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Abstract—Multivariable systems can be represented, in a
uniquely identifiable way, cither by canonical forms or by so-
called overlapping forms. The advantage of the latter is that they
do not require the a priori estimation of a set of structurat
invariants (e.g. Kronecker invariants). We show here how to
define uniquely identifiable ovetlapping parametrizations for
state-space and ARMA models. We show that these para-
metrizations are all related to a set of intrinsic invariants, which
are obtained from the Markov parameters of the system.
Different forms of overlapping ARMA parametrizations are
derived and their properties discussed.

1. INTRODUCTION
AN 1vroRTANT and widely studied problem in the
theory of identification of multivariate stationary
finite-dimensional stochastic processes is that of
determining the structure of the state-space or
ARMA model for that process such that the model
parameters become uniquely identifiable. Two
different lines of thought have been followed for this
problem. The first idea is to use canonical (state-
space or ARMA) forms (Luenberger, 1967,
Denham, 1974; Rissanen, 1974; Guidorzi, 1981). To
any finite dimensional process one can associate a
canonical form in a unique way by specifying a
selection procedure. Different selection procedures
will lead to different canonical forms, but the
parameters in any two canonical representations of

* Received 15 September 1982; revised 17 May 1983; revised
28 November 1983. The original version of this paper was
presented at the 6th IFAC Symposium on 1dentification and
System Parameter Estimation which was held in Washington,
D.C. during June 1982. The published proceedings of this IFAC
meeting may be ordered from Pergamon Press Ltd, Headington
Hill Hall, Oxford OX3 0BW, U.K. This paper was recommended
for publication in revised form by associate editor J. Mendel
under the direction of editor H. Kwakernaak.

t Laboratoire d’Automatique et d’Analyse des Systémes,
Louvain University, Batiment Maxwell, B-1348 Louvain-ia-
Neuve, Belgium.

{Present address: Department of Systems Engineering,
Institute of Advanced Studies, Australian National University,
Canberra, ACT 2601, Australia.

333

a given process are related by a bijective
relationship. The structure of a canonical repre-
sentation of a process is determined by a set of
‘structural invariants’ (e.g. the Kronecker in-
variants) which are again uniquely defined by the
process and the selection procedure. The disadvan-
tage when using canonical forms is that the
estimation of those structural invariants is very
critical: the parameter estimates are not consistent if
the structural invariants have been wrongly
estimated (Caines and Rissanen, 1974).

In recent years an alternative approach has been
proposed, namely that of using ‘overlapping
parametrizations’. This concept was first suggested
by Glover and Willems (1974), and further studied
by Ljung and Rissanen (1976); Van Overbeek and
Ljung (1982); Picci (1982); Rissanen (1981);
Deistler and Hannan (1982); Wertz, Gevers and
Hannan (1982); Gevers and Wertz (1982); Guidorzi
and Beghelli (1982); Corréa and Glover (1982). It
has been recognized that the set of all finite
dimensional systems can be represented through a
finite number of uniquely identifiable para-
metrizations. Loosely  speaking, a  para-
metrization describing a given system is called
‘uniquely identifiable’ if the parametrized model is
only able to describe the input—output behaviour of
this system for a unique value of the parameter
vector. To each of these uniquely identifiable
parametrizations there corresponds a set of integers
called ‘structure indices’. Each of these para-
metrizations defines a representation, which is able
to represent almost all finite dimensional systems of
a specified order, each system can normally be
represented by more than one such representation,
and any two parametrizations for a given process
are related by a linear transformation which
corresponds to a coordinate transformation in
Euclidean space; hence the use of the word
‘overlapping’ parametrizations. So far, most of the




334 M. Gevers and V. Wertz

work on overlapping parametrizations has been on
state-space representations. These were obtained as
the result of a specific but rather ad hoc choice of a
state-vector, which is taken as a basis of the space
spanned by the predicted values of the observation
process.

