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Abstract: We consider the prediction of stationary stochastic
processes with non-zero mean. When the covariance of the
process is known, but the mean is not, the classical approach is
to first estimate the mean from the past data, and then apply
an optimal predictor to the zero-mean residuals. Bastin and
Henriet [1] showed that an alternative was to use a predictor
based on ‘variograms’ rather than covariance information, thus
avoiding the estimation of the mean. We show here that the
two predictors are identical when the unknown mean is re-
placed by its minimum variance estimate. We also examine,
through simulation, how the two predictors compare when the
statistics are unknown.

Keywords: Time series analysis, Prediction, Variogram, Mini-
mum variance prediction.

1. Introduction’

We consider a discrete scalar stochastic process

{ Fos. Vi ey Py »we) with constant but not neces-
sarily zero mean:
E{y}=m. (1)

We define the ‘variogram’ of the process as the
semi-variance of the increments

y(r, t=1)=3E{(n - -} (2)

We shall assume throughout that the variogram is
stationary, i.e.

2
y(t, t=1)=4(r) =1E{(n=2-2)"} (3)
A process with the properties (1) and (3) is called
1 Because this paper is an extension and correction of [1], we

shall for the most part use the same notations to facilitate
comparison.

intrinsic (see e.g. [2]). If the process is wide-sense
stationary, then the (auto)covariance can be de-
fined as

R(7)=E{(y=m)(y-,—m)}. (4)

For a wide-sense stationary process, the covari-
ance function and the variogram are related by

y(r)=0?=R(r), witho®=R(0). ©)

Note that an intrinsic random process is always
wide-sense stationary, but the converse is not true.
The class of intrinsic processes is larger and in-
cludes Wiener processes as a special case. Except
when specifically stated, we shall from now on
assume that the process {y,} is wide-sense sta-
tionary.

In this paper we shall derive different minimum
variance unbiased (MVU) expressions for (d + 1)-
step ahead predictions of the { ,} process under a
variety of assumptions. In Sections 2 to 4 we shall
assume known second-order statistics and consider
Levinson predictors with growing memory: the
predicted value at time =N uses all available
past data. In Section 2 we shall briefly recall the
expressions of the classical Levinson predictor
(CLP) for yy ., q» given { Yo, Yi» «++» Yn-_1), under
the assumptions that the constant mean m and the
covariance (or the variogram) are known. In Sec-
tion 3 we consider the case where the mean is
unknown. Two different MVU predictors can be
used in this case:

(1) one can compute an unbiased estimate 1,
and then replace the mean by its estimate 7 in the
expressions of the CLP of Section 2. This predictor
will be called Approximate Levinson Predictor
(ALP);

(2) alternatively, one can use a MVU predictor
of the form LV ,b,Yy_;, in which the b; are com-
puted from the variogram function. This predictor,
derived by Bastin and Henriet [1], who called it
the modified Levinson predictor, does not involve
the mean or its estimate in any way.
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In Section 4 we show that the two predictors
are identical if the MVU estimate is used for % in
the ALP. This may appear as a surprising result,
considering that the first involves an estimate of
the mean, while the other does not.

In Sections 5 and 6, we shall consider the more
realistic situation where the statistics of the pro-
cess are unknown. We now consider predictors of
fixed order N, whose coefficients are determined
from sample estimates of the covariance function
or the variogram. These are computed at time ¢
using all 7 available data (1> N). Since a theo-
retical analysis appears extremely difficult, the two
predictors (MLP and ALP) are compared on the
basis of heuristic arguments (in Section 5) and
simulations (in Section 6).

