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Some modifications on the refined instrumental variable methodf

WANG XIAN-LAI} and M. GEVERS§

Instrumental variable methods are known to produce fairly poor estimates of the
noise-model parameters. This paper presents some modifications to Young's
refined IV-AML method, which improve the quality of the noise-model
estimates. The performance of this modified algorithm is evaluated by Monte
Carlo simulations with medium sample sizes.

1. Introduction

The instrumental variable (IV) approach to parameter estimation in time series
models has been proposed and developed by many authors (see, for example, Kendall
and Stuart 1961, Johnston 1963, Wong and Polak 1967, Rowe 1970, Young 1970,
1976, Young and Jakeman 1979, 1980, S6derstrém and Stoica 1981, 1983, Stoica and
Soderstrdm 1983). In the engineering world, the IV method has been extensively
experimented with by Young, and its convergence properties have been established in
Soderstrom et al. (1978) and in Séderstrdm and Stoica (1981) for different choices of
the instrumental variables. .

When it is desired to identify not only an input-output model (parametrized by a
vector §), but also a noise model (parametrized by a vector 7), the IV algorithm must
be followed by a method for the estimation of the noise-model parameters. This can
be done in several ways, using for example, a prediction error method or an extended
least-squares method to model the estimated residuals (namely, the equation
errors). One of the better known methods for the estimation of both the
input-output model parameters 6 and the noise-model parameters y is the ‘refined’
instrumental variable approximate maximum likelihood (IV-AML) method pro-
posed by Young (1976) and further studied in Young and Jakeman (1979, 1980), where
extensive simulation studies are reported. The word ‘refined’ refers to a prefiltering
of the data. In Stoica and Soderstrém (1983), the convergence properties of the
IV-AML method and of other related methods are presented for different model
sets. In this paper, Stoica and Séderstrom have derived an optimality criterion for
the selection of the prefilters and of the instruments. The prefilters of the refined
IV—AML method satisfy this criterion for the particular model set used by Young;
however this criterion can also be applied to other model sets. This led Stoica and
Soderstrom to suggest an optimal multistep procedure for the joint estimation of €
and #.

In all cases, the estimation of # is based on a modelling of the equation errors &
(see § 2); these will of course be a function of the parameters  of the input-output
model, which must be estimated first. The estimation methods for 5, and the
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convergence analysis for # presented in Stoica and Soderstrom, rely on the assump-
tion that the estimates @) are close to the true 6, and that the estimated residuals &, are
therefore good (that is, consistent) estimates of the noise . For small and medium
sample sizes, these assumptions are of course not valid, and in such case the IV-based
methods are known to produce poor estimates of the noise-model parameters. One
reason for this is that the residuals &, are estimated with error, which produces a bias
in the estimation of the parameters 7,

In this paper, two modifications to the refined IV-AML method are
suggested. These modifications have resulted in a significant improvement of the
noise-model parameter estimates where the noise can be modelled by an AR
model. The refined IV-AML method was modified by introducing an additional
instrumental variable, and by compensating for bias in the estimated noise
model. These modifications are based on heuristic arguments, and are not substanti-
ated by any theoretical analysis. However, all the simulations show that they result
in a significant improvement of the noise-model parameter estimates and at the same
time provide estimates of the input-output model that are at least as good as those
obtained with the refined IV-AML method. Two of these Monte Carlo simulations
will be presented. In addition, the choice of instruments in our modified IV-AML
method satisfies Stoica and Soderstrom’s optimality criterion, even with the ad-
ditional IV that we have introduced.

The paper is organized as follows. In § 2 the basic IV method and the refined
IV-AML procedure of Young (1976) are introduced. Suggested modifications are
then presented in § 3, together with a heuristic justification. Some simulation results
are presented in § 4.

2. The instrumental variable method
A brief description of the IV-AML method in its general form follows, along with
the more specialized refined method of Young. Consider the discrete-time stochastic
system described by
B(z™1)
J’k=z(‘z_—;)"“k+fk (1 a)

-1
«:,,zgg_—l;ek (1b)

where the subscript k denotes the sampling time; y, and uy, are the output and
input signal samples, respectively; z~! is the backward shift operator (that is,
z ' =u,_,). The polynomials in eqns. (1) are

Az DN =14az7 '+ .. +a,z"™
B(z™ ) =bo+byz7 ... + bz
Ce™N=l+ciz ' 4. +e,z7"
Dz ") =1+diz" 4+ ... +d,z™

@)

¢ is white noise with the following properties
E{ek} = 0; E{ejek} = Gz(sjk; E{ejuk} = for allj, k

where 0, is the Kronecker delta function. It is further assumed that the system is
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asymptotically stable, and that the polynomials A(z) and B(z), resp. C(z) and D(z), are
coprime.

