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New properties of the parametrization of multi-input, multi-output monic
ARMA systems with prescribed column degrees include a minimal cover

for the set of all ARMA

systems in terms of this parametrization.
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Abstract—Some  properties of the parametrization of
(multi-input, multi-output) monic ARMA systems with
prescribed column degrees are considered. In particular we
give a minimal cover for the set of transfer functions
corresponding to all ARMA systems in terms of this
parametrization, we investigate the relation between the
Kronecker indices and the prescribed column degrees and we
investigate the boundary of a certain parameter space and of
the corresponding set of transfer functions.

1. INTRODUCTION

For THE PURPOSE of identification usually the set
of transfer functions corresponding to all ARMA
systems with given input and output dimensions
is broken up into parts in order to ensure a
convenient parametrization for each part. By
“convenient” we mean that each part should be
described by an identifiable and finite-
dimensional parameter space, and that the
parametrization should be continuous. In addi-
tion, the set consisting of all these parts should
be a cover for the set of transfer functions of all
ARMA systems. A desirable property is that this
cover should be nonredundant in a sense which
will be explained later.

Especially in the multi-output case, several
different ARMA parametrizations are used.
Perhaps the most common are the overlapping
parametrization of the manifold M(n) of all
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transfer functions of order (or McMillan degree)
n and the so-called Guidorzi or Echelon
canonical forms (Kalman, 1974; Hazewinkel and
Kalman, 1976; Guidorzi, 1981; Deistler, 1985;
Gevers and Wertz, 1987). These have first been
derived for the state space representations,
where the McMillan degree is a natural quantity,
being the minimal dimension of the state vector,
ARMA systems derived from these state space
parametrizations have several disadvantages.
They are not necessarily monic; by monic we
mean that the coefficient of the present output is
the identity matrix. In addition, they are more
naturally described in polynomials of the
forward than of the backward shift operator. Of
course, it is always possible to rewrite these
ARMA models using polynomials in the
backward shift operator, but by doing this some
of the structural properties are lost (Deistler and
Hannan, 1981; Gevers, 1986).

In this paper we consider a genuine ARMA
parametrization and its relation to the para-
metrizations mentioned above. Unless otherwise
stated, our ARMA models will be described
using polynomials in the backward shift oper-
ator. The ARMA system will be monic (in the
sense described above) and the maximum lags in
each variable will be prescribed. With the
addition of rank and coprimeness conditions,
Hannan (1971) showed that this class of monic
ARMA systems is identifiable. Properties of this
class of monic ARMA models were described in
Deistler et al. (1978), Deistler (1983) and Gevers
(1986).

All such classes of ARMA systems, where the
column degrees are allowed to vary over all
non-negative integers, obviously define a cover
for the set of all transfer functions. However,
this cover in general contains too many
elements. This means that in an identification
procedure, where the column degrees are
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estimated as a first step, the search would have
to be performed over too many sets (i.e. too
many different model structures). Therefore,
from a practical point of view, there is a strong
incentive to find a subcover containing fewer
sets. Our main contribution in this paper is to
produce such subcovers first for all ARMA
systems, and next for a case where the maximum
lag is bounded. The latter case is of importance
because such a bound is often either known to
exist, or has to be imposed in algorithms. These
results are presented in Section 4.

The problem that a given cover is too rich (i.e.
contains unnecessarily many elements) does not
arise in the cases of overlapping parametriz-
ations and Echelon forms mentioned above. Since
the number of columns in an ARMA system is in
general larger than the number of rows, it is
quite clear that a cover prescribed in terms of all
possible column degrees has in general “many
more” elements than a cover prescribed in terms
of all possible row degrees.

‘Section 5 deals with the relations between our
monic ARMA parametrization and Echelon
canonical forms. In Section 6 the boundary of a
certain set of transfer functions is investigated;
the characterization of these boundary points
turns out to be important to understand the
behaviour of identification procedures. The
material of Sections 4, 5 and 6 is new to the best
of our knowledge.

In Sections 2 and 3, we first establish the
notation and recall some basic results concerning
monic ARMA systems and Echelon forms.