The objective of this paper is to give a tutorial and
unifying  presentation of overlapping para-
metrizations for both state-space and ARMA
models. The unifying viewpoint is achieved by
formulating the parametrization problem as one of
defining equivalence classes on the set of all
parametrized probability maps defined on the
observation process. For a p-dimensional obser-
vation process of order n, this defines a quotient
space parametrized by a set of 2np invariants, called
‘intrinsic invariants’, because they are independent
of the choice of a particular finite-dimensional
representation. The main contribution of this paper
is to derive uniquely identifiable state-space and
ARMA parametrizations from these 2np intrinsic
invariants. While the overlapping state-space
representations contain exactly the 2mp intrinsic
invariants, the overlapping ARMA forms contain in
general more than 2np parameters. The parameters
of the moving average part are in fact related by
certain constraints. This may cause some
input—output equations taken independently, to
become noncausal if these constraints are not taken
into account, Therefore, we also introduce two other
overlapping ARMA parametrizations that guaran-
tee causality of each input-output equation.

The outline of the paper is as follows. Section 2
sets the problem of canonical and overlapping
parametrizations in the framework of invariants for
the equivalence relation defined on the set of linear
systems of minimal order n. In section 3, we show
how to define the 2np intrinsic invariants, We also
recall a result, proved in Wertz, Gevers and Hannan
(1982), on the invariance of the determinant of the
Fisher information matrix. The state-space and
ARMA representations derived from the set of 2np
intrinsic invariants are introduced in Section 4,
while Section 5 studies the two other ARMA
representations.

Finally we want to comment on the differences
between using canonical forms and overlapping
forms in identification applications. If canonical
forms are used to model linear systems, then any
given system can be represented by only one
canonical form, The canonical parametrization is
determined by the set of ‘structural invariants’,
which must be estimated first from the data. Thisisa
very critical procedure, as stated above. On the
other hand, a canonical form often has slightly less
than 2np parameters. If the same system is to be
represented by an overlapping form, then any one of
the finite number of overlapping parametrizations is

usually able to represent this system. Therefore, in
an identification context, one can choose an
arbitrary set of ‘structure indices’, estimate the
parameters of the corresponding overlapping form
in the coordinate space defined by these indices and,
if numerical problems arise, change to another
overlapping form using a coordinate transfor-
mation [see Van Overbeek and Ljung (1982) for an
application of this idea). The fact that no
preliminary estimation of structural invariants is
required with overlapping forms is a major
advantage, even if this is at the expense of a few
additional parameters to be estimated.

2. PARAMETRIZATION OF MULTIVARIATE
PROCESSES

Representations

Assumption 2.1. From now on, we consider a real
p-dimensional wide-sense stationary purely non
deterministic full rank zero-mean Gaussian* sto-
chastic process {y,} with rational spectrum D(z). We
also assume that @(z) is positive definite on fzt = 1
and that the linear least-squares predictor of {y}
given the past history of the process is of full rank

[see (3)].

Impulse response representation. 1t is well known
that {y,} can be uniquely described by the so-called
Wold decomposition (Hannan, 1970; Gevers and
Anderson, 1981)

ye= ) He,; = HE" (1)
i=0

where {e,} is a p-dimensional white Gaussian
sequence with positive definite covariance matrix 0,
Ho=1,, H; are p x p matrices called Markovy
parameters or impulse response matrices, and

Y HQHT| < co.
0

If H(z) is defined as

H@)2Y Hz™,
0

then H(z) is analytic in |z2] > 1, the inverse
G(z) £ H™!(z) exists and is analytic in {z] > 1.
Finally, H and E' denote

€y

H=[H, H, Hy...] E=|e_,

* The Gaussian assumption is made for simplicity; we shall see
later that afl results hold, up to second order, for non-Gaussian
processes,
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The representation (1) is often called the
innovations representation. It is causally invertible
[since the inverse filter G(z) is stable]: the process
{e:}, called innovation process, can be obtained
from {y,} as follows:

€ = Z Giye—i =GY' (2)
i=o

where G and Y are defined similarly to H and E’
above.

Assumption 2.2. We shall limit ourselves in this
paper to causally invertible (ie. innovations)
representations.