The various non-recursive IV methods can now be described by the following
general equations:

b= [ZXkZE]_lZ}?kYk 3
where 9 is the vector of estimates of the parameters in A(z™') and B(z™ 1.
b= 4, ... dsa 60 Eﬁh]T C)
fia and 7b are the estimates of na and nb,
ZF=[—Yi-1 - —Vi-sialhi -+ Y-l )

~ while X, is the vector of instrumental variables. Different IV methods are obtained
by different choices of instrumental variables (Soderstrém and Stoica 1981), for
example, filtered inputs or outputs, delayed inputs or outputs, or other combinations.
The noise-model parameters can be estimated in an analogous manner by
approximate maximum likelihood methods:

f=[EWVi ™ EWE (©)
where 7 is the vector of estimates in the parameters of C(z™ ') and D(z™):
f=[¢ .. Cs dl '"[{f:d] (™
fic and Ad are the estimates of nc and nd, and
VE=[—§1‘—1 _Zk~ﬁc &1 N — ®)

Here &, and &, are estimates of &, and ¢,. Finally, W, is a vector of instruments; we
refer to the refined [IV-AML method below for a particular choice of W,.

The convergence properties of the basic recursive IV algorithm have been studied
in Soderstrom et al. (1978).  In Soderstrom and Stoica (1981), several choices of the
instrumental variables have been examined, for the special case of an ARMAX model
structure, such as C(z ') = A(z"!)ineqn. (1). Finally, Stoica and Soderstrom (1983)
have derived an optimality criterion for the selection of the instruments; it should be
noted that this criterion does not lead to a unique choice of optimal instruments.

The estimation of # can be interweaved with the estimation of 8. This is done, for
example, in the multistep procedure of Stoica and Soderstrém (1983), or in the
IV-AML algorithm of Young (1976), which we describe below. The convergence
properties of # will then depend on the convergence properties of §. From the
convergence analysis of Stoica and Soderstrom (1983), the following conclusions may
be deduced about the convergence of the noise-model parameters .

2.1. Convergence of #
Consider the system (1) with the following assumptions:

(i) The process operates in open loop, and certain conditions on the polynomials
A(z™Y), B(z™Y), C(z“),AD(z"‘), on the choice of inputs and of the basic
instrumental variables X, are fulfilled.

(i) Oy 0* as N — oo, where §* is the true 6, and N is the number of samples.

(iii) X, is asymptotically uncorrelated with W;.
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Then &, is a consistent estimate of the noise signal &, and the estimate 7, converges to
the true #* as N —» co.

The refined IV-AML method of Young (1976), which, for the particular choice of
model (1), is identical to the prediction error method of Ljung and Soderstrom (1983)
and the optimal IV method of Stoica and Séderstrém (1983), is obtained by replacing
Yo Zi and X, in (3) by y¥, Z¥ and X%, respectively, where

XE=[ =%t oo =5 s ooy 1" ©a)
ZE=L=n s = Ve W uf 1T 9 d)
X = ﬁ%:ui—;uk (10)

and
G =Fe % yr=F@ Yy, uf =F(z M, (11a)

with
fey= S (11 b)

Az~ YDz 1)

For the computation of # by (6), ¥ is defined by (8), while &, ¢, and W, are
recursively computed as follows:

Sk =Yy — % (12)
ée=3—Vin, (13)
Ak"_"['“zl’f"l"”» —‘E;tk—ﬁca él"tk—l’"'aéi’ck—ﬁd}'r (14)
where
1 1
LI G — 3
zk D(z—])ék’ ek D(z—l)ek (15)

The vector #j, in (13) is the estimate of 1 at the kth sampling instant. Notice that all
the variables defined in eqns. (12) to (15) depend upon the estimate 9 obtained by the
IV-algorithm via the variable % in (12). The two algorithms (IV and AML) are
therefore clearly interweaved (for further details, see Young 1976 or Young and
Jakeman 1979, 1980).