2. NOTATIONS AND PRELIMINARIES
By an ARMA system we mean a (vector)
difference equation

a(D)y(t) = b(D)e(r) (2.1.2)

where y(f) is the s-dimensional output, e(r) is
the m-dimensional input, D is the backward shift
operator on Z[D(y(t)[teZ)=(y(t) - 1| e 2)]
or a complex variable and a(D), b(D) are
polynomial matrices:

P

a(D)= A;D!, A;eR™ (2.1.b)

j=0
q I3
b(D)=2 BD/, B eR™" (2.1c)
j=0
If Ag=1, the system will be called monic.
Throughout this paper we shall denote u =

max (p, q), and we shall make the following
assumptions.

Assumption 1. det a(D)#0.

Assumption 2. The transfer function
k(D)= a""(D)b(D) is causal, i.e.

k(D)= K;D’ has a convergent power series
V]

expansion in a suitable neighbourhood of zero.

We shall not explicitly distinguish between
observed and unobserved inputs. In particular,
e(f) can be unobserved white noise (this is the
proper ARMA case in time series analysis) with
Ao=By=1; e(t) may also be decomposed into
unobserved white noise and observed inputs,
which includes the ARMAX case.

As we mentioned in the Introduction, ARMA
models derived from state space forms are often
described using polynomials in the forward shift
operator z; [2(y(t) [te Z) = (y(t + 1) | te 2)]:

P(@)y(t)=q(2)e(t) (2.2.a)
where

&= B, 4()=3 0e. @2b)

A form (2.1) can easily be obtained from (2.2)
(and vice versa) as follows. Let Ry, ..., n be
the row degrees of the matrix [p(z), q(z)]; then

[¢(D), b(D)] = diag (D", ..., D"}[p(z), q(2)]
(2.3)

where D-z=1 (for z#0, D+#0). It then
follows that

k(™) = p~(2)q(2) =2 Kzo'  (2.4)

is proper. If p(z) and ¢(z) are left coprime, then
the McMillan degree of k is the degree of
det p(z). We shall denote the McMillan degree
of k by 8[k]. We shall use éa for the polynomial
degree of a polynomial, a polynomial vector or
matrix a.

We denote by 7, the set of all ARMA systems
(2.1), i.e. the set of all pairs [a(D), b(D)] of
polynomial matrices with s and m fixed, p, qeZ
arbitrary, satisfying Assumptions 1 and 2.

By 7:T4— V, we denote the mapping defined
by 7(a, b)=a"" - b; V, is the image of T}, under
7 (i.e. the set of all sXm rational, causal
transfer functions).

Consider a subset T < T, of ARMA systems.
Under some additional assumptions, the input—
output behaviour of a system is described by its
transfer function. It is therefore natural to
consider the quotient space T | & of & restricted
to T:T|a={n""(k)NT |ken(T)}. Its ele-
ments are called the k-equivalence classes or the
classes of all observationally equivalent ARMA
systems corresponding to k (in T). Clearly we
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want a unique description of the transfer
functions by their parameters. A subset T < T,
of ARMA systems is called identifiable if x
restricted to T is injective, i.e. if within T, (g, b)
is uniquely determined from k = a™'b.

In addition we want T to be finite dimensional
in the sense that &(a, b)=<n, for some neN
holds. Let 7 € R? be a vector of free parameters
for (a, b) € T. We will identify 7 with (a, b} e T.
Let V < V.. A mapping ¢:V — T c T} such that
a(yp(k))=k and P(V)=T holds is called an
ARMA parametrization of V.

The natural topology for parameter spaces like
T <R is the relative Euclidian topology. We
endow V, with the topology corresponding to
the relative topology in the product space
(R*™)?+ of the power series coefficients
(K:)icz,- As convergence of transfer functions
then corresponds to the pointwise convergence
of the power series coefficients, we call this
topology the pointwise topology Tp,,. If A is a set
in a topological space, its closure is denoted
by A.

Ideally one would like an ARMA para-
metrization of the set V, of all s X m rational,
causal transfer functions. As mentioned in the
Introduction, there is no continuous para-
metrization for the whole set V, (Hazewinkel
and Kalman, 1976); in addition, the correspond-
ing parameter space would not be finite
dimensional. Therefore, one has to break V,
into bits and to consider suitable families
{Yo Va1, | ael} of parametrizations such
that {V, | « €I} covers V, and that every , is
continuous (compare also Hannan and Deistler
(1988)).

