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Structural identification of linear multivariable systems using
overlapping forms: a new parametrization

MICHEL GEVERST and AH CHUNG TSOIf

The choice of a parametrization for the representation of a linear muitivariable control
system amounts to the selection of a basis of the rows of the Hankel matrix of Markov
elements. The so-called * overlapping ’ or ‘ pseudo-canonical ’ forms are traditionally
obtained by imposing two seleetion rules : a block selection rule and a chain selection
rule. In this paper, these constraints are relaxed to requiring only a chain selection
rule. This allows for more flexibility in selecting numerically well-conditioned
parametrizations.

1. Introduction

A problem which has been the subject of many studies in linear multi-
variable systems theory is the determination of the structure of a state space
or an autoregressive moving average (ARMA) model for which the parameters
of the model are uniquely identifiable. The first approach is to use canonical
forms (state space or ARMA) (Luenberger 1967, Dehnam 1974, Rissanen 1974,
Guidorzi 1981). However, it was shown by Van Overbeek and Ljung (1982)
that this parametrization may lead to an ill-posed computational problem. An
alternative approach, namely the overlapping parametrization (also called
pseudo-canonical form) has been proposed recently. This concept was first
suggested by Glover and Willems (1974), and studied by Ljung and Rissanen
(1976), Van Overbeek and Ljung (1982), Picci (1980), Rissanen (1981), Deistler
and Hannan (1981), Wertz et al. (1982), Gevers and Wertz (1982), Guidorzi and
Beghelli (1982), and Corréa and Glover (1982). It has been shown that the set
of all finite-dimensional linear systems can be represented by a finite number of
uniquely identifiable parametrizations. Each parametrization can be repre-
sented by a set of integers known as structure indices. Each system may be
represented by more than one such parametrization, and any two parametri-
zations describing the same system are related.

The determination of a possible set of structure indices is obtained by
selecting, in a suitable way, a basis for the rows of the Hankel matrix of impulse
responses (or Markov parameters). In order to obtain a representation that
contains a small number of uniquely identifiable parameters, certain rules must
be imposed for the selection of this basis. All overlapping forms described so
far have involved the following two selection rules (Rissanen and Ljung 1975,
Guidorzi and Beghelli 1982, Corréa and Glover 1982, Wertz, Gevers and
Hannan 1982, Van Overbeek and Ljung 1982, Gevers and Wertz 1982) :

{i) a block selection rule, i.e. if the dimension of the output vector is p,
then an entire block of p rows is chosen ;
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Remark 2.1

In this paper, in contradistinction to Gevers and Wertz (1984), we do not
assume 7 in (2.1) to be minimum ; equivalently, we do not assume A(z) and
B(z) to be left coprime.

From (2.1) it is simple to show that

Y= Z B, (2.3)
i=o

where the R, are p x p matrices, known either as the Markov parameters, or the
impulse response matrices. Furthermore :

R,=HF—K, 1=12,.., Ry=1
Note that the Markov parameters are determined by
Ry=Elyy, ;"] (2.4)

By demanding that the causal inverse of y, exists, i.e.

«
.
€= Z Ny
i=0

K ‘4 —
where Ny=1,, and
=]

N@)= ¥ Ngt

i=0
has no poles outside the unit circle, it is possible to find that
&2y~ Hu

where #,,,_; is the linear least squares k-step ahead predictor of 4, Note that

Gisjia= 2 Biepy,  j=0,1,2, ..

i=j+1

Similarly »

Fivjran= ) Z B J=0,12, ..
i=3+1

Let - A
Yt

Yy(t) & ?;M-l./i—d

| Yin—1it-1

"R, R, R, ..lews

il
e

el es| (2.5)

2M2
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{ii) a chain selection rule, i.e. if a vector is in the basis, then its corresponding
predecessor vector is also in the basis (the predecessor of & vector in the
Hankel matrix is the one that is located p rows above that vector).