The analysis and the Monte Carlo simulations of Young and Jakeman (1979, 1980)
and Stoica and Soderstrém (1983) show that the introduction of the filters
Cz™Y/AE" YD) and 1/D(z™1) improves the quality of the estimates, compared
to the basic IV methods, where no filtering is performed. However, for low and
moderate sample size, the noise model estimates ¢; and d; are often poor, because the
convergence conditions for # are not satisfied (for instance, the estimate &, is biased,
X, is correlated with W, and so on). From the simulation results of Young and
Jakeman, it can be seen that the noise-parameter estimates are of good quality only
when C(z7') = A(z™ '), that is, in the case of an ARMAX model.

Thus, if the objective is to estimate the system parameters a; and b, (as is often the
case), then the refined IV method can be considered good enough. For the case
where the noise dynamics are also required, we suggest some modifications to the
refined IV-AML method, which have proved to improve the quality of the noise-
model estimates. These modifications are described in the next section,
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3. Some modifications to the refined IV-AML method

Some modifications may be introduced that aim to reduce the correlation between
X, and W, and eliminate the bias of Z,, which has been observed for small and
moderate sample sizes. These modifications consist of introducing an additional
instrumental variable and compensating for bias in the noise model. In addition, a
weighting factor should be used in the algorithm, but this is by now standard
practice. In order to apply these modifications, we adopt a purely autoregressive
(AR) model for &. Thisis of course a restrictive assumption; however most noise
processes can be modelled by long AR models, even if this is at the expense of
parsimony. The advantage with AR models is that the parameters can be estimated
by least-squares methods. The reason for using an AR model is that we can then

A

eliminate the bias on # caused by the errors B (see §3.3).

3.1. Model
We suggest that the following model be used for the representation of the process
B(z™Y)
J’k=m“k+§u (16 a)
&= —-ml———e (16 b)
KTCET)

The polynomials A(z™*), B(z™ 1) and C(z™*) have the same form as in eqn. (2).

32. Additional instrumental variable
The estimate 8 is again given, in non-recursive form, by

9= [=Xrz¥ 12Xt (17)

where X, Z¥ and y} are defined by egns. () to (11), but with Dz )=1 in
(11 b). The estimate f = [&; ... é]" of the noise model is given, as before, by

=[=WVIT ' ZW, (18)
where &, is defined as in (12) and V{ is defined as before:
Vi=[—8y o —&s) (19
But now W, is defined as follows:
Wh"‘"["wkﬂ "‘Wu—ﬁc}T (20)
where W, is an additional instrumental variable generated by
Wy = 6—(;-—_1—) & @1)

The idea of the filter 1/C(z™!) is to filter out unwanted frequency components in
the error between &, and &, these components are generated by the procedure of
estimating &,. It should be noted that this choice for W, also satisfies the optimality
criterion of Stoica and Soderstrom (1983).

In the recursive version, the estimation of # and # is performed by the following
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recursions (see Young and Jakeman (1979)

akxékwl “'pk—l’f;:{&2+ZfTﬁk—1X'z€]hl(Zz‘T9k~1 - ¥&) (22 9)
pk=ﬁk—1‘pkulfffa'z“i'Z:’c"TﬁkqfﬁleFTﬁk—x (22 )
A=y ~ P W [62 + ViPeo ;W (Vi — 2) (23a)
Pu= Py~ P \WL0* + VIR, W1 VP, _, (23b)

where 42 is an estimate of the variance o2 of e

3.3. Compensation of bias Jor the AR noise model parameter estimates

The AR model (16 b) has been assumed for . However, &, is not directly
measured; ouly the estimate & is available, which is computed by (12) and is of course
a function of 8. For simplicity of analysis, we shall assume that

G=ttg ‘ (24)
with
E{e,} =0, Efe;e)= V3 E{ejg} =0 Vi k (25)
The AR model (16 b) is then replaced by
Clz™N&=Clz Yey + ¢, (26)

As a consequence, the estimation of the AR parameter vector # = (cy, ..., ¢,.) based on
the noise corrupted data &, ..., &, leads to biased estimates. Sakai and Arase (1979)
have described a recursive modified least-squares method for the estimation of model
(26), which compensates for this bias, We have adopted this method in our modified
IV-AML procedure. Following Sakai and Arase, the estimate #i of # is computed
recursively as follows

e =1y + kP SRH, -, (27

where #, and P, are defined by (23), and where 2 is a recursive estimate of the variance
y* of . This estimate can be obtained by

kiR, — 52
= (28
, D4 f 1y )
where
Ry=Ry_;+(1+ V:Tﬂpk—lnﬂ)-l@k‘"Vl{ﬁk—l)z (29)

The quantities 6%, &, and ¥, have been defined before. The derivation of the formulas
(27) to (29) and the asymptotic properties of the estimate 7, can be found in Sakai and
Arase (1979).