3. PARAMETRIZATION BY MONIC ARMA
SYSTEMS AND ECHELON FORMS

Let ao=(ay, ..., Gm) €LY denote the
specified (i.e. maximal) degrees of the columns
ay, ..., 0, by, ..., by, of [a(D), b(D)] and let
a{j), b;(j) denote the ith columns of A; and B;,
respectively. Furthermore let

Ca’ = (al(al)) ey as(as), bl(as+1)) .

o b)) (31)

Notice that C, is the s X (s + m) matrix formed
by the coefficients of degree a;, . . ., Gim I the
columns ay,...,a; by, ...,b,, respectively;
we shall often refer to C, as the “column-end-
matrix”’ of (a, b). If a prescribed degree, say ¢,
is larger than the actual degree of the jth column
of (a, b), then the corresponding column in C is
Zero.

Then by T, we denote the set of all ARMA
systems (a4, b) of the form (2.1) with the

following properties.

(i) The column degrees are specified by a.
(ii) (a, b) is left coprime.
(iii) C, has rank s.
(iv) Ap=1L

As is easily seen, 7T, is identifiable, since
left-multiplication of (a, b) by a non-constant
unimodular matrix due to (iii) would increase
at least one column degree. Let V, =n(T,). A
vector Te€R“% of free parameters for T, is
defined as the vector consisting of the stacked
rows of (ay(1),..., a(ar),..., a(1),...,
as(as)} bl(o)) L] bl(as+1): T bm(o): v
7D em)); here do=s(ay++ + &)+ m.
By %.:V,— T, we denote the corresponding
ARMA parametrization.

By a=<pf we mean a; =B, ..., %im = Posm
and « < will mean that at least one inequality
holds. In addition we shall also use the notation

s+m

o= 2 ;.
i=1

Some properties of the monic ARMA para-
metrizations with prescribed column degrees
have been derived by Hannan (1971), Deistler et
al. (1978), Deistler (1983) and Deistler (1985).
We summarize the main properties which will be
used later.

Proposition 3.1.

(1) T, is an open and dense subset of R”,

where
s +m

da=s(2 a,.) +5m.
1

(2) Yo:Vo— T, is a (T,) homeomorphism.
@) a(L)= U V..

(4) V. is (Tpr) open in V..
(5) =(1,) c V, and equality holds for s = 1.

By W,, n=(n,, ..., n), we denote the set of
all transfer functions k eV, with Kronecker
indices (n,, ..., n;). Thus for k€ W, we have
k(z™Y) =p~!(z), q(z) where (p, q) is in Echelon
form and thus satisfies the following (Guidorzi,
1981; Deistler, 1985; Gevers, 1986).

(i) (p, q) is left coprime.

(i) p; are monic polynomials (in the original
meaning of the word, namely, that the
coefficient corresponding to the highest
power equal to one) and

Opy=0py=n; [<i
8py < Opi j>i
8p; < bpy; J#i
dq; = Opu.
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The reversed Echelon (or Guidorzi) form is then
obtained as

[4(D), b(D)] = diag {D"}[p(z), q(2)]. -

The following proposition which combines
results of Janssen (1987) and Kailath (1980, Pp-
481-482), will play a key role in some of our
proofs.

Proposition 3.2.

Let [a(D), b(D)] be a left coprime ARMA
system and k=a"'h. Denote c¢(D)=
[a(D), b(D)]. Then

(1) the McMillan degree §[k] is the highest
degree of all s X s minors of c(D);

(2) ¢(D) is row proper if and only if its row
degrees are equal to the Kronecker indices of k,
up to reordering;

(3) by left multiplication with a suitable
unimodular matrix, ¢(D) can be brought in a
form satisfying:

(i) (D) is row proper with row degrees
ki, ..., ks arranged in ascending order;

(if) forrowj,j=1,...,s, there exists an index
p; such that ¢; , has degree ; and is monic
(i.e. the (j, p)th element of the matrix c(D)
is monic of degree &;);

(iii) 8c; <k; fori>p,;
8¢y, <k; fori#j;
if k;=k; and i <j, then p, <p;.

