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Optimal Estimation of the Average Areal Rainfall
and Optimal Selection of Rain Gauge Locations

G. BasTtin, B. LorenT, C. DUQUE, aND M. GEVERS

Laboratoire d’ Automatique et d' Analyse des Systemes. Louvain University

We propose a simple procedure for the real-time estimation of the average rainfall over a catchment
area. The rainfall is modeled as a two-dimensional random field. The average areal rainfall is computed
by a linear unbiased minimum variance esimation method (kriging) which requires knowledge of the
variogram of the random field. We propose a time-varying estimator for the variogram which-takes into
account the influences of both the seasonal variations and the rainfall intensity. Qur average areal
rainfall estimator has been implememed in practice. We illustrate its application to real data in two river
basins in Belgium. Finally, it 1s shown how the method can be used for the optimal selection of the rain

gauge locations in a basin.

INTRODUCTION

We propose a simple procedure for the real-time estimation
of the average rainfall over a catchment area from rainfall
measurements made at a few measurement stations in that
area. The estimation of such areal rainfall is an important step
in many hydrological applications. such as evaluation of hy-
draulic baiances, management of surface water resources, or
real-time forecasting of river flows. For this last application
the rainfall over the river basin is, of course. the main input to
any rainfall-river flow forecasting model [Lorent and Gevers,
19767.

Following previous contributions [Creutm and Obled. 1982;
Rodriguez-lturbe and Mejia, 1974; Chua and Bras. 1982], the
rainfall over a basin is modeled as a two-dimensional random
field. This approach allows us to take into account. in a rigor-
ous and systematic way, the seasonal and spatial variability of
the rainfall process.

The estimator for the average areal rainfall is then a linear
minimum variance unbiased estimator (also called BLUE)
[Papoulis, 1965], which is obtained by a straightforward ex-
tension of the well-known kriging approach [Delfiner and Del-
homme, 1975; Journel and Huijbregts, 1978 Delhomme, 1978].
The optimal estimator requires knowledge of the varioaram of
order to obtain realistic rainfall estimates, a thLOl‘ﬁthIll vario-
gram model must be chosen. and its parameters must be esti-
mated. This is the most difficult step.

The main contribution of this paper is in the design of a
procedure for the real-time estimation of a variogram model.
The spatial variability of rainfall data has been analyzed under
different sets of assumptions; the seasonal trends of the vario-
gram and the influence of the rainfall intensity have been
examined. This has led to the adoption of a simple variogram
model, in which the time nonstationarity of the rainfall fun.-
tion 1s entirely concentrated in a time-varyving scaling factor
which can be adapted in real timel The advantage 1s that the
weighting coefficients of the optimal rainfail estimator can
now be computed once and for all. while the estumation vari-
ance is computed 1n real time using a very simple adaptive
procedure.

The objective of our research was to design an adaptive
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estimator for the average areal rainfall which is simple enough
to be used in real time and which does not have to rely on
delicate meteorological interpretations. We believe that the
proposed procedure achieves these objectives. Our estimator
has been practically implemented; we present an application
to real data in two river basins.

Finally, as an interesting by-product. we show how the opti-
mal estimation method developed in this paper can also be
used to optimally select the location of rainfall gauges in the
catchment area.

2. DE&FINITIONS AND NOTATION
The point rainfail depth is denoted pik, 2), with z = (x, y) €
R?, a Cartesian space ccordinate, and k€ N., an integer
index. We consider the discrete sequence (indexed by k):