We now define the predictor space Y,

Y, &span{fiilsi=1...,psk=12..} ()

where i, |, is the linear least-squares prediction of
the ith component of y, +; given Y'. Since {y;} hasa
rational spectrum, ¥, has finite dimension. Let 1 be
this dimension; then n is called the order of the
process {y}. It is the order of any minimal
realization of {y,}. We shall be concerned in this
paper with two classes of minimal representations

for {y,}.

Minimal state-space representation. The process
{y} of order n admits a minimal state-space
representation

Xi+1 = Fx, + Ke,
Ve=Hx, + ¢ 4
with the following properties

(a) x, is n-dimensional and e, is as in (1);

(b) F, K, H are constant matrices of appropriate
dimensions;

(c) F and F— KH have all their eigenvalues
strictly inside the unit circle;

(d) (H, F, K) is of minimal order #, ie.

H
HF
rank | . = p,

HFn—l
rank[K FK...F""*K]=n

Definition 2.1a. The set of all state-space
representations (4) with the properties (a)—(d) will
be denoted by S,,.

Minimal ARM A representation. The process {y;}
of order n admits a minimal ARMA representation

A(2)y; = B(z)e, (5)

AUT 20:3~E

with the following properties

(a) e isasin (1);

(b) A(z) and B(z) are p x p polynomial matrices in
z5

(c) det A(z) # 0 and det B(z) # 0 for |z| > 1;

(@ lim A Y(2)B(z) = I,

(e) deg det A(z) =n;

(f) the polynomial matrices A(z) and B(z) are left
coprime, ie if A(z) = M{z)4*(z) and
B(z) = M(z)B*(z) for some polynomial mat-
rices M(z), A*(z), B*(z), then M(z) must be
unimodular [det M(z) = constant # 0].

Definition 2.1b. The set of all ARMA repre-
sentations (5) with the properties (a)—(f) will be
denoted by S¥.

Identifiability (uniqueness oriented)

We shall now define precisely what we mean by
(uniqueness oriented) identifiability. First we
introduce the concept of indistinguishability,
following Picci (1982).

Definition 2.2. Let 0 be the vector of parameters in
either the triple (H, F, K) of representation (4) or the
pair [A(z), B(z)] of representation (5), and let Q be
the covariance matrix of {e,}. Two parameter pairs
(61,01) and (8,,Q,) are called indistinguishable if
and only if

P(Yg;ex,Ql) = p(Y%;62,02) vY§ and YN >0
(6)

where Y3 is the vector made up of {yo,y1,..., Yt

Remark 2.1. For Gaussian processes, (6) can be
replaced by

Ry(k;04,01) = Ry(k;02,Q2), Vk=20 (7)

where R,(k;6;, Q;) is the covariance function of the
process {y,} generated by model i. Alternatively, all
the results of this paper will hold for non-Gaussian
processes, provided the notion of identifiability is
replaced by ‘second-order identifiability’, by sub-
stituting (7) for (6) in Definition 2.2.

Definition 2.3. A set of parametric representations
M () of the process {y,} is uniquely identifiable if it
does not contain indistinguishable parameter pairs.

For state-space models, say, ./ (6) denotes a set of

- models (4) with a particular parametrization of H,

F, K; the set ranges over all values of 8 for which
properxty d holds. The identifiability problem arises
in the following terms: if, say, a model (4) is sought,
then @ can contain up to n? + 2np parameters, while
Q ranges over the family of p x p symmetric positive
definite matrices, and it turns out that there are in
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general many indistinguishable parameter pairs
(0i1 Qi)'

With the Assumptions 2.1 and 2.2, it can be shown
that (6;, Q1) and (6,, Q,) are indistinguishable if
and only if

Q1 =0z and Hi(0) = Hy(0,), i=0,1,2,...(8)

where H(0) is defined as follows: for a state-space
representation: 8 = (H, F, K) and

H®)=HF'K,Hy=1, 9)
for an ARMA representation: § = [A(z), B(z)] and

H(z) = 'io Hi0)z7! = A" (2)B(z). (10)

By the previous discussion, Definition 2.3 is
equivalent with

Definition 2.3'. A set of parametric repre-
sentations .#(0) of the process {y,} is uniquely
identifiable if two different values of § correspond to
two different sequences of Markov parameters H;(").

