A.Q0F) + B, + e,

. (2.11)
yE o= C.0UH + he :

where all components of J and i are integers (see {3]).
We note that with the choices J = [ and /# = 0 and using
(2.7), (2.11) becomes identical to the §-operator imple-
mentation (2.10) with A = [. We conclude that the FWL
d-realization is a special case of the residue feedback re- -
alization for the choices J = I and h = 0.

Denoting ey, £ y, — y¥, then the roundoff noise gain is
usually defined as (see e.g., [3]) :

iz lim Ef(ey)?. (2.12)

T e

G =

realizations, we first write a state equation for the error E,

£ x, — xF. It follows from (2.8) and (2.9) that

eE, = AE, + Aye,
(2.13)

ey, = CE + Cye,.
Replacing g, respecnvely, by z and & in (2.13), it then

follows that
G. = tr (W) (2.14)

tr (W)

it

G, (2.15)
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where W, is the observability Gramian of the realization
(A.. B., C.)

W, 2 g)o Ay'crc. Al (2.16)
and W is defined as ,
W EAAIWyA4, + CIC.. (2.17)
W, is the solution of the Lyapunov equation
W, = AT Wod. + CIC. (2.18)

Using (2.18) and (2.7). alternative expressions for W can
be obtained

W= (d. ~ D"Wy4, — I) + CIC.
= (I — AWy + Wo( — A)
= 2W, — AT Wy — WoA.. (2.19)

It should be clear that the previous expressions hold for
matrices (4;, Cs) and (A., C.) that are related by (2.7).

1II. MINIMIZATION OF THE ROUNDOFF NoOISE GAIN

For any realization (4., B, C.) € §., whose correspond-
ing realization in S; is (A5, Bs, C3) € S5 through (2.7), one
has

Al =T 'A.T, B

=7T"'B, C!.=CT (3.la)
and
AL =T'4,T, By =T"'B, Cj=GT (.1b)

" where T is any nonsingular matrix of proper dimension.
It is therefore clear that if (W,, W) defined in (2.16) and
(2.17) correspond to (4., B., C.) [equivalently to (4;, B;,
Cy)], the corresponding (Wg, W') in the new coordinates
satisfy the following transformation:
Wy =TW,T, W' =TW. (3.2)
1t follows from (2.14) and (2.15) that different real-
izations in S, (¢ = z, §) yield different roundoff noise
gains. The interesting problem is to find the optimal re-
alizations in S,, which minimize the roundoff noise gain

min G, = min tu(T'W,T) (3.3a)
(Ar. By C7)€ES- TdetT#0

min G, = min tr (T'WT). (3.3b)
(As. Bs. Co)eSe TidetT#0

Note that the problem (3.3) does not make sense uniess a
scaling of the states is introduced since ‘‘smaller”” T
yielding smailer G, would make the states larger. In order
to maintain the amplitude of the states within an accept-
able range, and hence to reduce the probability of over-
flow, an l,-norm scaling on the states is introduced in prac-
tice [1], [2], which is equivalent to the following con-
straint on the realizations in the new coordinates:

Wy =T WT Ty =1 vi (3.4)
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where

W, & 2. AB.BI(AY

=0

(3.5)

is the controllability Gramian of the system under the re-
alization (4., B., C.) € S.. So, now the problem of mini-
mizing the roundoff noise gain G, under /;-scaling can be
formulated by combining (3.3) and (3.4), (3.5). The min-
imum achievable gain in S. was originally given in {1] and

(2]
G?lill — J_ ( Z 6i>-
no\i=t

where {0;} is the Hankel singular value set of the system
defined by

(3.6)

{63} = NW. W) = NW W), 3.7

This minimum is achieved by a set of realizations in S,
all of which satisfy the dynamic range constraint (3.4). A
constructive procedure for computing this optimal real-
ization set has been given by Hwang [1].