(k. 2)k=1.2 -, K}

of K nonzero point rainfall depths during K (not necessarily

successive) time intervals. each one of duration Tg. In line with

previous works [Creutin and Obled. 1982. Rodriguez-Iturbe

and Mejia. 1974: Chua and Brus, 1982 Delfiner and Delhomme,

1975], for a fixed k. p(k. z) is viewed as a realization of 4

two-dimensional random field (RF) on R? denoted P(k, z).
The mean and the variogram of this field are written as

mik, 2y = E[P(k, 2)] (n
k.o z) =4 E[{Pth. z) — Pk, )} %] )
2 Jt-wilh-be-ass rned,
Z) is isotropig

with (z;, z;) a pair of current points in
in this paper. that for any k the field \P(&,

intrinsic_assumption™:{(1)
stationary (independent of -V

mik. z) = mk) 3
and (2) the variogram is isotropic and space-stationary (it de-
pends only on the Euclidean distance d; between z;and z)):

ko zoz) = kody) (4)
Consider a catchment area (it is most often a river basin)
QcR* with rainfall measurement stations numbered | to N,

For each value of the index k., the measurements are thus
specific numerical values of the function piA, z):

pikezy) plke 250 pthe zy) ()
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Fig. 1.

Semois river basin: rain gauge locations.

This constitutes a realization of the random N vector:
(k) = {P(k, z,), P(k, z,), -, Pk, zy)} (6)

To illustrate, later in the paper we present two applications:

the Semois river basin (Figure 1; 1230 km?) with N = 17 sta-

tions, 75 = 1 day, and K = 2557 daily observations; and the

Dyle river basin (Figure 2; 600 km?) with N = 16 stations,
= 6 hours, and K = 1425 six-hourly observations.

3. OpPTIMAL ESTIMATION OF THE AVERAGE
AREAL RAINFALL

The “average areal rainfall” A(k) is defined as follows:
1
Alk) = — [‘ P(k. z) dz N
1Q Ja

where [Q] is the area of the considered river basin. Clearly,
A(k) is a discrete-time scalar random sequence indexed by
k=1, -+, K. As is well known [see Journel and Huijbregts,
1978] an optlmal (linear, unﬁiased minimum variance) esti-
mator of A(k) can be computed for each k {rom the set of
rainfall observations [1(k), by

N

Ak =3 4

i=1

{K)P(k. z;) (8)

where the coefficients A;(k) are the solution of the kriging
system:

N
Z/‘.j(k)g*(k, d;) 4 ulky - Q) f (k, z;, 5) d¢ (a)
j=i?
i=1,---,N
N
Y Ak =1 (9b)

Fig. 2. Dyle river basin: rain gauge locations.
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Fig. 3. Semois river: experimental variogram.

plementation, a discretization square grid of M nodes is super-
imposed on Q. The nodes are numbered N + 1 to N + M. The
following numerical approximation is used:

M
k,z;, 0 d Wk, 2y Zn s 10
{Q|J’( 15)s W,-;( Nj) ( )
Notice that it is equivalent to replace the right-hand side of
equation (9a) by the numerical approximation (10) or to di-
rectly adopt a discrete space definition of A(k) in lieu of (7):

1 M
‘4(k)=‘q Zp(k. 2N+j) (11)

j=1

With the numerical approximation (10), the estimation vari-
ance is then given by

||M»<
Mxs

Ailkyy(k, z; :N+j)

1

N 1
M,

II

(12)

1

M?

n[\/]g
Mx

ks Zn i 3N+j)

j=1

4. IDENTIFICATION OF A VARIOGRAM MODEL

The optimal 4; are computed by the linear system (9) from
the knowledge of the variogram y(k, d;;). In practice, however,
the variogram is not given and must be inferred from the
available data. This is the topic of the present section, where
we shall study the estimation of the variogram under dlfferem
sets of assumptions.

Estimation of a Global Mean Variogram

It is well known, of course, that the variogram is a function
of the time index k, but as a first step we shall compute a
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Fig. 4. Dyle river: experimental variogram.
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TABLE 1. Global Time-Invariant Estimates of Variogram
Parameter
x B
Semois river 0.56 0.51
Dyle river 0.204 0.56

global time-invariant estimate of the variogram in the form of
a time average over the K time intervals with nonzero rain-
falls. The reason for doing this will become apparent later.
From the observations in the rain gauges located at points z,
and z;, the following unbiased estimate is obtained:

K
L - — -2
=K k;lp(k, z) — plk, 2);] (13)
Such an estimate has been computed for every pair of rain
gauges in the Semois river basin (K = 2557) and in the Dyle
river basin (K = 1425). The results are graphically presented
in Figures 3 and 4.