Because of (8), we shall drop the explicit
dependence of p(Y§) on Q in the following. The
indistinguishability concept induces an equivalence
relation on the sets S, and $¥*, which we shall denote
by the symbol ~. Let (H, F, K) and (A, F, K) be two
elements of S, parametrized by 6 and 8, respectively
and let [A(z), B(z)] and [A(z), B(z)] be correspond-
ing elements of S¥. It follows from (8)—(10) that

0~0<H(0)=H(B), i=0,1,... (11)
«HA=HT,F=T'FTLRK=T'K (12)
< A(z) = M(2)A(z), B(z) = M(z)B(z)  (13)

for some nonsingular matrix T and for some
unimodular matrix M(z). The matrix triples (H, F,
K) and (H,F,K) [the polynomial matrix pairs
[A(z), B(z)]and [A(z), B(z)]] are called equivalent if
the relations (12) [or (13)] hold.

In order to achieve identifiability, we have to find
a reparametrization of the family p(Y¥; 6), or of the
set of models (4) and (5), in such a way that this
reparametrized family does not contain indis-
tinguishable parameter pairs. We will express this
reparametrization in terms of invariants (MacLane
and Birkhoff, 1968; Rissanen, 1974; Guidorzi,
1981). Some basic facts about invariants are
summarized in the appendix.

Canonical forms and overlapping forms

The reparametrization is achieved through a
factorization of the map p:0— p(;6) in the
following way:

et ep

% a9
Xn

Here &, is the set of all systems of order n, p is the
map defined by the probability law, P is the image of
p; the set X, contains the image of /. The functions
[1% - X, and p: X, — P must satisfy the following
conditions:

(a) V0e ¥, &= f(0)is finite dimensional (15a)
(b) p(;0) = p(-;/(0)), Voes, (15b)
(©) (581 =p( &)= &y =&, (15¢)

The function f consists of a finite number of scalar
components, say fi,..., fy, which form a complete
system of invariants (see appendix) for the
equivalence relation (11), since by (15b) and (15c)

01 ~ 02 p(5f(01) = PO f(02)) < f(6:1) = £(0,).
(16)

We would also like f to be surjective because in this
case there is a bijection between X, and the quotient
spaces S,/ or S¥...

It can be shown that the class of all systems
admitting a minimal realization of order n, is an
analytic manifold of dimension 2np (Clark, 1976;
Kalman, 1974; Dunsmuir and Hannan, 1976).
Hence, every element of &, can be represented by
a set of 2np numbers in an appropriate coordinate
system. However a crucial point is that, when p > 1,
no single parametrization is able to describe this
manifold (Hazewinkel, 1977). In other words, in
order to cover %,., we need several local
coordinate systems, which may or may not overlap,
as we shall see later. Each point in one of these local
coordinate systems is determined by specifying at
most 2np coordinates (hence the dimension of the
manifold), but in order to determine an element of
S~> we also need to specify in which coordinate
system it is described. The local coordinate systems
can be determined by specifying the values of p
integer-valued indices which will be called structure
indices. (Recall that p is the number of components
of y..)

At this point, there are two different ways to
proceed further, both leading to identifiable
parametrizations. The first way is to cover S~ by
non-overlapping local coordinate systems; this
leads to so-called canonical forms. In this case, the p
integer-valued numbers which specify the local
coordinate system constitute an invariant for the
equivalence relation ~. They have to be computed
from the impulse response sequence before the
parametrization can be defined (see next section).
The advantage of these canonical forms is that
sometimes less than 2np coordinates will be
necessary to parametrize a process. On the other
hand, a major drawback is that the determination of
the canonical structure indices, which are invariants
here, is difficult, and it is impossible to parametrize a
process with wrongly estimated structure in-
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variants. A procedure for the estimation of the
structural invariants has been proposed by
Guidorzi (1981).