The noise gain in S; is given by the exact same form as
the noise gain in S., with W, replaced by W and with the
same dependence on T [see (3.3a) and (3.3b)], while the
same l,-norm scaling (3.4) applies. Therefore the proce-
dure of [1] and [2] applies identically to this case. The
minimum noise gain in Sj is thus given by

) 1 " 2
G‘émn = = < Z V,‘)
1 \i=1

where {»;} is called the residue mode set [3] defined by

(3.9)

(3.8)

(¥} = NW W) = N(WW').

For the same reason, the optimal realizations in S; that
achieve G" are obtained in the same way as in [1].

Comment 3.1: Since the residue feedback realization
of [3], in the case J = Jand h = 0, is identical to the
S-realization with A = 1 (see Comment 2.2), it follows
that the optimal residue feedback realizations in this spe-
cial case are identical to the optimal é-realizations, and
hence are also obtained by Hwang's procedure. This re-
sult was rederived by Williamson [3, theorem 5.2].

Now a reasonable question is under what conditions do
we have

G < G, (3.10)

Clearly (3.10) holds if and only if the sum of the residue
modes is less than the sum of the Hankel singular values.
It would be interesting to produce simple conditions—on
H (z) or on some realization of H(z)—under which (3.10)
holds, without having to compute the Hankel singular val-
ues §; and the Residue Modes »;. This problem was ad-
dressed by Williamson [3] who gave some sufficient con-
ditions for (3.10) to hold. In the next section, we will give
some new conditions and compare them with William-
son’s.
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IV. SoME NEw CONDITIONS FOR SUPERIORITY OF
0-REALIZATIONS

In this section, we give some conditions under which
d-operator implementations yield a smaller roundoff noise
gain than shift-operator realizations, that is conditions on
the transfer function under which (3.10) can be achieved.
In order to do so, we ﬁrst present the fo]lowmg lemma.

Lemma 4.1: Let { pi, p; = 0} and {67, 6; = 0} be the
diagonal element and eigenvalue sets, respectively, of a
semipositive definite symmetric matrix M. Then

ZPIZ 20,

i=1 i=

.1

and equality is achieved if and only if the matrix M is
diagonal, i.e., p; = 8, Vi.
Proof: see [1].

With this lemma we can prove the following theorem,
which gives a first new set of sufficient conditions under
which (3.10) holds.

Theorem 4.1: For any stable minimal SISO system
(2.1), (3.10) holds if all the diagonal elements {a;} of
AT satisfy

3 = ay Vi 4.2)

where (4", BI", C™ is the input-balanced realization of
H(z), characterized by its Gramian matrices

Wi.“ =], Wi = diag (a?, a%, I oﬁ)

£y (4.3)

Proof: First, we note that the Hankel singular values

{0;} and residue modes {»;} are 1nvanant under a coor-
dinate transformation. So

{r]} = NW W) = NOWPW™ = A"

where W™ is defined in (2.19) for the input balanced re-
alization characterized by (4.3)

4.4)

Wh = (4" — DTSN - 1) + (e

= - ANL* + L2 — 47, (4.5)

Denote W™ £ {w;} and 4" & {a;}. Itis clear that

S 2(1 - (lii)O';?' Vi,

Since W™ is positive definite and symmetric, it follows
that w; > 0. According to Lemma 4.1, one has

Z. v, < 2 112 = Z. V21 = ay)o;
The theorem follows from the fact that (3.10) holds if
(4.2) is satisfied. |
In [3], Williamson has given another sufficient condi-
tion under which (3.10) holds. This condition is on the
internally balanced realization (42, B, C%) e §,, which

is characterized by its Gramians
We = Wg =L = diag (0,, 03, * - -

) 0). (4.6)

We now give a sharper result, also on the internally bal-
anced realization.

Theorem 4.2: For any stable minimal discrete linear
time invariant SISO system, there exists an internally bal-
anced form (A", B® C™) e §. such that

) Ay A
b n Ap i .
DAl = <_ ; > with A; = A

Ay Axn
i=1,2 (4.7a)
2) If {6,} 2 union.of A(4,,) and A (4y,), then
min §; < Re (\p) < max §;  (4.7b)
for any \, € N(4") wk'.
3) if min §; = 1/2, then (3.10) holds. (4.7¢)

Proof: see the Appendix.
We now compare our results with those of Williamson

[3].