2. Processes with known mean and covariance func-
tion

When the mean is known, the classical (d+1)-
step ahead Levinson predictor (CLP) for Y,,,

given )y, ..., yy_, has the form (see e.g. [3])
N
Inya=m+ E ai(yN—i_ m)=m +aT(Y~mU)
i=1
(6)
where
a"=(a, ...,ay), UT=(1,1, s 1),

Y'=(Y%_,, ..., Vo)

The prediction error ., 29y, ,— Vw44 I8 unbi-
ased. The minimization of the prediction error
variance E{(Jy,,)?} with respect to the a; leads
to the following system of N linear equations:

Ra=R, )
where

R=E{(Y—mU)(Y—mU)T}, (8a)
Ro=E{(Y=mU)(yy, ~m))}. (8b)

Using (5), we can also write
R=o*yuT -, Ry=0U~Ty, (9)
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where
[ v(0) (1) Y(N-1)
re v(}) (0) Y(N.*2)
V=) v(v- L ()
(10a)
[v(a+1)
Iy= Y(d;”) (10b)
“y(dll-n)

Note that y(0) = 0. Substituting (9) in (7) yields an
alternative system of equations for a in terms of
the variogram:

r Ulla 1;,]

\ = , 11
[Ur 0“2”a02] [1 (1)
where

‘ N
af1-4"U=1-Y 4, (12)

i=1

Using matrix and vector notations, (11) can be
rewritten as 4, A, = ¢, with obvious definitions for
A;, Ay and ¢. The optimal prediction error vari-
ance, ¥, 2 E{(Jy,4)*}, can be written in a num-
ber of ways:

Vo=0’—a"Ry=ac’ + 4T},

=0’ = RGR™'Ry=c"4; . (13)

3. Processes with unknown mean and known sec-
ond-order statistics

We now consider the case where the constant
mean m is unknown, but where the covariance
function R(7) or the variogram y(7) are assumed
known. Recall that they are related by (5).

3.1. The approximate Levinson predictor
The most obvious strategy is to replace the

mean in (6) by a linear unbiased estimate based on
the past data:

N
= Z ¥ =8y (14)

i=1

”
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with the unbiasedness condition
¢TU=1. (15)

The CLP of (6) is then replaced by the approxi-
mate Levinson predictor (ALP):

yEa=m+a (Y—mU) (16)

where @ is the solution of (7), as before. This
estimator was called approximate classical Levin-
son predictor (ACLP) in [1]. The prediction error
can be written
yN+déy;\kf+d_yN+d

=m+a (Y—mU)—yy,,+a(i—m).

(17)

The sum of the first two terms in (17) is the
optimal CLP, so that the sum of the first three
terms is the CLP prediction error, Therefore, the
prediction error variance

V.2 E{(}’ﬁw_}’Nw)z}
is
V,=V.+ds
+2aE{[m+aT(Y—mU)—yN+d][ﬁ1—m]}
=V, + a’c}

+2a‘E{[aT(Y-mU) -y,v+d] [(y,, mU)Tf]

since /1 is unbiased. o2 denotes the variance of #.

”m

The third term in the above expression is zero by
(7). Therefore

V,=V.+a%?. (18)

It follows from (18) that ¥, will be minimum if o2
is minimum, i.e. if 4 is chosen as the MVU
estimate of m. The corresponding estimator will
be called MVALP, for Minimum Variance Ap-
proximate Levinson Predictor. The MVU estimate
for /1 is obtained as follows:

ol =E{(m—m)"} =E{[{™(¥ - mU)]*}
={"R¢{ =0~ {TTY. (19)

Minimizing {TR¢ w.r.t. ¢ subject t6{15) yields

ru(UTR“‘U)"R“’U. (20)

‘After lengthy manipulations, using (5), { can also
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be expressed in terms of the variogram function

Y(7):
¢=(UTT W) 'ru. (21)

The corresponding minimum error variance for
the mean estimate will be denoted 52

mne

#=UR W) '=a2—(UTT"WW)"". (22)

(]

Expression (18) shows that the ALP yields a
larger error variance than the CLP, and that the
two error variances coincide when ¢2 -0, as
should be expected. We shall denote by ¥, the
prediction error variance of the MVALP. Using

(12), (7), (22) and (13), we can write

V.=V.+*(UR"WU)™! (23)
=V, +(1-RIR'U) (UR'U)
=0’ ~R4R7'R,
+(1-RIR-W)Y(U'R"U) (24)

Note that this last expression is entirely in terms
of the covariance function of { y,}.