The experimental variogram takes the form of a somewhat
extended cluster of points. On the basis of many experimental
results such as those of Figures 3 and 4, and in line with
common practice in the geostatistical literature. we shall fit
the following very simple model to the experimental vario-
‘gram:

Ady)

7'(d5j) = 1dijﬂ (14)

By a least squares fit, the values of Table 1 are obtained (for
d;; expressed in kilometers). The reason why this global model
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Fig. 5. Experimental monthly variograms for the Dyle river.
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is river: estimated monthly variograms.

is of interest is that the parameter f of this time-invariant
model will be used later in a time-dependent model.

Note that other forms of theoretical variograms (such as the
Gaussian, exponential, or spherical model) could also be used.
It is difficult to validate a particular variogram model experi-
mentally, since the estimate of the average areal rainfall com-
puted with each variogram cannot be compared with a “true”
average rainfall, because the latter is unknown. In addition, it
has been shown [Bastin and Gevers, 1984] that the variogram
(in the least squares sense) does not necessarily lead to the best
kriging estimates. In any case, the methodology developed
further in this paper applies almost unchanged to a general
class of variograms, provided they have the form x;*(d;;, f).

Seasonal Trend of the Rainfall RF

It is, of course. unrealistic to assume a time-invariant model
for the variogram because (1) it does not take into account the -
potential seasonal trends of the phenomenon and (2) it would
vield a unique estimation variance g, of the average areal
rainfall (see (12)) for all rainfall events, whatever the meteoro-
logical conditions and the rainfall intensity.- This is not very
plausible.

In order to verify whether a seasonal trend is present,
monthly experimental variograms have been computed. Typi-
cal examples for the Dyle river basin are presented in Figure
5. For graphical clarity the clusters of points have been ap-
proximated by a dashed line which is obtained by dividing the
d;; axis into a number of classes and by computing the means
of +(d;)) for all points d;; which belong to the same class. This
figure clearly shows the seasonal behavior of the spatial varia-
bility of the rainfall process: the variogram appears much
larger in summer than in autumn. Similar trends have been
observed all through every year for which we had data (with
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Fig. 7. Dyle river: estimated monthly variograms.
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TABLE 2. Estimated Values of x and f§ for the Monthly
Variograms of the Form xmid, /™'

Semots Basin Dyle Basin
m 2(m) Bim) 2(m) Bim)
January 0.15 0.63 0.067 044
February 0.28 0.54 0.063 0.59
March 0.23 0.62 0.072 0.60
‘April 0.35 - 047 0.221 0.29
May 0.51 0.59 0.362 0.52
June 1.57 0.40 0.673 0.30
July 1.59 0.51 0.368 0.54
August 111 0.51 0.505 0.31
September 0.53 0.53 0.144 0.54
October 0.21 0.74 0.042 0.56
November 0.13 0.62 0.105 0.49
December 0.32 0.53 0.090 0.61
Global 0.56 0.51 0.204 0.56

rare exceptions due to very special meteorological conditions
such as the drought of 1976 in western Europe).

One could think of explaining these seasonal variations in
meteorological terms, such as convective rainfalls in summer
or frontal rainfalls in winter. However, since we want to pro-
pose a simple procedure for the real-time estimation of the
average areal rainfall, we shall include all the seasonal behav-
ior of the rainfall in the variogram parameters. so as to avoid
the delicate problem of meteorological interpretation.

The results of Figure 5 suggest that a first way of incorpor-
ating the seasonal variations is to assume a piecewise station-
ary seasonal trend (on a monthly basis) for the RF. More
precisely, we assume that the variogram (k. z;, z)) is time-
invariant during a month, but not necessarily from one month
to another. The thzoretical variogram model is now written as

1k, 7, 2;) = yim, d;)) = 2m)d; F (15

where m is the index of the month to which the day k belongs
m=1,2,---,12).