For canonical (as opposed to overlapping) forms, a third selection rule was
added that made the selected basis unique (Denham 1974, Rissanen 1974,
Guidorzi 1981). Both Van Overbeek and Ljung (1982) and Wertz et al. (1982)
proposed that the first p rows (namely corresponding to the first block) be
chosen. Unfortunately, it was shown by Gevers and Wertz (1982, 1984) that
this selection rule leads to a corresponding matrix fraction description (MFD)
form which may have a singular leading coefficient matrix. Instead, they
proposed that the ¢th block row be chosen, where ¢=max (n,)~p+1 and n,,
i=1, ..., p are the proposed structure indices. They showed that, with this
selection rule, the corresponding MFD form has an identity leading coefficient
matrix.

It is logical to ask the question : Isit possible to relax the selection rule that
an entire block row needs to be chosen ? If so, what are the properties of the
corresponding parametrization ?

In this paper, we will show that it is possible to relax selection rule (i) above.
The resulting parametrization gives rise to both a minimal state-space repre-
sentation and a non-minimal state-space representation. The relationship
between these two representations will be obtained. It will be shown that the
non-minimal representation is completely observable, but may not be com-
pletely controllable. In addition, it will be shown how the corresponding MFD
form can be determined.,

2. Multivariable system parametrizations

We consider a p-dimensional stationary full-rank zero-mean stochastic
process {y,} with rational spectrum. The linear least-squares predictor of
{y:}, given the past history of the process, is of full rank. Then, {y,} may be
described up to second-order statistics by a state-space representation

Ty =Fa,+ Key }

2.1
yi=He+e, @1

where x, is an n-dimensional state vector, y, is a p-dimensional observation
vector, ¢, is a p-dimensional white noise sequence with covariance matrix @
and F, K, H are constant matrices of appropriate dimensions. F is assumed
to be stable. Alternatively, the process {y,} may be represented by an input-

output reprgsentation AR)y,= Bz)e, (2.2)
where 2y, 2y,,,, A(z) and B(z) are p x p matrix polynomials in z
A@R)=Ag+ Azt + ... + 427"
B(z)= By+ Bz '+ ... + Bz™"
where 7 is the maximum lag in the process. It is assumed that
det A(z)#0 for |z|>1
and lim A-Y(2)B(z)=1

>0
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Definition 2.1
For given 4, i=1, 2, ..., p, denote
(@) S; 2 {Gu(t— 1) gyt —)ex, for some k> 1}

(b) Let n,£number of elements in S,
the structure indices. In addition,

Then n,, n,, ..., n, will be called

2

Il
i

=2

is the dimension of «,.

() m;& min  {m|f,(t—-Dex,), =12 ..., p
m=1,2, ...
(d) s& max  {m;+n,~1}
i=1,2, ...,p
Example

Suppose p=2, n=35, I ={1, 4, 5, 6, 8}, then
Sl = {I’;u(’5 -1}, gla(t - 1)}

Sz = {?;22("‘ - 1): ?723(’5“ 1), 3]24(’5 - 1)}
and

=2, Ny=3, my=1, my=2, s=4

We wish to impose the following selection rules :

Rule 1
8;# (&, or equivalently, n;>1, i=1, 2, ..., p, i.e. every one of the p com-
ponents of y(t) appears at least once.

Rule 2
Fori=1,2,..,p

{?}i,mi(t - 1): gi,mi—i—l(t - l)’ tees gi,mﬁ—m—l(t - 1)}6%,

i.e. the n; components of =, whose first index is ¢ appear in #; successive blocks.
This is the chain rule.

Rule 3
m;=1, for at least one ¢ in {1, 2, ..., p}.

Remark 2.2

This is a relaxation of the selection rules imposed by Van Overbeek and
Ljung (1982), Wertz ef al. (1982).and Gevers and Wertz (1984) in that we do not
require one full block 7, (t—1), j=1, 2, ..., pin the basisz,, In Van Overbeek
and Ljung (1982) and Wertz et al. (1982) k=1, and in Gevers and Wertz (1984)
k= max {n}.

974

Hence

Yylt+1)=

M. Gevers and A. C. Tsot

(Giean ]

?jt+_2/¢

_Z/H:visu

R, R, R,
R, R, R,
B B Ry
By Ry

R2 Ra ‘R4
R3 R4 &
1?4 Ry R
_Rf\./+1 RA;'+2 :

€;
€11

€r 2

[ By ]

e, (2.6)

Comparing.(2.6) with (2.1) and (2.5), it is obvious that the state vector x, forms

a basis of ¥ (¢).