3.2. The modified Levinson predictor (MLP)
When the mean m is unknown, an alternative

strategy is to seek the MVU predictor of the
following form:

N
Inea= Z biyn_;= b'Y (25)
i=1

together with the constraint, imposed by unbiased-
ness, that

N
Y b=1, ie bU=1, (26)
i=1

Minimization of E{(jy,4)?} w.r.t. b subject to
(26) yields the following linear system of (N + 1)
equations:

R ~Ulls RO}
= , 27
[U T ”u] [ 1 @7)
where p is a Lagrange coefficient. Alternatively,
using (5), we get
o olll- (]
Ut ollp 1)

(28a)
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or, with obvious matrix and vector notations,
AN, =c. (28b)
The prediction error variance can be written in a
number of ways:
V,=0>+bRb—2b'Ry=2b"T,— b'Th  (29a)
=p+e*—bRy=p+b"Ty=c"4;'c. (29b)

The predictor MLP was proposed by Bastin
and Henriet [1], who showed that

V,=V.+a*(UTR"U)! (30)

m

with a defined by (12). This, together with (23),
shows that

V,=V,<V,. (31)

"

The inequality in (31) follows from the fact that
v, = min, V,. We show in the next section that the
MVALP and the MLP are identical, which of
course explains the equality in (31).

4. The MVALP and the MLP are identical

Proof. If follows from (16) and (14) that the
MVALP can be written

yEia=(1—a'Uyh+ay

={a¢T+a")Y. (32)
Therefore, we need to prove that
at+al=5b (33)

where a, {, b are solutions of (7), (20) and (27)
respectively, and with « given by (12).

The solution of (27) is unique, because it is the
vector b that minimizes

E{[yn+a)’} =b"Rb+ 62 - 25"R,

subject to (26). It is also trivial to see that a + of
satisfies the last equation of (27). Therefore, to
prove (33), it remains to be shown that there exists
a p such that

R(a+at)—pU=R,. (34)

1t follows immediately from (7), (20) and (22) that
this is so for

p=ags:. (35)

m
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This concludes the proof.

In the process of proving our main result, we
have shown that the solution p of (27) and (28) is
«d}. This yields some closed form expressions for
b and some new expressions for p in terms of
either R(7) no y(¢). From (35), (27) and (28) we
get

b=R Ry~ ag2U)=T"YI, - a52U). (36)

m »

Using (35), (12) and (22), we have
1-UR'R Ty -1
R (37)

U'R™'U Uu'r-v
The second equality in (37) is obtained by multi-
plying (36) to the left by U, and using (26), (12)

and (22). This then allows us to write two expres-
sions for b in terms of R{7) or y(r) only:

’J‘ﬁ

b=R 'R +_1__:_I_J_1:_UB.R~1U (38a)
" UR W
1-UTT T,
A e AL (38b)
u'r-v

The formulas (38a) and (38b) are remarkable
because the expressions in terms of (R, R,) and
(I, I,) are identical. Note that the first term of
(38a) is a, while the second term is af. (Recall
(33).) This is not so, however, for (38b), because
R™'R, # I'"'T,. Finally, note that the expressions
(37) and (38) can also be obtained from (27) using
a matrix inversion lemma.

In Bastin and Henriet [1], it was claimed that
V,—V,=a’%20, and that therefore the MLP
was better than the MVALP. This was based on
the fact that ¥, had been erroneously computed as
V, =V, + a*(c} + 0?) rather than the correct ex-
pression (18). Note, however, that the equality
v, = I_/“ holds only if the unbiased estimator # is

chosen to be the minimum variance estimator. If
the sample mean estimator

§IYN—i (39)

in (16), then V,, < V.