We have computed a theoretical variogram of the form
*(m)d;;#"™ for each month by least squares fitting to all the
available data for that month; for example, the data of No-
vember 1975 and November 1976 are taken in the same class
and processed together.

The results are shown in Figures 6 and 7 and in Table 2.

Again, they clearly show the seasonal patterns of the vario-
grams. It follows from Table 2 that the monthly variograms
differ much more in the coefficient x(m) than in the coefficient
f(m). This observation suggests a further simplification of the
variogram model: The coefficient f(m) is assumed time-

TABLE 3. Estimated Values of x and f for the Monthly Variogram
2m)d;#™ and the Simplified Monthly Variogram x«m)d,’* for Four
Typical Months in the Dyle River Basin

Original Variogram Simplified Variogram
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Fig. 8. Dyle river: estimated monthly variograms (solid curves),
identical to Figure 7, and simplified monthly variograms (dashed
curves).

invariant and set to a fixed value f* while all the time non-
stationarity of the RF is concentrated in the scaling factor
2(m). The variogram model is then written as

;y(k’ Zi zj) = ‘l(m }"(dij) (16)

with

}'*(dij) = dijﬂ. (1?)

where m is the index of the month to which day k belongs. It is
a kind of “separation of variables™; the variogram model is
separated into two factors: x(m), which is time-varying but
space-invariant, and y*(d,;), which is time-invariant but space-
dependent. In the case of the Dyle river basin, for example,
one can take §* = 0.56, which is the value obtained by a least
squares fit over all the available data points for this basin (see
Figure 4 and Table 1). Then %(m) can be computed by fitting
the model (16) to the cluster of points corresponding to each
month. When the value of f* is fixed a priori, it is actually
better to use a weighted least squares fitting for the estimation
of x(m), where the weighting matrix takes into account the
geometrical location of the rain gauges in the basin. For more
details, see Bastin and Gervers [1984]. The results are shown in
Table 3 and Figure 8. Figure 8 shows the estimated monthly
variograms of the form x(m)d;#™ and the simplified monthly
variograms of the form x(m)d;;#* for four typical months. The
figure shows that the simplification is certainly justified: the
curves are so close that they can hardly be distinguished.

The simplified form (16) of the variogram model has som
important implications for the computation of the optim.
estimate of the average rainfall:

1. It is easy to show that the system (9) with the approxi-
mation (10) can be rewritten as-

N 1 M
Z /;'j}‘*(dij) + p* = ,\—1 Z 7'*(di.N+j) i=1-,N (18a)
j=1 M=y

N

z Ai=1 (18b)

TABLE 4. Number of Rainfall Events in Each Class and for Each
Season in the Dyle River Basin

Model Model Intensity Range for Each Class, mm/6 hours
2 B x p* 0.0-0.2 02-04 04-08 08-40 40-72 7.2-128
February 0.063 0.59 0.068 0.56 Winter 78 62 68 133 20 2
May 0.362 0.52 0.326 0.56 Spring 67 47 61 122 18 12
July 0.368 0.54 0.349 0.56 Summer 100 53 45 114 30 14
November 0.105 0.49 0.088 0.56 Fall 103 62 48 137 22 7
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Fig. 9. Seasonal relationship between the estimated average rainfall
A(k) and the variogram scale factor x(k).