Let the set of selected basis components be denoted by I = {1, 4y, ..

s )

Also, let the [j+ (k—1)pJth component of ¥ ,(¢) be denoted by 7;:(t—1). Let
R7 denote the jth block row of Hy ,, and ry; the ith row of R, i.e.

'ij[‘R]' 'Rj~+‘1 ...]= Tz-

Then, ry;=[i+(j — L)p]th row of H .

Letr;;(k) =row p-vector made up of the kth setof p elements of row Tije

Let z, be the basis.

7y5

7

Tpj

Thus
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Hence, we have
&y =Fx,+ Ke,

Yi=Hr,+e,
where

is an » x n matrix, and

| Yotm, - yplma-km—l 71)2m2 Vp27nz-§-‘n,z—1

) 'ylpmp 71pnt,,+np-«1

y})pmp y;npm,,-#n,wlj

by
H=| h,
hy
is a p x n matrix, and where
hi=[0...0: ... 110...00...:0...0] ifm=1
s R N o
7, ny
and
hi:[ﬂfillmg Biumlz;mm—ﬁ i12m2
v 18':',12mz+nz—1£ .:ﬁilpmp :Bilpm+np——l] lf m’i> 1

The coefficients B,;;, are obtained from the following ps-n relationships for
t=1,2,..,p, 5=1,...,m;—1, and j=mi+n, ..., 8

Mep e — 1

v
Tij= /;1 Z Biskit

=g

(3.5)
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Remark 2.3

Rules 1-3 cannot be relaxed further. If they were not imposed, then the
resultant parametrization would be over-parametrized. Equivalently, the
matrix F might become full.

Example

With p=2, n=25, the following are a few candidate selections {1, 2,3, 4, 5},
{1,8,4,6,8}, {1,3,6,8,10}, {1,4,6,8,10}, {1,6,8, 10, 12}, {11, 13, 2, 4, 6).

We will now define two state vectors which will lead to two different
state-space representations, the first one minimal, the second one not.

3. State-space representations
Representation 1

2= Gm =1 Frmsa =1, o Grymyam, o= 1)5 o i, (E= 1), o,

gp.m,+n;-l(t - I)]T
The dimension of x, is

r
n= 3y
Py

The state-space representation is characterized by the matrices H, F, K
as shown in (2.1). They are obtained by expressing
.7;1,m.+n,(t - 1): ?/A‘z,mﬁ-nz(t - 1)’ tes .ﬁp,m,ﬁ.—n,(t_ l)
as a function of x,, or equivalently, by expressing

"Lmitng, Toimatny <o rr),mp+n.,,

as a function of the corresponding basis rows of Hy . The corresponding
rows of Hy _ may be represented as

rl,m.
rl,m|+n;—1

Tp, mp

_rp,m,ﬁ—n,,—l,_
Thus, for i=1, 2, ..., p, there exists unique varr Such that

» mg k-1
Piomitne = kZI 12 Yiki kt (3.1)
= =My

By the Hankel structure, it follows that

» et e —1

r'r‘,ﬂ?.:"*.*ﬂu‘qu Z Z y-n‘.kirk. ti-qr q 20 (3'2)

k=1 t=mpy
In addition

P Mg~

Fiymernlt =)= F, 2 Vadrlt—1) (3.3)

k=1 I=1my




(3.9)

|

From these, we have

Fz,+ Ke,

Loy =

HZ +e,

Y=
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iy (1)
r1m1+n.l—1( 1)

amy(1)

__rpm,,—,Ln,,—l(l)_
1S an 7 X p matrix,

Remark 3.1

The total number of ‘ free ' parameters for this representation in F is pn,
in K is pn, and in H is vn, where v =number of m, that are >1 (0gv<p—1).

Hence, the number of parameters involved lies between 2np and 3np —n.

Remark 3.2

The possibility of a non-canonical H makes the conversion of state-space

representation to the input-output representation rather difficult.