34. Time-varying weighting Jactor

In our modified IV-AML algorithm, we always use a time-varying weighting
factor 4, in the computation of Py, as suggested, for example, in Séderstrém et al,
(1978), in order to increase the convergence rate of the algorithm. This weighting
factor is generated by

A=20% + (1~ 29 (30)
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where 2° and the initial value 4, of 4, are chosen close to 1 for example, A° =099,
o =0495). The recursive equation (23 b) for Py is then replaced by

Py =[P i — P W@ AK) + VEP_ W) ' ViR ]/ Ak 31)

4, Simulation experiments and discussion of results

Different models have been simulated and the parameters have been estimated
using our recursive modified IV-AML method. The results were always better than
with the original [IV-AML method, in the sense that the noise-model parameters were
always estimated with greater accuracy for low and moderate sample sizes, while the
parameters a; and b, were at least as good as with the refined IV-AML method. We
now show two simulation experiments for models with the same A(z™') and B(z™")
polynomials, but with different noise models. Data were generated from the
following two models:

Model 1

_ o802y | 1 .
BWET 132 74062 7|y, |, 1— 08z T 4+04z7 7"

Model 2

__fosz7to2zy [ ] 1 ,
YT 137 1062 2| g, |, 1- 0527z L+ 006957 2 "

where 1y, and ug, are sequences of independent random binary signals, and ¢, is
gaussian white noise with zero mean.

Tables 1 and 2 show the results obtained with a sample size of N = 500, a signal-to-
noise ratio S/N =9 and a weighting factor generated by (30) with 2°=099 and
Ao =0998. The estimated values of the parameters are the average obtained from 10
Monte Carlo simulations, together with the experimental standard deviations. The
estimated values and the experimental standard deviations obtained under the same
conditions with the original recursive IV-AML method of Young are given for
comparison purposes.

Tables 1 and 2 show that the noise-model parameter estimates obtained with our
modified TV-AML method are significantly better than those obtained with the
original version of the algorithm. The original IV-AML method does not provide
the prefilter introduced by (21), nor does it compensate for the bias caused by the error
on the estimation of &,. As mentioned earlier, the deviation ¢, between &, and Eisa

Modified IV-AML . IV-AML
Parameter True values estimated values estimated values
a, —13 —1:3573 + 00434 —1-3710 + 00299
a, 06 06502 + 00363 06816 + 0-0308
by 08 07760 + 000102 0-8061 + 0-0246
by, 02 0-1971 + 00301 0:2039 + 00437
¢y —-08 07547 4+ 0-1346 —1-4892 4+ 0-0065
¢y 04 03926 + 0-0760 08374 1 0:0053

Table 1. Estimated values and experimental standard deviations for model 1.
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) Modified IV-AML IV-AML
Parameter True values estimated values estimated values
a, -13 —1-3382 4+ 0-0429 —1-3626 + 00307
a, 06 0-6176 + 0:0299 0-6414 + 0-:0224
by 0-8 07696 + 0-0096 0-7879 + 00073
by, 02 0-1792 + 0-0403 0-1809 + 0-0466
¢ —0-527 —04345 + 0-1694 —1-4949 + 0-0016
c, 0-0695 0-1148 4+ 0-0797 07614 + 0-0042

Table 2. Estimated values and experimental standard deviations for model 2.

complex function of £, and therefore causes a correlation between X « and W, for low
and medium sample sizes. This violates one of the convergence conditions on # (see
§2). The modifications 3.2 and 3.3 are one way of alleviating this problem. For
large sample sizes, § is closer to the true 6 and these modifications become less
necessary.

5. Conclusions

Some modifications to the basic IV-AML algorithm have been proposed which
have been shown to be effective in improving the quality of the noise-model parameter
estimates, particularly for low and medium sample sizes. These modifications are
based on heuristic arguments. The authors do not claim to have come up with an
earthshaking new algorithm, and it is certainly difficult to draw general conclusions
from simulation results, However, it appears that the suggested modifications are
worth considering, since they have given systematically better results than the basic
IV-AML in our simulation experiments.
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