I. The existence of (4.7a) is always guarameed while,
in [3], the Hankel singular values are assumed to be dis-
tinct for (4.7a) to exist.

2) Williamson gave the following sufficient condition
for (3.10): min; 6; = 1 — (1/2n) with n the order of
system. Here we need only min; #; = 1/2, which is a
sharper result,

Comment 4.1: Theorems 4.1 and 4.2 yield some suf-
ficient conditions under which (3.10) holds. These con-
ditions require the computation of (input or internally)
balanced forms. Numerically well-conditioned algorithms
to compute balanced forms can be found in [11] and [12].

Now, we will give another sufficient condition for
(3.10) to hold. This condition is on the poles of the sys-
tem.

Theorem 4.3: For any stable minimal discrete SISO
linear time-invariant system, if the poles \; of the system
satisfy the following condition

Igl )\ 2

4.8)
then (3.10) holds.

Proof: The internally balanced form defined by (4.6)
satisfies the following Lyapunov matrix equation

L =A"LA® + B®BT. 4.9)

It follows that the diagonal elements {a;;} of A” satisfy

From I ,a; = E!_, \, one obtains
mma,, +m—-1)> 2 Ai
i=1
or

m.ina,,f> ] - (n - Z )\>.

i=1

'We use M(4) to denote the set of ail eigenvalues of A.

i
y
i
i
i
i
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Therefore, using (4.8). we bave min; a; > 1/2. The
theorem follows directly by applying Theorem 4.1. K
The sufficient condition (4.8) can be rewritten as

4.1

Clearly, N is the mean value of the poles.

Example 1: forn =4, Ay, = 1 = 1/2n = 0.875. So,
for any system of order 4, the optimal d-operator imple-
mentation will be superior to the shift operator implemen-
tation in terms of roundoff noise gain if the mean pole
value A is larger than 0.875.

Example 2: in [12], a sixth-order narrow-band low-
pass filter is considered, whose poles are 0.9723" £
70.1989, 0.9389 + j0.1623, 0.9152 + j0.0646. For this

filter, one has

N = 0.9441, and Ay = 0.9167.

So, for this system, the optimal é-operator implementa-
tion will have a better performance in terms of roundoff
noise gain than the optimal shift-operator implementa-
tion.

Comment 4.2: Theorem 4.3 yields a sufficient condi-
tion for (3.10) that is very easy to test, since the system
is normally given by its transfer function from which the
poles can be obtained easily.

Comment 4.3: This theorem guarantees the superiority
of implementation in é-operator over shift operator for a
class of systems. In fact, it implies that for systems whose

poles are clustered around z = +1, the -operator imple-

mentation will yield a better performance in terms of min-
imizing the roundoff noise gain. The often used narrow-
band low-pass filters belong to this class [7]. In modern
control, fast sampling is used in order to keep enough in-
formation [4]. The discrete time models used in practice
come from the corresponding continuous time systems

sampled with high frequency. With the sampling fre- .

quency chosen between 5 and 50 times the maximal fre-
quency of interest as proposed by Middleton and Good-
win [4], the poles of the corresponding discrete time
models and controllers are clustered around z = +1, and
so here again the 8-operator models will typically perform
better.

Comment 4.4: The optimal realizations in either S, or
S; yield a system matrix (4, B, C)qp full of non-one-or-
zero elements, which is not very desirable since it maxi-
mizes the number of arithmetic operations. For those rea-
sons, sparser realizations are preferred and some efforts
have been made in this direction [13]-[16]. We note that
for the class of systems discussed just before, G§" is
smaller than G™". This implies that some sparse realiza-
tions in S; could have a noise gain G; near G (of course,
larger than G§™). For example, the companion form (di-
rect form) realization in Ss can give a very nice perfor-
mance [7]. In the next section, we will give another sparse
realization in S; based on a polynomial parametrization
approach. With the same numerical example as in [7] we
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will see that this realization yields a roundoff noise gain
G; smaller than G

V. A SPARSER REALIZATION IN S;
In this section, we first give a brief introduction of the

~ polynomial parametrization concept and present some re-

sults without proofs. These polynomial parametrizations
are fully developed and exploited in [17} and [18]. Based
on Chebyshev polynomials, a sparse structure will be
given which. in fact, is a realization in Ss. This structure
will be seen to have better performance than the optimal
realization in S. in terms of minimizing the roundoff noise
gain for the numerical example to be given in the next
section.