Representation 2
The state vector is defined as

Elz[gll(t_l): ?jlz(t"l)a T gls(t—l) ?'jpl(e—l)a gpz(t_i)! ARl

The dimension of Z, is ps. The corresponding state-space representation is
characterized by the matrices H, F, K. These are obtained by expressing
Grsr1E—1), Jo gealt = 1), ..., G, a(t—1) as a function of x,, or equivalently, by
eXPressing r; .., ..., 7p 541 28 & function of the corresponding rows of Hy ,, 1.e.

fori=1, ..., p, there exists unique a,;; such that

» M+ ne—1

Toen= % Y
F=1 i
Again by the Hankel structure, this implies

» mrt+ne—1

Ty st ™ Z

k=1 t=my

Agpily, 14g-10 921

Also, we have
e+ nr—1

P
G ot —1)= kgl Y g (t—1)

t=mr

The rows of Hy ,, corresponding to Z, are given by

=
I

(3.6)

(3.7)

(3.8)
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Lemma 8.2
(@) oy =y Fo-tmitni=1)

(b) n of the ps rows of K appear directly in K. The other rows of K are
related to those of K via the 8,;,

P metneg—1

r(1)= Y Y Biurma(l)

k=1 L= 50y

t=1,....p J=1,...,m—1,and j=m;+n;, ..., s

Proof

(@) The result follows from the definition of y (3.1)-(3.2) and the Hankel
structures of ¥ and ¥. Note in particular that, if m;+n,—1=s, then (3.13 a)
follows.

(b) This follows trivially by comparing the structures of X and K, and by
noting the definition of 8,;,, (3.5).

Remark 3.4

To construct K, we will usually need some Bijxr which do not appear in ¥
or H, i.e. they are neither y, nor o;. In fact, if s>m;+n, we need §,,,, for

J=my+n;+1, ..., s and if m;>2, we need B, for j=2, .. m;-1.

Example
Let p=2,n=4 and I={1,3,6,8}. Thus n,=2, my=1, n,=2, my=3 and
8§=4.

Representation 1

0 1 0 0

F= Yin Yuz Y12z Yiss
' 0 0 0 1

LYa211  Yeiz Yooz Vass

1 0 0 0

,_ﬁ‘;!lll 62112 62123 62124

and x, contains the components indexed (1, 3, 6, 8) of YN(t).

H."'..'.'..."
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is a ps x ps matrix

[10...0!
A= 10..0
I 10..0
is a p X ps matrix
_7'11_(1)—
. rls(l)
K=i
runl1)
_rps(I)_

is a ps x p matrix.

Remark 3.3

The total number of ‘ free ’ parameters in this representation in F is np,
in His 0, and in K is p%. Hence, the total number of parameters is np -+ ps.
It is rather difficult to compare the total number of parameters involved in
Representations 1 and 2.

Representation 1 : 2np < N, <3np—n.
Representation 2 : N,=np +p? [ max (m;+mn; — 1):'.
{
It is interesting to consider how Representation 1 is related to
Representation 2. To this end, for ¢ =1, ..., p, denote
Bf.j::[ﬁ’i-jlﬂl] Bijlmﬁ-np-lz s Eﬁijpm,, :Bi;ipmp-k'np—l}
J=L om—1, j=m;+n, .., s (3.10)
o = [O"ilm; (xilm1+n1—ls Eaipmp e aipmp+np~1] (311)
Yi= ['Y'r',lm; < Vilmytng—1 ' e E%‘.pm,, T 7’1Tpm,,+np——1] (312)

The following results are trivial.

Lemma 3.1
y; coincides with either o; or 8, .., l.e.

Vi= 0 ifm+n,—1=s (3.13 a)
Yi=Bimpn, H my+tn;—1<s (3.13 %)

Proof
This follows trivially from the definitions of «;, 8;; and y,, see (3.6), (3.5) and
(3.1). ]

The parameters of H, F, K can be computed from the parameters of
H, F, K and some of the f,;;, as follows.
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where the rows indicated by the arrows are obtained by applying (3.7) with
g=1and 2, respectively. Hence [K, FK, F2K,...]=R. Thus,

rank (K, FK, F?K, ... ]=n

The proof of (ii) is trivial as the observability matrix is a matrix obtained by
permuting the rows of the identity matrix.