The alternative is to cover &, with overlapping
coordinate systems; this leads to so-called over-
lapping forms. In this case, the structure indices are
1o more invariants for the equivalence relation ~. A
given process can be represented within several
coordinate systems. In general each of these local
coordinate systems covers a subset of &, which is
dense in ). This means that almost any choice of
structure indices will normally produce a para-
metrization that allows an exact description of the
process. As can be guessed, advantages become
disadvantages and vice versa. Overlapping para-
metrizations always need 2np parameters to
describe a point in a local coordinate system, but if
the chosen structure indices render the para-
metrization ill-conditioned, it will be easy to move
to another overlapping parametrization by a
coordinate transformation (van Overbeek and
Ljung, 1982).

In the canonical form approach, we shall define a
complete system of independent invariants as
follows:

[ S NP x RE (17

where n, the order of the process, will be equal to the
sum of the p integer-valued invariants ny, ..., Hp, and
k, the number of real-valued invariants, depends on
the values of the structure invariants, but in any case
is less than or equal to 2np. In the overlapping form
approach, we first have to specify p integer valued
structure indices ny, ..., #,, which are not invariants,
and then we can define a complete system of
independent invariants as follows:

j;ll ..... n,,:fspn;m,...,np - R (18)

where n = n, + -+ + n, as before, and S, n, is
the subset of &, which can be parametrized within a
local coordinate system indexed by ny,...,H,. (A
precise definition will be given in Section 3.)

In the next section we shall see how to define
structure indices, whether they be invariants or not,
and show how a choice of structure indices ny,...,7p
defines a set of 2np (or less in the case of canonical
forms) invariants.

3, STRUCTURE INDICES AND INTRINSIC INVARIANTS

From (11) it is clear that the Markov parameters
are a complete system of invariants for the
equivalence relation ~. The problem is that the
impulse response sequence is infinite. But since we
have assumed that the process {y,} has a rational
spectrum, the Hankel matrix of impulse responses

HH,H;..
HyH3H,. ..

jfw'w - H3H4H5..

(19)

has a finite rank, n, which is the order of the process.
Hence one can extract n independent rows of this
infinite matrix and reconstruct all Markov para-
meters from a finite portion of these rows.

From (4) and (7) we can write the linear least-
squares k-step ahead predictor Jy i as foltows:

Pevin = ) Hi€—ine (20)
i=k
Therefore
‘t+1/t H1H2H3.,. [
Y; = ﬁz+2/r = H2H3H4.., . €1
ﬁr+3;‘f H3H4H5... €2
= Ko, ok (21)

Thus the structure selection problem can be thought
of as the selection of n independent rows of the
matrix #, . Of, equivalently, of n independent
components of the vector ¥,, which form a basis of
the prediction space spanned by Y. To any such
selection we shall associate a multi-index
i={ig,...,iy), where the numbers  iy,..., iy,
arranged in increasing order, are the indices of the
rows of #,, o, (or the components of Y,) that form
the basis. Of course there is an infinite number of
such selections. Most often, one introduces re-
strictions on these selections in order to obtain a
sparse parametrization of the state-space or ARMA
equations for the process (see below). These
restrictions will reduce the number of possible
selections. An obvious choice of restrictions results
from the full rank assumption on the predictor ¥,
and the particular structure of the Hankel matrix.

By the full rank assumption, the first p
components of the prediction vector Y,, and hence
the first rows of £, ., are linearly independent.
From the Hankel structure of #,, ., it is also clear
that if row i is in the linear span of the preceding
ones, then so is row i+ p. Hence the following
definition.

Definition 3.1. A multi-index 1= (i,..., 1)

defining n independent rows of #, o 18 called niceif
it fulfils the following conditions:

Condition 1. 1, 2,...,pei

Condition 2. 1f jei, j> p, then j— pei. The
corresponding selection is called a nice selection.
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All nice multi-indices correspond to a choice of the
basis inside the first n — p + 1 block rows of Koo
For given i and p, there are only a finite number of
possible nice multi-indices. For example, if n = 3
and p =2, then there are only two nice multi-
indices: i; = (1, 2, 3) and ip = (1,2,4). In general,

n— . P .
there are nice multi-indices for a process of

p—1
dimension p and of order #. One could be even more
restrictive and select the first n independent rows of
the Hankel matrix #, .. Let us state that as
Condition 3:

Condition 3.i = (iy,...,1,), where i1,...,1, are the
Jirst linearly independent rows of Koy

From the assumptions we have made, Condition
3 obviously implies Conditions 1 and 2. In the sequel
Condition 3 will not be imposed, unless otherwise
specified. We now show how to define structure
indices from these multi-indices.