An ARMA system satisfying conditions (3) of
Proposition 3.2 is said to be in Popov form.
Note that the s X s submatrix corresponding to
the indices py, ..., p, is both row and column
proper, and its row degrees are equal to the
column degrees and to the Kronecker indices, up
to permutation. If we premultiply a system in
Popov form by any non-singular constant matrix
(and in particular by a7'(0)), the column
properness of the above mentioned submatrix is
preserved.

4. A NON-REDUNDANT COVER FOR V,

As can easily be shown, §={V, | @ € ZZ"} is
a cover for V4. As is immediately clear for the
scalar case (s =m =1), there are several proper
subcovers of ¢, e.g. ¥ ={V,,,,|neZ,}. One
desirable property of a cover {V, [ael} is its
nonredundancy in the sense that no element V,
of {V,|ael} can be eliminated without
destroying the covering property, or equivalently
that for every a €1 there is a k € V,, which is not
contained in any of the V;, Bel, B+ . This is
to postulate the minimality of a cover with
respect to inclusion of sets.

Another desirable property of a cover is that

the dimension d of the parameter space used to
describe the transfer function should be small.
This is clearly related to efficiency of estimators.
A necessary condition that a given & is described
in a parameter space T,, of minimal dimension is
that a is a minimal index in the sense that there
isno B<a, BeZ*™ suchthatk e Vs holds. We
have the following Lemma.

Lemma 4.1, An index B is minimal for k € V, if
and only if (k € V; and) C; has no zero column.

Proof. One direction is evident. Conversely, let
Cp have no zero column. To preserve coprime-
ness, only left multiplications by unimodular
transformations u(D) are allowed. Since a is
required to be monic, we must have u(0)=1I.
Since Cg is full rank, multiplication of
[a(D), b(D)] by a non-constant u(D) would
increase at least one column degree.

As is easily seen, for s=1 and for a given
k €V, the minimal index « is uniquely defined
and it corresponds to the minimum of || (and
thus to the minimal dimension of T,). Neither of
these statements are true for s>1 as the
following example indicates.

Example 4.1. Consider the case s =m =2, with

[a(D), b(D)]
_(1~—D3 D-D*-D* 1+D 0)
“\' D 1+D 0 1/

Clearly k(D)=a*1(D)b(D)€V(3 31 0) and
=3 3 1 0) is a minimal index. An
alternative description for k(D), however, is
k(D)=a "(D)b(D) with

[‘i(D)’E(D)]”(; 141-)1) 1;D li)

Here ke Vi ; | 2 where B=(1 1 1 2) is
again a minimal index. Note that || =7 while
18] =>5.

Nonredundancy in general conflicts with the
desirable property of describing transfer func-
tions with a small number of parameters, as is
illustrated for the case s = m = 1 by the following
example.

Example 4.2. Recall that ¥ = (V,, ,,|neZ,} is
a proper subcover of ¢ for the scalar case, and
even with disjoint elements. Consider the
transfer function k(D)=(1+a,D+a,D?)"'(1+
biD) € Viz,1y where (1+a,D +a,D? and (1+

~ b,D) have no common zero and a,, by are both

nonzero. If we choose the cover &, then
k € Vip,5) and its description requires one more
real-valued parameter. On the other hand, the
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cover ¥ contains more elements than &, but we
can always describe k by a minimal index. Note
also that for this particular example, k € Viz 5,
j=land ke Vi, j=2.

Note that in the case s>1, %=
{Vian,..y | n €2} is not a cover for V,. This
makes the problem of finding a non-redundant
subcover of ¥ nontrivial. We now focus on this
problem.

Theorem 4.1. Let

Iw)={aeZ& | ag=u; i=1,...,s
where at least one equality holds,
and @;=u; i=s+1,...,m+s}

Then ¥={V,|eel(n), ueZ,} is a non-
redundant cover for V,.