We start here with the representation (2.2), which we
recall for convenience

Blﬁual + 0+ B,

. 5.1
O 4+ "+ oy .1)

Hy(0) =

Using vector notations

Z20 a ), BEO B - BT (5.2
and
o & -8 (5.3)
(5.1) can be written as
BTs  B'T'15 87p(9)
H:(8) = — = — = e (5.4)
O w10
where
F=T7a2@ o9 0 (5.5a)
§=TTBLO 8 - 0,7 (5.5b)

PO = T8 £ (o -+ P @ pa®) (550

with Tan (1 + 1) X (n + 1) nonsingular matrix, whose
first columnis{(t 0 0 --- 0)7 but that is otherwise ar-
bitrary. So :

O,P‘;((S) + oo+ gnpn(5)
Po(a) + P (6) +oer 77:;1’:1(5_)'

It is clear that now the system is parametrized by (7%,

Hs(8) = (5.6)

" §) under the polynomial operator p(8) where po(6) is a

monic polynomial of degree n, and p;(8), 7 = 1, =+, n,
are polynomials of degree less than . The transformation
from (5.1) to (5.6) is uniquely determined by the choice
of the polynomial set p;(8) or, equivalently, the matrix 7.
These two quantities are related, in a one-to-one way, as
follows:

I po P ' " Pou L po 0t Pon
LR R T
a . . M " 7}’
0 P P " Pun 0
;5.7
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where the p;; are the coefficients of the polynomials p; (6):
pi(d) = Lioy pyd" .

If (A5, B§, Cj) € S5 is the controllable realization in S,
corresponding to the transfer function model (5.1), then
a realization (4;, B;, C;) € S5 corresponding to (5.6) can
be obtained by (see [17] and [18]):

A = TAT,', By =T,B;, C=CiT,' (58)
where 7, € R"*" is defined in (5.7) and depends only on
the last n polynomials p,(8).,* -+ , p,(8) of degree n —
1. Clearly, by proper choice of the polynomial set (i.c.,
of T,), the realization (45, B;, C;) can be put in a desired
form through (5.8). ’

We illustrate the use of polynomial basis functions with
Chebyshev polynomials of the first type. Without going
into details, consider polynomials generated in the fol-
lowing recursive way (with A = 1):

pi—1(8) = 8p;(8) + cipiy1(8) (5.9)

with p,(8) = 1, p,_,(8) = 8. In state-space form this
corresponds to ’

T T T 6 Tyt
1 0 —~Cy * 0
Ay = : :
0
0 0 o - 1

{n;}, {6;} can be obtained through (5.5) since T is deter-
mined from the polynomial set.

With the following choice for the ¢;, (5.9) generates
polynomials p;(6) related to the Chebyshev polynomials
of the first type

—@h, i

¢ =
—@, i
We will say that the corresponding (4s, B, Cs) is in Che-

byshev form. Another special case of (5.9) and (5.10) is
when ¢; = ¢; = + -+ = ¢, = 0. This corresponds to the

]

1,2, -+, n—2
: 5.11)

n— 1.

a1

delay replaced direct form of [7]. It can also be seen as a
special case of a Chebyshev form with the choice k = oo,

The realization (5.10) should be scaled before it is im-
plemented. This can be done by simply applying a diag-
onal transformation matrix 7, which leaves the zeroes un-
changed in the form (5. 10). The /,-scaled version of (5.10)
requires (2n — 3) more multipliers than the /,-scaled con-
trollable realization (4L, B, C{) € §. and (n — 2) more
multipliers than the /;-scaled controllable realization (4§,
Bj. Cs) € S;. Since the ¢; in (5.10) are free, one could
think of minimizing the roundoff noise gain over all sparse
realizations of the form (5.10) by optimizing over the ¢;.
This is a very hard problem, Instead. one can restrict one-
self to Chebyshev forms, where the ¢; obey (5.11), and
use the scalar factor k. called adaptive factor, to make the
roundoft noise gain G; of (5.10) as small as possible. In
the special case where the optimal & would be found to be
infinite, this would indicate that the delay replaced direct
form is optimal among all realizations of the form (5.10).
In the next section we give a numerical example wherein