Definition 3.2. Let i=(if,..., i,) be a nice
multi-index defining a basis for the rows of Ko -
For k= 1,..., p, let n, be the least natural number
such that (k + mp)¢i. Thenn,..., n, are called the
‘structure indices’ corresponding to that basis; they
specify which rows of #,, . are taken in the basis,

P
Note that )" m = n and that n; > 1, i = L...,p
=1

Definition 3.3. The set of structure indices

}4
{n1,...,n,} with Y= n is called generic if
1

n
mnn;:~--=n,.=l}:,+1

p

n

n,.+1="‘=i1p: E

ny. . n
for some r, where [—] is the integer part of >
p

and

To any process, there corresponds only one
multi-index obeying Condition 3. The correspond-
ing structure indices are invariants and are the same
as the output Kronecker invariants obtained by
searching for the first n independent rows of the
observability matrix. :

Definition 3 4. Frmi,....n, 18 the set of all nth order
systems for which the rows of H o, indexed by 1,
Ltpo,t+(n—p; 2,...2+ (n, — U)p;...;
Ps...,p + (m, — 1)p are linearly independent.

Sum,...m, 18 @ proper subset of &%, Now for most
nth order processes of dimension p, all selections
obeying Conditions 1 and 2 will correspond to

independent rows. Therefore Sms.oon, 18 also
dense in %, This leads to the following definition.

Definition 3.5, A process of dimension pand order
n is called generic if all nice selections of the rows of
H 0,00 (and of the components of Y,) yield a basis of
the row space of #,, ., (and of the prediction space).
Such a process belongs to

z = ﬂ 39;1;:1;,...,:1‘,

n (..., "p)EJp.u

where

1

14
Jpn = {(nl,. ol 2 1,Y n; = n}.

As an example of a non-generic process, take a
process for which the H and F matrices of a state-
space representation have the following form

X x 0

1 00
Hz[o | 0], F= 10 0 1
X X X

It is easy to see that the selection i = (1,2,3) (ie.
ny =2, ny = 1) does not yield a basis.

Consider now an element of s, Specified
by its Hankel matrix #,, .. We shall construct a
complete system of 2np independent invariants for
this process, i.e. a reparametrization of this process
using 2np parameters.

Let H' be the ith block of p rows of Ho o (g H?
= [HyH3H,...]) and let

hli
H = | hy (22)

hp;
where h; are rows of infinite length. Since Koo I8
anelementof %, npo thevows hyy, .oy, s hy
S PN NN | IR hy,, form a basis. Therefore the
TOWS Migspe.os Iy, +1y can be expressed in a

unique way as linear combinations of these basis
rows

T,
hierny = 3, Y aiphy, i= Lo.,p. (23)
=Kt

These relations define np scalar numbers . Now
denote by h;;(k) the kth element of row h;;. Then the
2np numbers

{aijk’jc: 1:"-’”jsi’j= 1,--~)P;

hik) i=1,..,pj=1,.. mk= L...,p} (24)

completely coordinatize #,,,, nps 1€, they map that
set in a one to one manner on Euclidean space of
dimension 2np. The impulse response sequence H,,
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H,, Hj,...is completely specified by the p structure
indices and these 2np numbers. The 2np numbers
constitute a complete system of independent
invariants which will be called intrinsic invariants of
the process. In the notation of Section 2

j;ln ..... u,,: gjn;,,‘ """ "y — [Ran
(H, Ha, ) = {Gs hij(k)}.

The word intrinsic is used because the invariants are
defined from the unique infinite impulse response
representation, and not from a finite state space or
ARMA model. [Recall (11)~(13).]