Proof. First, let us show the covering property:
let k € V, be an arbitrary transfer function and
let k(D) = @(D)"'6(D) where [a(D), b(D)] is in
Hermite’s form (see e.g. Barnett (1971)) and thus
(@, b) is left coprime and 4 is upper triangular
and column proper. Since k(D) is causal, a(0) is
nonsingular and thus (g, b)=a""(0)(d, b) is
monic, left coprime and has the same actual
column degrees and the same linear dependence
relations between the columns in the column-end-
matrix as (4, b); in particular also a is column
proper. Let n; denote the degree of the ith
column of (e, b) and let u=maxn; i=
1,...,8+m. Then we define « as follows. If
there is an index j, 1=j=<s such that n;=u,
then a=(ay, ..., &.n) is defined by a;=n;,
i=1,...,8 ¢=u i=s+1,...,5s+m If this
is not the case we proceed as foliows. Let
j,s+1=j=s+m be such that n;=u and thus
b;_s(u) (i.e. the highest degree coefficient of
b;_s) has at least one non-zero element, in
position 1 say. Then we define a;=n; i#1,
i=1,...,8; o=u for i=1 and i=s+
1,...,s+m. Clearly then ael(x), and by
construction, since g is upper triangular and
column proper, C, has rank s. Thus k € V, and
thus & is a cover for V.

In order to prove nonredundancy, we show
that for each V, € & there exists a k € V,, which
does not belong to any other V5 € &. Let

[a(D), b(D)]

1+D% 0 1...... 1
= 1+2-D% :
0 1+s-D% 1...... 1

Clearly (a, b) is left coprime, a is monic,
for a=(ay, ..., %, U,...,u),u=maxe;, i=
1,...,s, C, has rank s and o eI{u). Let v be
any unimodular matrix with v(0)=1 and let

l,,...,I denote its column degrees. We
consider (4, b) =v(a, b); clearly then the col-
umn degrees of d are a; +1;, ..., & + [ and the
column-end-matrix of 4, corresponding to
(ay+1y, ..., o +1), shows the identical linear
dependence relations as the column-end-matrix
of v, corresponding to {/;, ..., ), and thus is
singular, unless /; = - - - =4 =0. Since the latter
case means v = I, without restriction of gener-
ality we assume /;>0 for at least one j. The
degrees of the columns of b are smaller than or
equal to /=max/, j=1,...,s If this maxi-
mum is not attained or if [<max(e;+1),
i=1,...,s then for every Bel(n), neZ,,
such that (4, B) € Tﬂ, Cg has rank smaller than s.
If at least one of the columns of & has degree [
and [=max(e+1{), i=1,...,s then the
coefficients of these columns corresponding to
power [ are linear combinations of the columns
of the column-end-matrix of v and thus again Cg
has rank smaller than s for every Bel(n),
nelZ,, such that (@ b)eT;. Thus for such a
(a, b) € T, every unimodular left transformation
with v(0) =1 such that v(a, b) € Ty, B €1(n), for
some n must be the identity matrix. As is clear
from the construction of {(a, b), we cannot have
(a,b)e T, pel(u), u<maxa, i=1,...,s If
u=maxe; i=1,...,5 and PBel(u), then
(a, b) € Ty implies B = & and if u >max a; then
Cy has rank less than s for all fe I{u) such
that (a,b)eTz. Thus we have shown
nonredundancy.

Comment 4.1. Clearly for every keV,, ae
I(x), there are infinitely many B e Zy'™, f=«
such that k € Vy (compare Example 4.2), but
none of these § are contained in a I(x) for some
uelz,.

In many situations, either there is a priori
information on an upper bound for the
maximum lag, or if we want to estimate «,
estimation procedures like AIC or BIC demand
the prescription of such an upper bound (see
Hannan and Kavalieris (1984)). If » is such an
upper bound, the next example shows that
{V.| @ €X(u), u=n} is not a cover for {J V..

a;=n

Example 4.3. Consider s=2, m=1 and k=
-1
a”'b

(17 %) =)

Clearly k € V; | o), butit can easily be checked
that k is not contained in any of the V,,
a=( 0 0),(0 1 1,3 0 1),(1 1 1)

This demonstrates that in the case where an
upper bound for the maximum lag is prescribed,
we have to search for another cover.
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Theorem 4.2. Let

Juwy={aeZ{" | ay=u, i=1,...,5+m,
where at least m + 1 equalities hold}.