[—

N

0\ 7
0 0
. 92
B; = G, = . (5.10)
TCh— ’
l : Bu
0 0

‘the structure (5.10) yields a G; that is an order of mag-

nitude smaller than the roundoff noise gain of (45, Bj,
C3) and five times smaller than G™.

VI. NUMERICAL EXAMPLE

For ease of comparison, we will use the same example
as in [7]. This is a sixth-order narrow-band low-pass filter
with a normalized sampling frequency f; = 1. The cor-
responding transfer function and /,-scaled direct form re-
alization (4;, Bj, Cj) € S;, called delay replaced direct
form (DRDF), can be found in [7] and corresponds to A
= | and k = oo, We shall compare it with the /,-scaled
realization (4;, B;, C;) in (5.10) with A = l and k = 4

0.3474 —0.2780 02167 0.1148 —0.2829 —0.1607
0.1460 0  —0.0912 0 0 0
0 01713 0  -00820 0 0
A = 0 0 0.1905 0  -0.188 0
0 0 0 00823 0  —0.1779
0 0 0 0 01757 0
By =(0.352 0 0 0 0 0)f

Cs = (0.0042 0.0576 0.0683 0.1462 0.0824 0.2085).

6.1y
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: TABLE 1
PERFORMANCE COMPARISON OF FIVE DIFFERENT REALIZATIONS
I,-scaled G, M,
(A5, BS, CHeS. 1.973 x 10" 1.3814 x 10"
(4., B.. C:)opl € S. 1.3329 15.3306
(4§, Bs, C§) € S;{DRDF) 2.6985 1.1514 x 10°
(Ass Bsy Ciop: € Ss 0.0646 18.3936
(A, Bs, Cs) 1n (6.1) 0.2876 73.9616

10k

20F

dB 40}
.50 o
-60F
=704+
80}
205 2 W 60 T80 100 120
Xia = w (in rad/sec)

Fig. 1. Frequency responses for the three realizations.

It has been shown [19] that the sensitivity measure M.
of any /,-scaled realization (4., B,, C.) is given by

M, =@®m+ 1)u (W) + n 6.2)

In [8] it is shown that with A = 1 the sensitivity measure

M; of any (4;, Bs, Cs) € S; is also given by (6.2), where

(A5, Bs, Cs) and (4., B., C.) are related by (2.7). The the-

oretical results are given in Table L. :
Comments:

1) That GI™ (= 0.0646) < G™ (= 1.3329) was al-
ready known through the calculations in Example 2 of
Section IV and the application of Theorem 4.3. Both (4.,
B,, Cop 2nd (A5, B;, Cyop yield fully parametrized re-
alizations.

2) The delay replaced direct form (4§, Bs, C5) has a
performance in terms of G; that is not much worse than
G™", which corresponds to a fully parametrized realiza-
tion. By adding (n — 2) elements to (d;, Bj, Cj), the
realization (d;, B;, Cs) of (6.1) yields a roundoff noise
gain (0.2876) that is 10 times smaller than that of the
DRDF (4;, Bj, C$) and almost five times smaller than
G[TII“' . )
3) To confirm the computation of M,, we give some
simulations based on the /,-scaled FWL (coefficient) im-
plementations for three realizations: (4, B:, C?), the
DRDF (45, B§, C§) and the Chebyshev form (4, B;, C;)
of (6.1). For each of these realizations, we round the coef-
ficients to p bits, then compute the magnitude of the cor-
responding frequency response and compare it with that
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dB  _4p}
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90 : . . .
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Fig. 2. Frequency responses for the three realizations.

of the ideal frequency response (corresponding to p = ).
The results are given in Figs. I and 2.