=

g e

is use
5. The case of unknown statistics: Heuristic com-
parison '

In this section we want to compare the ALP
and the MLP in the case where m, R(r) and y(7)
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are unknown and must be estimated from the
data. In such cases it is impossible to use the
growing memory Levinson filters described above,
because it does not make sense to estimate N
predictor coefficients from N data. We shall there-
fore compare finite-order predictors (of order N)
whose coefficients «;, b; are computed as before,
but with m, R(7) and y(7) replaced by their
sample estimates /#, R(7) and ¥(7). The ALP (16)
and the MLP (25) are now replaced, respectively,
by

t+(/ =m+ Z (yl i ) (40)
and
N
Prva= E biyf—:‘ (41)

with the a; and b, computed as indicated. The
sample estimates are obtained using all ¢ data,
assuring /> N:

1
7 Z Yi—ko (42a)

§>

:U’

) E (y! "A?)(yt—k—a-_m)’ (42b)

t—'r

?(T) 2([‘“7‘) Z (yl kT Yi—k— r) . (420)

Note that in the growing memory predictors of
Section 3 and 4, the predictor length coincides
with the number of data upon which the mean
estimate is based. This is not so in the fixed length
predictor (40). Therefore the result (33) of Section
4 no longer holds.

However, if we redefine Y as

YT= (y,_p ---’yr-—N)

and R and R, accordingly, and if we denote by
V., V, and I/:,, the prediction error variances, re-
3pect1vely, of the finite length predictors CLP,
ALP and MLP using exact covariances for the
computation of the a; and b, and (42a) for the
estimation of #, then the expression (30) for V,, is

still valid, and therefore ’

fort=N: V, 2V, (43a)

m?

fort—o0: of—>0andhenceV, > V. <V,

"t

(43b)
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On the basis of this observation, we would like to
compare the finite length ALP (40) and the MLP
(41) in the practical case where the unknown m,
R(7) and y(7) are estimated from increasing data
using (42) 2. We would also like to know whether
the predictor coefficients should be estimated using
R(7) or 9(1). (Recall that all predictors can be
computed using either covariance or variogram
formulas.)

An exact comparison of predictor error vari-
ances is extremely complicated, but the following
heuristic arguments can be made.

(1) Clearly, for t — oo, the estimators A1, R(7)
and #(r) converge to their true values, and there-
fore the ALP will converge to the CLP. Hence,
asymptotically the ALP is better than the MLP;
see (43b).

(2) However, for small sample sizes (¢ small),
there is a good reason to think that the MLP, with
its coefficients computed from the variogram for-
mulas (38b), should be preferred over the ALP
with # replaced by its sample mean. One argu-
ment is that the MLP does not require a pre-
liminary estimate of the mean, and that the ()
are unbiased estimates that are independent of the
mean. The other reason is that, for t =N, V, > ¥,
when second-order statistics are known, One would
think that this result would still hold for small
sample sizes when exact covariances or variograms
are replaced by estimated ones, although this would
be extremely hard to prove.

(3) The computation of the MLP using the
variogram formulas (38b) requires N + 4 statistics,
{¥(7), 7=1, ..., N+d}, while the computation
of the MLP using the covariance formulas (38a),
as well as the computation of the ALP, require
N +d + 2 statistics.

(4) For intrinsic (but not necessarily wide-sense
stationary) processes with known variograms, the
MLP estimator (38b) is the optimal linear predic-
tor: it can be derived directly without going
through (5). In such case R(7) and ¢* may not
exist. Therefore the MLP (38b) covers a wider
class of random processes, and should be preferred
in case of doubt on the wide-sense stationarity of
the process. As it turns out, stationarity is very
difficult to validate in practice. If covariance

% Of course, in such case other predictors might be used such
as maximum likelihood or least squares predictors derived
directly from the data, but our aim in this discussion is to
compare the ALP and MLP predictors.
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estimates are used under the false belief that the
process is stationary, this may lead to completely
erroneous results, as the following example, due to
Matheron [5], shows. Consider a Wiener process
with variogram y(7)=|7|, and suppose we have
observed { y, ¥y, ..., ¥} If the user believes the
process is stationary and computes /1 and R(7)
by (42), then it can be shown that, for 7= 0,

A t’—-1 4 2 72
E{R(T)}"T"§T+§T. (44)
It is a parabola; an apparent variance of R(0) =
(t* = 1)/3t will be found, whereas the true vari-
ance is infinite. The sample variogram (42c), on
the other hand, is unbiased.