Then
To={Vo|welu), usn)

has the following property

Proof. One inclusion is obvious. It remains to
show that every ke V,, o;=n, i=1,...,5+m
is contained in a suitable Ve, BeJ(u), u=n.
Consider such a k& and the corresponding
(a, b) € T,. First we transform (a, b) to a row
proper (4, b) by a left unimodular transform-
ation. It follows from Theorem 6.3-13 p. 387 of
Kailath (1980) applied to the inverse transform-
ation that the row degrees of (4, 5) are all
less than or equal to n. Taking in particular
the Popov form (see Proposition 3.2) B=
(Bi ..., Bssm) can be specified as follows: let

B,=k, j=1,...,5 and let B;= max k, for
i=1,..., s

the other indices. Then Cy has full rank and thus

keVg.

Although the cover 7, is not nonredundant, it
still leads to a considerable reduction of the
number of subsets when compared with
{Vo|@;=n}. This has important practical
applications in identification. We illustrate with
the following example.

Example 4.4, Let s=m=2 and assume that
n=3 is an upper bound for the highest lag.
Then if we try to identify k using the cover
73, we have to search through 28 subsets,
whereas {V,|w;=3, i=1,...,4} contains
256 subsets.

5. CONNECTION BETWEEN KRONECKER INDICES
AND THE COLUMN DEGREES OF MONIC ARMA
MODELS

In this section we describe a non-redundant
cover {V, | a€1,} for the set of all systems with
prescribed (but arbitrary) Kronecker indices
n=(ny,...,n). We shall assume throughout
that all Kronecker indices are nonzero.

First let us consider the case where all indices
are equal. We denote by W(u) the set W, for
n=(uu,...,u) and V(u) the set V, for
a=(u,...,u).

Lemma 5.1. (The Mountain Lemma.*)
V{u) = W(u).

* 8o called because the result was obtained when both
authors were on top of an Austrian mountain.

Proof. (1) Let keV(u) with k(D)=
a"(D)-b(D); (a, b)eT,... « Then (a, b) are
left coprime, Ay =1, the prescribed row degrees
of (a, b) are (i, ..., u) and [A,, B,] has rank s.
Therefore [a(D), b(D)] is in reversed Echelon
form and k € W(u).

(2) Conversely let ke W(u) and let k(z)=
p~'(z) - q(z) be in Echelon form for k. Define
[4(D), b(D)] = D“[p(z), q(z)]. 'Then [p(2),
q(2)] is coprime and [4,, B))=[P,, Q,], where
F, is nonsingular in the Echelon form. Also,
[A., B.]=[p(0), q(0)] has full rank by coprime-
ness of (p, g). Therefore k € V(u).

Now we consider arbitrary Kronecker indices.
The main result of this section is as follows.

Theorem 5.1. (The Melk Theorem.}) Consider
W, with n = (ny, ..., n,) arbitrary. Then

(i)W,,cL%Vv, where I, ={a=(ay,...,

Xy pom) ] @ contains ny, . . ., n,; the remaining
m elements of « are equal to max n;}.

(ii) If s <=m the cover {V, | w €1,} is nonredun-
dant. {V,lael,} is even a cover for
(U W,, where P, is the index set cor-

nek,
responding to all permutations of
Ry, o0, Ry

Proof. Part (i). Consider an arbitrary ke W,.
Then we can find a corresponding [¢(D), b(D)]
that satisfies the conditions of Proposition 3.2,
i.e. [a(D), b(D)] is in Popov form. In particular,
there is a subset of s columns of index
P -« ., Ps, say whose column degrees are equal
to ny, ..., n,, and which form a column proper
matrix. Let u = max #;; then the other column
degrees are smaller than or equal to u. Denote
[@(D), 6(D)] =a~"(0)[a(D), b(D)]. Since the
column degrees of [3(D), 5(D)] are the same as
those of [a(D), b(D)], [@(D), b5(D)]eT, for
ael,.

To prove that the cover is nonredundant for
s =m, we show that for each eI, there is at
least one k € W, which belongs to this V; and to
no other V, in {V,|ael,}. Let Bel, and
assume that ! of the first s indices and g of the
last m are strictly smaller than # = max B:. Note
that/ + g =5 — 1. Now construct [a(D), b(D)] as
follows.

Step 1. For each 8, <u, i=1,... , 8, set the ith
element of the corresponding column of
a(D) equal to 1+ D? and set all other
elements of that column equal to zero.

Step 2. In the first s —g —/ remaining columns
of a(D) (corresponding to 8; = u) set the

t8So called because it was discovered on the way to the
famous Melk monastery.