Hence the 4; are independent of a(k), and consequently they
are time-invariant. Therefore the optimal estimator

A(k Z APk, z) (19)
i=1
turns out to be a unique time-invariant weichted sum of the
observations P(k, z;), where the weighting coefficients 4;
depend only upon the geometrical location of the rain gauges
and can be computed once and for all..
2. One can also show that the estimation error variance
can be written as

ap (k) = a(k)V;* (20)

A7¥din )
1

1z

-
.y
™M=

1

M
>ZI dV‘xN*} (21)

u[\/];_:

M2
TABLE 5. Weighting Coefficients 4;
Semois River Basin Dyle River Basin
(Ve* = 048) (Vg* = 0.63)

Rain Gauge A % Rain Gauge A %%
1 0.8 1 6.6
2 2.0 2 5.4
3 38 3 5.6
4 2.0 4 2
S 3.6 5 4.7
6 33 6 29
7 8.5 7 5.6
8 9.6 8 5.6
9 6.5 9 6.4

10 39 10 8.4
11 5.2 11 8.8
12 8.9 12 6.8
13 4.0 13 5.9
14 9.8 14 6.8
15 7.4 15 4.6
16 8.6 16 74
17 12.1

TABLE 6. Semois River Basin Estimation Results for Some
Chosen Days in 1971
Date, 1971
Jan. 26  April 26  June I8  Aug 8 Dec. 19
Rain Gauge :
1 337 14.4 270 14.2 114
2 34.7 17.2 26.0 11.4 11.8
3 323 16.3 316 24.0 12.9
4 29.0 15.5 34.2 14.2 16.3
S 338 16.6 336 20.0 13.2
6 320 16.8 352 9.1 9.8
7 30.3 20.0 26.4 7.7 9.5
8 35.8 17.8 323 12.3 1.2
9 31.5 15.7 19.3 8.2 10.0
10 28.4 15.6 41.8 23.2 73
i1 339 20.7 28.2 7.0 12.4
12 39.5 19.6 39.6 228 9.2
13 353 12.8 293 - 245 12.8
14 28.2 245 329 11.0 12.0
5 245 23.1 384 1.1 8.0
16 31.0 214 243 7.8 1.1
17 309 21.8 29.9 8.0 133
Estimation
results
A 319 19.5 30.9 12.7 1.1
1 2.09 2.08 6.39 8.30 0.85
o 0.99 0.98 1.73 1.97 0.63
o/A 3.1% 5.0% 56%  15.5% 5.7%

Values are in millimeters per day.

Here also, the variance V;* is time-invariant and can be com-
puted once and for all; the time dependence of a.(k) is only
through x(k).

Influence of the Rainfall Intensity

For both the Semois and the Dyle river basin we have
pointed out the important s2asonal variations of the vario-
gram. One might wonder, however, whether these seasonal
variations in the variogram are not greatly amplified by the
differences between the mean rainfall intensity in summer and
in winter. More specifically, are the larger values of the vario-
gram in summer not caused by the higher intensity of the
rainfall during that season rather than by a truly larger spaual
variability ?

In order to study the potential relation between the rainfail
intensities and the variogram, we have performed the follow-
ing analysis:

1. The esumates A(k) of the average areal rainfall for all
thg:h_avz}wihl”gplg_r&a_mfall events are computed. using (19) with the

2 The ramfall data are partitioned into four seasons de-
fined as winter: January, February, March: spring: April,
May, June; summer: July, August, September; and fall: Oc-
tober, November, December.

3. For each season the rainfalls are subdivided into six
classes according to their intensity levels measured by A(k)
computed in part | of the analysis. For the Dyle river basin
the number of available data in each class for each season is
given in Table 4.

4. For each class in each season the coefficient x(k) of the
variogram model is computed by a least squares fitting as in
the previous sections.