Suppose now that we take a canonical form
approach, i.e. the local coordinate system in which
the system is parametrized is defined by the
structure invariants of the system rather than by an
arbitrary set of structure indices. In this case,
because the basis is formed by the first n
independent rows, formula (23) is replaced by

(25)

u;j

p
hig+ 1y = Z Z aphi, 1= 1...,p (26)

j=1k=1
where n; = n; for i =j
ng; =min(n; + Lny), fori>j (27)
ng; = min(ng,ny), for i <j.

The effect of this change of indices is that in general,
there will be less than np parameters oy, We
illustrate this with an example. Consider a process
{y,} of dimension 2 (p = 2) and of order 3 (n = 3).
We know that there are only two possible nice
multi-indices: i, = (1,2,3)and i, = (1,2,4).Ifi; has
been obtained by a procedure selecting any three
independent rows under Conditions 1 and 2, we will
write row h, as

hip =oyg by + @yaihag + diaghaz.  (28)

But if i, has been obtained by a procedure selecting
the first 3 independent rows, ie. if i obeys
Condition 3, then

hyp = ayghyy + 0qa1hag (29)

There is one parameter less in (29) than in (28).

Remark: There are other ways of defining
invariants from the Markov parameters. When
studying ARMA representations, we will consider
two other systems of invariants. Note also that in
Bosgra and van der Weiden (1980) a complete
system of independent invariants has been defined
with 2np entries of the Markov parameters H.
However, their definition requires the selection of
nice multi-indices for both the rows and the columns
of the Hankel matrix 5.

The use of overlapping representations raises an
important question: since a given process can be

represented within several different representations
(corresponding to different choices of structure
indices), is any one of these representations ‘better’
than the others? The word ‘better’ can of course
have different meanings, depending on the objective
of the identification. This question has been studied
by different authors (Ljung and Rissanen, 1976;
Wertz, Gevers and Hannan, 1982) and we refer to
Wertz (1982) for a discussion on this subject. In
Wertz, Gevers and Hannan (1982), the following
result is proved, which can be regarded as a partial
answer to the above question.

Theorem 3.1. Let {y,} be a process of dimension p
and order n which belongs to both &, ., and
SLunt....ony» Where (ny,...,n,) and (nf,...,n}) are
two different sets of structure indices. Let
(005 hij(k) ] and (ofy, hi(k)] be the corresponding
intrinsic invariants. Then, the determinants of the
information matrices corresponding to these two
parametrizations are identical.

Recall that the information matrix M, is defined

as
My = Ey { (6log p(Y/H}) (a log p(Y/f)))}

00 o4

where 6 = [0, hy(k)], and that under certain
assumptions the inverse of this matrix is equal to the
asymptotic value of the covariance matrix of the
estimation errors when using prediction error
methods. This justifies the use of some scalar
measure of this information matrix to discriminate
between various structures.

In the next section, we will relate the intrinsic
invariants to invariants of state-space and ARMA
models. It foliows from the construction of the
factorization (14) and the developments of this
section that we can now give a more precise
formulation of Definition 2.3 for state-space or
ARMA models.

Definition 3.6. A representation such as (4} or (5) is
a uniquely identifiable parametrization for a process
belonging to Ly, ..., s, if €ach element of Lmr..omy
can be represented in this parametrization by a
unique set of parameters,

We are now ready to define uniquely identifiable
state-space and ARMA models.

4, OVERLAPPING STATE-SPACE AND ARMA
REPRESENTATIONS

In this section, we shall first give an overlapping
state space representation whose free parameters
are directly obtained from the intrinsic invariants
(24). Then we derive an ARMA representation
which is related to this state-space model.
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{c) Using again the nice multi-index i, we now
obtain the following representation 5.2

- 22—z 4+ 1 2
A(z)_[Gzz——z—{—Z 23—4]’

E()_ 23“‘3Z+4 Zz"I‘Z
D62 4626 P—z2t2:-2]

The corresponding time-domain model is

1 0 -1 0 6 0
0 1 Yi+3 + 6 0 Vit 2 + l O Ve 1
1 2 10 0 1
+ 2 __4 J’r == 0 1 el+3 + 6 _1 et+2
-3 ¢ 4 2
+ 6 2 €41 + _6 _‘2 &,

Again, the free parameters are bold. The relation
between [A(z), B(z)] and [A(z), B(z)] is easily
established. Again, the transformation matrix is not
unimodular

Alz) = [—zl' -2 24+ g]A(Z)’

B(z) = [mi o g]B(z).