Remark 3.5

This theorem tells us that F, K, H is completely observable. However, it

will only be completely controllable if ps=n; otherwise it is not completely
controllable.

4. Input-output representations

As remarked earlier, it is rather difficult to obtain an input-output repre-
sentation from Representation 1. This is mainly because of the non-canonical
form of H. However, it is relatively easy to obtain an input-output repre-
sentation from Representation 2.

Consider the input—output model

A@)y,= B2, (4.1)

where 2y, £y,,,, and 4(z), B(z) are p x p matrix polynomials.

The construction of 4(z) and B(z) from Representation 2 is a trivial modifi-
cation of the results given in § 4 of Gevers and Wertz (1984). Hence, we will
omit the derivations. The results are summarized in the following proposition.

Proposition 4.1
The input-output representation
Az)y,= B(2)e,
may be obtained from Representation 2
T =F7,+ Ke,
y=HZ +e,
where F, K, H are as defined before. Then

—-8 mitng—2 _ motng—3 — mi—1
@5(2) = 2% — &gy g g g 2T Xiimi+ni—2° ¢ - Aigm~ ¢

_ M+ ;—2 Mj+n;—3 _ _ mi—1 ” y
@;;(2) = Xigmjtng—1% 0 Xijmynj—oe I e T Mg BT for i +# j

bilz)=2"+ B2l 4 .+ Bin
bis@) =By 4 . + By i#)

Remark 4.1

Ag=By=1,, hence A(z) and B(z) are both row and column proper. In
addition, we have the following proposition for computing B(z) from A(z) and K.
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Representation 2

0 1L 0000 0 0 rul1)
0 0 1 0:0 0 0 0 r15(1)
0 0 0 1:00 0 0 r1a(1)
g oz 00000 0 gy oy n 714(1)
Fed o 7 .
0 0O 0 0:0 1 0 0 751(1)
0 0 0000 1 0 ra5(1)
0 0 0 0:0 0 o 1 7g5(1)
[0 og1e O 01 0 0 agyy crgpy | L 724(1) |

and
1 0 0 0 0 0 0 0
H=
O 0 0 01 0 0 ¢
and Z, contains the components indexed (1, 3, 5, 7, 2, 4, 6, 8) of ¥ y(£).
In this case
1= ﬁlav Ye=0ay, og=ryy I

Finally, we have the following result concerning Representation 2.

Lemma 3.3
Consider the Representation 2 defined as before, with dim Z,=ps. Then
(i) rank [K, FK, F2K, ...]1=n
where » is the order of the system.
(i) rank [HT, FTHT, (FT2HT, ... |=ps
Proof
(i) From the form of F and K in (3.9), we have
[ (1) ] _
rls.(l)
75(1) :
r1,5+1(1)
rls( 1 )

Ty s+ell) |

................ 753(1)

=
=i
I

N’i
el
=)
I

79 orall) | —

........ 'rpa.(l)

E rp..s'+2(1) «

. 'rp.sdd(i) _ -
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is an (s+1)x (s+ 1)} matrix

0...

0

ill:

)
— Q.

is an (s+1)x (s+ 1) matrix.

Proof

timjtn;—1 -

and

0 ”;C"iy'm s T Mmtn—1
y s

, s

/ ~ -

/ s -

Ve e

T %igms -

/ Vd
e

0

.0
s

The proof follows by the same derivations as those of §4 of Gevers and

Wertz (1984).

Example

We continue the earlier example.

tion 2 in input—output form as

It is possible to express the Representa-

o 0 —oyy [0 —oyg
Yirat+ Yers+ Yivo
0 1 0 —oapgy 0 —agpy
—agp 0 —oyy; 9
+ Yo+ Yy
—ag, O —opy 0
o Bia Piaa Bus Pz
= €4qt €zt €142
01 18214 '13224 /3213 Bzza
Bz Praz B B
+ €1+ €
Borz  Boee Buz  Pise

where g, may be obtained

Remark 4.2

from a;, and K.