The result of this procedure is illustrated for the Dyle river
by the chart presented in Figure 9, which shows x(k) versus
A(k) (with a bilogarithmic scale) for each of the four seasons.
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TABLE 7. Dyle River Basin Estimation Results for Some Chosen 6-hour Periods in 1976, 1977, and
1978
Dec. 6. 1978 April 28. 1978 May 16. 1977 July 21. 1976 Nov. 1, 1976 Nov. 12. 1976
1200- 1800 1200-1800 1200-1800 0600-1200 1800-2400 1800-2400
Rain Gauge
1 1.8 10.3 7.0 6.3 0.8 1.5
2 14.6 1.0 0.0
3 26 9.3 7.8 3.6 11 24
4 0.0 4.7 6.1 23 1.3 2.3
5 2.8 6.8 10.3 10.4 1.1 26
6 1.3 12.4 9.3 14.0 1.2 2.8
7 1.9 4. 10.3 11.6 1.2
8 1.1 7.1 14.7 11.6 09 25
9 1.6 2.6 9.6 6.9 14 24
10 1.2 0.6 12.0 6.2 1.8 22
11 1.4 43 14.0 9.3 1.8
12 1.7 35 10.0 8.0 1.7 22
13 1.9 7.4 0.0 1.6 22
14 1.3 6.2 4.6 40 1.9 2.7
15 2.6 43 11.0 18.0 2.6
16 2.7 11.2 120 71 0.9 22
Estimation
results
A 1.76 5.83 9.40 7.98 1.34 217
i 0.077 1.093 1.783 3.156 0.051 0.107
or 0.22 0.83 1.06 1.41 0.18 0.26
oA 12.7% 14.3% 11.2% 17.7% 13.3% 11.8%

Values are in millimeters per 6 hours.

The chart shows that even when rainfalls of the same inten-
sity levels are considered. the seasonal trend is sull clearly
present in x(k). For example, when A(k) = 1, the value of x(k)
is twice as large in summer as in winter. However, the chart
also shows that the estimation error variance oz2(k) = 2(k)V;*
is a function of the rainfall intensity and that choosing a
unique variogram model within a given season would lead to
a systematic underevaluation of o2 for high-intensity rainfalls
and to an overevaluation for low-intensity rainfalls. Therefore
the procedure that we have adopted ultimately for the compu-
tation of the averdge areal rainfall is as follows:

1. For each basin considered, using all available data,
compute once and for all the coefficient f* the weighting
factors 4;, the normalized error variance, and the chart
{x(k)-A(k)) just described and illustrated in Figure 9.

2. Then, for each period k, compute

N
Alky = Z Aiplk. z))
i=1
pick the value of x(k) corresponding to A(k) on the chart, and
compute oz %(k) = x(k)Vg*.

Notice that with this procedure the time nonstationarity of
the random field is concentrated in the time-varying scalar
parameter x(k), which is computed in real time and which
takes into account both the seasonal variations and the effects
of the rainfall intensity through the use of the chart (x(k)-A(K)).

Tables 5. 6, and 7 show some typical results of this esti-
mation procedure for the two basins considered here.

5. OPTIMAL SELECTION OF THE RAIN GAUGE
LOCATIONS

As we have pointed out in the previous section, the normal-
ized estimation error variance V¢* depends only on the geo-
metrical location of the measured points. Obviously, the
choice of the variogram model and of the parameters is con-
ditioned by the particular set of available data. But once the

variogram model is chosen, the variance Vi* can be viewed as
depending exclusively on the location of the rain gauges.
Hence it becomes possible to compute the error variance V¢*
associated with any set of hypothetizal data points without
getting actual data at these points. Therefore the normalized
variance };* is an efficient tool for solving rain gauge allo-
cation problems. For example, the variance V;* can be used
for (1) choosing the location of an additional rain gauge in
order tc improve the estimation accuracy as much as possible,
(2) selecting the best locations of additivnal rain gauges
among a set of admissible locations. and (3) selecting the most
representative subset of M rain gauges from a set of N avail-
able ones.

We shall now illustrate these points in the case of the
Semois river described in the previous section.

Iterative Selection of the Most Representative
Rain Gauges

Two potential supplementary rain gauge locations (num-
bered 18 and 19) are added to the 17 existing ones (see Figure
10). For each of the 19 locations we can compute the variance
Ie* as if each of them was the only one available and select
the one that leads to the smallest V;*.

Fig. 10. Two potential supplementary rain gauges (triangles).
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[terative selection of the rain gauge locations in the Semois
river basin.