The figures show that the -operator implementation in’
the form (5.10) gives an excelient fit to the ideal fre-
quency response, particularly in the lower frequency
range: with the same number of bits, eight, it yields a
much better result than the direct §-form, and with 10 bits
it is almost indistinguishable from the ideal frequency re-
sponse. The superiority of the é-operator implementation
(5.10) over the direct form shift-operator realization is ev-
ident: the 10-bit implementation of (4;, Bs, C5) in the form
(5.10) yields an even better fit than the 18-bit shift-oper-
ator form, ‘

VII. CONCLUSION

In this note, we have analyzed the FWL implementa-
tion of the state-space model of a discrete system in
§-operator form. The expression of the roundoff noise gain
has been derived. It has been shown that the é-operator
implementation is, in fact, a special case of the FWL im-
plementation with residue feedback [3], [9]. We have then
examined the problem of minimizing the roundoff noise
gain over the realization set of §-operator models, S;.
Some new conditions for the superiority of optimal §-op-
erator implementations over optimal z-operator imple-
mentations have been given, where the optimality is in
terms of minimizing the roundoff noise gain. The supe-
riority of the optimal §-operator implementations over the
usual shift operator implementations allows one to find
some sparser realizations in S;, which often yield almost
the same performance as the fully parametrized optimal
realizations in S.. Our theoretical results have been con-
firmed by a numerical example and by simulations.

Note that the conditions given in this paper are suffi-
cient for guaranteeing G3'" < GI'". The numerical ex-
ample shows that one often has G§™" << GI". One open
problem is how to sharpen those sufficient conditions fur-
ther. It is believed that the answer to this problem depends
on the exploration of new properties of balanced forms
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for discrete time systems. Some investigations along this
line are being carried out.

APPENDIX
Proor or THEOREM 4.2

. First, note that Kung [20] has shown that for any stable
minimal SISO discrete linear system, there always exists
an internally balanced form that satisfies the following
symmetry property

Aé/) = QAQI’TQ, Bib = ch;[,T (A l)
where Q is a sign matrix
Q = diag {4y, uy, - -+ ,u,) u; = +1 vi

Clearly, with a series of permutations, Q can be trans-
formed to '

(II >
with
0 12

i=1,2(A2)

nxXng

0 1

where n, + n, = n, while preserving the structure of
(A.1). So, without loss of generality, Q in (A.1) can be
assumed to be of the form (A.2). It follows from (A.1
that ‘

. . . Xy Xp
ALQ = 04 = (4P Q)T = (
X, X»

with X;, i = 1, 2, real symmetric. It then follows that

<X., X”)Q <X.1 X.z><ll 0>
XL X X, Xn/\O -1
M(X.[ ~X.2>

X1T2 *XZZ

So, (4.7a) is proved with the following identifications:

Ay = Xy, Apn = —Xp, Ap= —X,

Now consider (4.7b). It is well known that for any
square real matrix A, the following decomposition holds

A=A+ Ay  withd, = AT, AL = —4,. (A.3)

If Ais an eigenvalue; A € A(A), with X the corresponding
eigenvector, then :

AX = NX = X74X = NMiX[? = X74,X = Re W X|2.

By SVD decomposition, A4, can be written as

Aib —

6, 0
' UT with U orthogonal,
0 0,
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Denote Y = UX, then

2 6,13l = Re WIX I3,

Since IfY||§ = 3, or nil, !y,~|2 = If_, ||X,»ﬁz, it fol-

lows that

x|
min §; < Re (\) = max 6,
(4.7b) follows with
A, 0 ) ) 0 A.2>
0 4,/ " \-4l, o/
Finally, recall that {6;} = A(A;;) U A(Asy) With 4;;, Ayy

real symmetric. If min; §; > 0, then 4;, i = 1, 2 are also
positive definite. It is well known (see [21 p. 134]) that

A, =

min #; < min q;
i i

where {a;;} is the diagonal element set of 4, (or A”). We
note that the matrix A”" of the input-balanced form has the
same diagonal elements as A”. Clearly, (4.7c) then fol-
fows from Theorem 4.1 with min; 6; = 1/2.
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