6. Simulations

The ALP (with the sample mean used for
and the coefficients a; computed from the sample
covariances) and the MLP (with the coefficients
computed from the sample variograms) have been
compared on simulated data generated from a
large number of ARMA( p, ¢) models, using short
time series. For each run, the ND available data
have been split up into ND = NE + NP data. The
first NE data were used to estimate the predictor
coefficients; the remaining NP data were then
used for validation: the mean square prediction
error obtained on these NP data was computed.
For each model, different combinations were cho-
sen for the order of the predictor N, the prediction
horizon d, the number of data used for estimation
NE, and the number of data used for prediction
NP. For each one of those, the mean square pre-
diction errors ¥, (for the ALP) and V,, (for the
MLP) were computed as the average over NR
independent runs. The conclusions drawn from
these simulations are as follows.

(1) The simulations do not confirm the heuristic
arguments (2) of Section 5: even though the MLP
was almost always better than the ALP, particu-
larly for short time series (NE small), there were
cases the opposite was true.

(2) For processes with exponentially decaying
covariances, the MLP turned out to be con-
sistently better. For processes with damped oscilla-
tory covariances, the ALP was sometimes better.

(3) As the process gets closer to white noise (i.e.

20
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Table 1
Model used to Test v, Vi
generate data
(Ve —5)—095(y;_1—S)=¢,; 1 11.08 5.50
2 5.68 3.12
(3 —=3)=0p_1—3)=¢; 1 4.33 3.14
2 3.86 2.70
(¥ =5)=05(y,_, —5)=¢e; 1 2.50 2.44
2 2.98 2.45
(¥ =3)+0.95(y 1 —5)= ey 1 3.58 9.76
2 348 3.00
(Y =3N+0T (1 =3 =¢; 1 1.63 1.69
2 2.63 2.35
(¥ —5)+05(y,_,—5)=¢; 1 1.45 1.64
2 2.16 1.93

Test 1: N=35, d =3, NE =230, NP =20, NR=10.

Test2: N=3, d=1, NE=15, NP =10, NR =20.

e, = zero mean white Gaussian noise with unit variance.

¥, = average over NR runs of the mean square prediction
error using the ALP and covariance estimates.

V,, = average over NR runs of the mean square prediction
error using the MLP and variogram estimates,

with a covariance decaying rapidly to zero) the
superiority of one predictor over the other (see
point 2) decreases. Typical results are shown in
Table 1: they are a good illustration of conclusions
2 and 3 above. Simulations with higher-order mod-
els have also been performed: they confirm these
conclusions.

7. Concluding remarks

We have shown that, with known second-order
moments but unknown mean, the MLP, intro-
duced in [1], is identical to the classical Levinson
predictor in which the unknown mean is replaced
by its minimum variance unbiased estimate. It is
therefore better than any approximate Levinson
predictor using any other mean estimate. One
might have expected this property to carry over to
the case of fixed-length predictors used on short
time series with unknown (and hence estimated)
second-order statistics. Simulations show that this
is true in most cases, but not all. This result
indicates that, even though the variogram based
predictor is not consistently better than the covari-
ance based one, in the case of estimated statistics
it deserves to be considered and perhaps further
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studied by the control community. It should also

be recalled that, when the process is not wide-sense .

stationary but has independent increments, the
variogram based predictor is optimal, while the
covariance based predictor is not.
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