T~
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diagonal element equal to 1+ D* and
the other elements to zero. Hence a(D)
will have 1+ D" in at least one row.

Step 3. In the remaining g columns of a(D), set
the diagonal element equal to 1, the jth
element equal to D“ and the other
elements equal to zero.

Step 4. For each of the ¢ indices B;<u,
i=s+1,...,s+m, set the cor-
responding column of b(D) equal to
[0,...,0,D% 0,...,0]", where the
elements D% are in the rows in which
a(D) has 1 on the diagonal and in such a
way that only one such term D* appears
in any given row.

Step 5. In the remaining m — g columns of (D)
set the jth element equal to D“ In
§s—qg—1 of these columns set one
element equal to 1 in such a way that
each row of [a(D), b(D)], except the jth
row, contains one element equal to 1.
Set all remaining elements in these
columns equal to zero.

Because this construction is rather compli-
cated, we illustrate with an example. Let
s=m=4, and $=(3,1,3,3,3,3,2,3); then
u=3, I=1, g=1, s-l-q=2, m—q=3
Therefore

1+D* 0
@), b= o o°
0 0

(see Proposition 3.2) for s =m every possible
square matrix of [a(D), b(D)] has to be
considered as a row proper candidate in the
transformation used in that Proposition.

Theorem 5.1 gives a cover in terms of monic
ARMA models for the sets W, of systems with
prescribed Kronecker indices. Conversely given
k € V, one would like to know what the possible
Kronecker indices or at least the possible
McMillan degrees of k are. The following result
gives a partial answer in the form of lower and
upper bounds on J8[k], k €V, as a function of
the column-end-matrix C,.

Theorem 5.2. Let (a, b) € T,, « arbitrary, with .

column-end-matrix C, and let ¥ = max ;. Let y
be the largest possible sum of column degrees of
any s columns of (a, b), let o be the largest
possible sum of column degrees of s columns of
(a, b) where the corresponding columns of C,

With the above construction it is easy to see that
(a, b) are left coprime with full rank Cg and
k(D)=a"'(D) - b(D) € W,, where n contains the
I + g indices B; <u, while the remaining n; are
equal to u. Now suppose ke V,, ael,, a#p.
Then there must exist a unimodular transform-
ation u(D) that decreases at least one column
degree of (4, b) while keeping the maximal
degree equal to u, since ael,. The only
columns whose degrees can be decreased are the
columns that contain the elements 1 and D
Since, by construction, each row that contains an
element 1 also contains a term D?, B, =1, any
unimodular transformation that decreases the
column degrees would produce another column
degree strictly larger than u elsewhere. Therefore
would not be in I,.

Part (ii). The covering property for | W,
follows immediately from part (i). nebn

Comment 5.1. The non-redundancy property of
the cover probably also holds when s>m, but
another construction is needed for (g, b) in
order to guarantee coprimeness.

Comment 5.2. Theorem 5.1 shows that in order
to describe the set W, by ARMA Popov forms

0 D D D 0 D?
0 0O 0 1 0 0

1+D> 0 0 0 0 1

6 1 0 0 D* 0

are linearly independent, and let p be the rank
of [A, B,). Then, with k=a"'b, we have

o= 6lk}=max {(u —1)s +p, v}

Proof. This is an easy consequence of Corollary
3.2, part (b) of Janssen (1987) [see Proposition
3.2(D)].

6. THE BOUNDARY OF V(u)

As has been mentioned already, for s>1,
{V(u)|ueZ"} is not a cover for V,. However,
from Proposition 3.1 we see that {V () |ueZ,}
is a cover for V,, and, moreover, from the results
in Hannan and Kavalieris (1984) we see that the
smallest # such that ke V(u) holds, can be
consistently estimated by an identification
procedure, e.g. obtained from minimizing BIC.
Let M(j)cV, denote the manifold of ali
transfer functions of order j. As is well known,
for s > 1, M(j) in general cannot be described by
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one coordinate system and the relation M(j) =
(U M(i) holds (see, e.g. Hazewinkel and Kalman
i=f

(1976) and Deistler and Hannan (1981)). Thus it is
clear that also V(u)=M(s-u) cannot be
described by one coordinate system and
therefore the question of a suitable cover for
V(u) — V(u) arises. V() may be partitioned into
three parts (see, e.g. Deistler (1983)).