From the special structure of A(z), it is possible to write A(z) as

s—mi+l __ —
z . 31,

—{a . gl
4(2) —_ ( 2imy-+ng1—1
t °‘21m;)

— Nny~1
(O‘plnu+m—lz Sl SR
L . + aplm;)

— na—1
(09matn,—12™ 14+ ...
+ X9,)
zs~me+l

- T %oam,

— 75—~ 1
(Xpamatn 22+ o
+ ap2mg)

- np—1
(O‘l'pm,.+np—1z S P
+ O‘ljr)-m,,)

— np—1
(‘xzpmp-t-np—lz E T
+ 0‘2]7711p)

S—Mp+1 __ —
z ? . "’.‘m)-mp

984 M. Gevers and 4. C. Tsoi

Proposition 4.2
Let

be a p(s+ 1) x p matrix where

Bi=

is an (s + 1) x p matrix

is a p(s+ 1) x p matrix where

is an (s + 1) x p matrix

Uy =

B
B=| B?
B
Bitg cevrenenens Bipt
Bits vvvrvrenens Bins
0..0 1 0O
1
ith position
K17
R=| K2
;]
Ki=|ky
ki

[0...010..0]

1

tth position

Then B= MK, where M is a p(s+ 1) x p(s + 1) matrix and where

0..0 —a

fimy v T &

: /
: / v
O 7/ /

7 7/

X ’ 7
T HMime o P
. / e
— ’
"Mii. = | T X%imini—1 Ve
e
0 e
. Ve
Ve

] 1~
1

fimit+ni—1

0..0 1
Ve
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at1—1 mi—1

x zme—1 £ A(z) zme—1
-zmp——l -zmﬂ—l

Thus, the characteristic equation of 4(z) is obtained as

P
m;—p
det A(z)=det A,(z) \ 2 igl

Note that from the definition of s, the matrix polynomial 4,(z) is both row
and column proper. Note also that the diagonal elements of 4,(z) are of degree
(s—m;+1), and the (i, j)th off-diagonal elements are of order (n; —1).

Remark 4.3

As is proved in Lemma 3.3, the Representation 2 may not be controllable.
Equivalently, this implies that the matrix polynomials A(z) and B{z) may not
be right coprime.

5. Conclusions

In this paper, we have relaxed the selection rules of the basis of a state-space
representation of a multivariable control system. In Van Overbeek and Ljung
(1982), Wertz et al. (1982) and Gevers and Wertz (1984), a full block row had to
be selected and the chain rule had to be observed. However, here, we have
examined the possibility of relaxing the rules by deleting the selection of one
full block row. We have examined the representations arising from these
selection rules, one minimal and another non-minimal. We have shown the
relationships between the minimal representation and the non-minimal repre-
sentation. Furthermore, from the non-minimal representation, we can obtain
the corresponding input—output representation. The non-minimal representa-
tion is found to be completely observable, but may not be completely
controllable. Equivalently, the input-output representation may not be right
coprime.

We may ask how useful this relaxation of selection rules is in practice ?
The answer to this may lie in the desire to obtain an orthogonal (or as ortho-
gonal as possible) basis for the state-space representation. In Ljung and
Rissanen (1976), Van Overbeek and Ljung (1982) and Wertz et al. (1982) the
choice of the basis for the state-space is based on either complexity issues or on
orthogonality. The imposition of the selection of a block row seems to be
rather arbitrary. By relaxing this constraint, we allow the basis to be selected
among a wider set of candidate components, thereby increasing the chances of
obtaining a well-conditioned basis. Effectively, we allow the data to inform
us of what the most orthogonal basis should be, subject only to the restriction
of the chain rule.

In practice, it may happen that imposing both the chain rule and the block
selection rule would result in an ARMA model of relatively short AR part.
However, relaxing the block selection rule may result in an ARMA model
which has a long AR part (the lag is s= max (m;+n;~1) which may have
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generically many zero elements. One way to interpret this may be that the
underlying time series consists of a number of dynamical processes of different
time scales. These and other possible interpretations of this new parametri-
zation are currently under investigation.
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