It is left to the reader to check that these three
representations verify all the properties described
above. Notice in particular that, with the first model,
the second component of y,, y?, is the output of an
apparently noncausal relationship

2 1 1 1 ( 2
Vi1 = —Yiv2 = Yie1 t €42+ 2€00y + 2605
+e + el

This apparent noncausality disappears with
Representations 5.1 and 5.2.

6. CONCLUSIONS
To obtain uniquely identifiable models for
multivariable systems, one must construct a
factorization of the input-output map (or of the
probability map in the case of stochastic processes)
in such a way that each system is represented, in an
appropriate quotient space, by a unique set of local
coordinates called invariants. We have shown that
there are basically two ways to obtain these
invariants. In the canonical form approach, the
process (or the system) determines which local
coordinate system is used, via a set of structural
invariants which must therefore be estimated. In the
overlapping form approach, the choice of a local
coordinate system is determined by a set of structure
indices which can be chosen almost at will, provided

they obey some ‘nice’ properties.
In this paper we have constructed uniquely
identifiable overlapping state-space and ARMA

models. We have shown that, once an appropriate
set of structure indices has been chosen, uniquely
identifiable parametrizations in either state-space or
ARMA form are all related to a set of 2np ‘intrinsic
invariants’, which are determined directly from the
Hankel matrix of Markov parameters. In the state-
space representations, the free parameters are
exactly the 2np intrinsic invariants, put in approp-
riate positions. The ARMA forms on the other hand
contain more than 2np parameters: they are,
however, functions of the 2np intrinsic invariants.
We have presented three alternative uniquely
identifiable overlapping ARMA forms, and we have
discussed their properties. Asymptotically, the
overlapping forms corresponding to different sets of
structures indices will give the same value to the
determinant of the Fisher information matrix. This
means that the determinant of the covariance matrix
of the parameter estimates will asymptotically be
identical, whichever overlapping parametrization is
used.
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APPENDIX: SOME BASIC PROPERTIES OF
INVARIANTS

In this appendix we briefly review some basic definitions and
results about invariants. These are all taken from Guidorzi
(1981).

Definition A.1

Let X beasetand let ~ be an equivalence relation on X. Let S
be a second set. A function f: X — S is called an invariant for ~
when

X~ y=f(x) = f{y). (A1)
It is called a complete invariant for ~ when
X~y f(x) = f(y). (A2)

Hence the invariant f is complete if the map f: X — S is injective.

Definition A.2.

Asetfy,..., [ of functions f;: X - S;is called a complete system
of invariants for ~ when the function f:(f;,...,): X - 8§, x S,
X *++ x 8 is a complete invariant for ~.

Definition A.3

A set of invariants f,,..., /i is called independent when the
associated invariant f = (f},..., ;) is surjective. Definition A.3
implies in particular that no invariant f; can be expressed as a
function of the other f}, but the definition is stronger than that.
Two important results about independent invariants are as
follows. The proof can be found in Guidorzi (1981).

Property A.l

Let f=(fi,.. . i) X > S =8, x - x §, be a complete set
of independent invariants for an equivalence relation ~ on X.
Then every other invariant for ~ can be uniquely computed from

I

Property A2

Let f: X — S be a complete set of independent invariants for
~.If h:S— T is a bijection, then g=hof: X » T is also a
complete set of independent invariants for ~. Finally, we give the
definition of canonical forms and another result which is used in
the paper.
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Definition A.4

Let ~ be an equivalence relation on X. A set of canonical
forms for ~ is a subset C of X such that to each xeX there
corresponds exactly one ¢ & C such that x ~ ¢. This element c is
the canonical form of x. The function g: X — C thus defined is a
complete sutjective invariant for ~.

Property A3

Let C be a set of canonical forms for an equivaience relation ~
on X, and let / be a complete system of independent invariants for
~. Then there exists a unique bijection between C and the image
of f.
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