(i) V(u) which is the set of all transfer
functions which are parametrized by
T(u) = T(u,.,.,u)~

(i) (7)) = V) = 7(Tw) = T(w)
- ﬁS(uL»J-ou) Vﬁ - V(u),

i.e. the set of all transfer functions which
can be described by equivalence classes on
the boundary of T'(x) but not within T'(x)
(see Proposition 3.1).

(iti) V(u) — z(T(u)); this set is void for s = 1; it
corresponds to the point of infinity in the
parameter space T(u) (see Proposition 3.1)
fors>1.

The investigation of the boundary points in (ii)
and (iii) is particularly important to understand
the properties of identification procedures when
a parametrization of V(u) is considered and
when the true transfer function is in (7 () —
T(u)) or in V(u)—a(T(x)). This has been
discussed in Deistler et al. (1978), Deistler and
Hannan (1981) and Deistler (1983).

In the next Theorem we give a characteriz-
ation of the sets w(T(u)— T (1)) and V(u)~
(T ()) in terms of Kronecker indices.

Theorem 6.1.

@ U Yo-Vw= U W

B=(u,...,u n<(b,...,u
@) Vw-xlw= U W,
n¥(y,...,u)

Proof. Let keW,, n<(u,...,u); then ail
column degrees of the corresponding reversed
Echelon form (&, 6) are smaller than or equal to
u and clearly the same holds for (g, b) =
#(0)™'(a, b) (where a is monic). Now since (a, b)
is left coprime, the rank of (A,, B,) must be
smaller than s, since otherwise k € V(1) = W(u)
and thus, by Proposition 3.1, ke Ve, B<
(4, ..., u). Conversely, let (a, b) € T(1) — T(u)
and write

[p(2), q(2)] = z*[a(D), b(D)].
Clearly the degree of (p, gq) does not exceed u.

By Theorem 1 in Deistler er al. (1978), (p, q)
can be made left coprime without increasing its
degree. As can easily be shown (p, ¢) can also
be made row proper by left multiplication with
unimodular matrices without increasing its
degree. Since for any left coprime and row
proper (p, q), the row degrees are given up to
permutation by Kronecker indices and since
(a, b) ¢ V, =W, part (1) has been proved. Part
(2) follows from part (1), since V, = W, holds.

Comment 6.1. By the theorem above, the class
of transfer functions corresponding to non-trivial
equivalence classes (i.e. which are not single-
tons) on the boundary of V,, = W, is the same for
the two parametrizations considered. Note that

U V> U Vs—V, holds, where in
B<(u,...,u) B=(u,...,u)

general the inclusion is proper.

7. CONCLUSION

We have presented a number of new
properties of monic ARMA models with
prescribed column degrees. We believe that the
main contributions of our paper are as follows.

First we have given a non-redundant cover for
the set of all transfer functions in terms of these
monic ARMA models; in addition we also
propose a cover for the case where the maximum
lag has been prescribed. Our results here allow
for a very significant reduction in the number of
coordinates for which a search must be
performed during an identification procedure.

Secondly, we have examined some connec-
tions between the prescribed column degrees of
these monic ARMA models and the Kronecker
indices of the corresponding transfer functions.
We have given a cover in terms of monic ARMA
models with prescribed column degrees for the
set of all transfer functions with given Kronecker
indices. Conversely, we have given upper and
lower bounds for the McMillan degree of a
monic ARMA system with prescribed column
degrees in terms of these column degrees and of
the corresponding column-end-matrix. These
connections between column degrees and Kron-
ecker indices and/or McMillan degrees are
rather complicated. Moreover, it is likely that an
exact calculation of the McMillan degree can
only be based on a complete knowledge of the
coefficient matrices and not just on the column
degrees or on the column-end-matrix.

Finally, we have characterized the boundary
of the set of monic ARMA systems of prescribed
column degrees, but only in the simple case
where all these column degrees are identical.
The characterization for the points at infinity of
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the parameter space is in terms of Kronecker
indices only. A characterization in terms of
monic ARMA systems, and for sets of arbitrary
column degrees, is still not available. It appears
to be a very hard problem, but a practically
important one if one wants to understand the
properties of the identification procedure.
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