Fig. 1L

Next we can add to this first gauge a second station which,
combined with the first one, leads to a minimum V;* again.
This procedure can be continued, adding more stations and
monitoring the decrease of the normalized variance V* of the
estimation error, until the obtained precision is judged satis-
factory. For the Semois river basin the result of this successive
selection is illustrated in Figure 1. We notice that (1) the last
seven rain gauges chosen (6, 10, 5, 11, 4, 2. and 1) are obvi-
ously superfluous, since including them in the optimal esti-
mator does not result in any significant decrease of V;* and (2)
the two potential supplementary locations (18 and 19) are
among the three “best” ones in order to improve the average
rainfall variance estimation.

Selection of the Most Representative Subset
of Three Rain Gauges

At some point, the Belgian Ministry of Public Works, in
charge of waterways, decided to equip three existing rain
gauges in the Semois river basin with telemeasurement faciii-
ties. It was therefore desirable to choose the best subset of
three rain gauges among the 17 existing ones. The normalized
variance Vg* was computed for all possibie combinations of
three locations. The best configuration was found to be (9, 12,
14). Notice, however, that with this configuration the esti-
mation variance V;* is slightly larger than with the configur-
ation (12, 18, 19) involving the two hypothetical locations 18
and 19 (see Table 8).

We have also compared the estimated values of 4(k) and of
as,ﬁff(k) using either the three stations (9, 12, 14) or the 17
stations. Typical results for the Semois river basin are present-
ed in Table 9.

River Flow Prediction

The average areal rainfall, estimated by the procedure pre-
sented in this paper, has been used as input of a rainfall-river

TABLE 8. Normalized Estimation Variance and Weighting
Coeflicients for Scveral Rain Gauge Configurations in the
Semois River Basin

Rain Gauge Weighting Coefficients
Configurations Ve* A
9, 12, 14 1.02 Ao =035 4, =031 4, =034
12,1819 0.93 A, =033 24,, =035 ,,,=032
17 stations 0.48 see Table 4

TABLE 9. Comparison Between the Estimated Values of A(k) and
of 5. A(k) for Some Days in 1971 Using Either Three or 17 Stations,
in the Semois River Basin

Date, 1971
Jan. 26  April 26  June 18  Aug 16 Dec. 19

. Three-Station Rain Gauge Configuration /9, 12, 14)

A(k), mm/d 329 199 304 137 10.4
o Alk), % 44 7.3 8.4 21.2 8.9
R 17-Station Rain Gauge Configuration

Alk), mm/d 319 19.5 309 12.7 11.1
op Atk), % 31 5.0 5.6 15.5 5.7

-flow model that is used for the short-term prediction of river

flows. Despite the fact that with the configuration (9, 12, 14),
Vg* = 1.02 as compared with V;* = 0.48 when 17 rain gauges
are used. it has been observed that this deterioration of V;*
with the configuration (9, 12. 14) increases the river flow pre-
diction error variance only slightly [Gevers and Bastin, 1982].
This observation is of interest for the implementation of a
real-time telemeasuring network; it shows that river flows can
be forecast in real time with good precision using only a very
limited number of telemeasured gauges.

6. CONCLUSIONS

We have presented a new procedure for the estimation of
the average areal rainfall over a river basin. The procedure is
simple and concise and can be implemented in real time; it
does not require any meteorological interpretation of the rain-
falls. The estimated average rainfall is a fixed linear combi-
nation of the measured point rainfall depths. The time non-
stationarity is reflected in the variance of the estimate through
an adaptive parameter x(k), which can be read off directly
from a precomputed chart; this parameter takes into account
both the seasonal variations and the effects of the rainfall
intensity.

One of the by-products of our procedure is that it yields a
simple method for the selection of “the most informative™ rain
gauges among a set of existing ones, or for the selection of an
optimal location to install additional rain gauges. An appli-
cation has been presented.

Our procedure has been used for the real-time estimation of
the average areal rainfall on several river basins. The esti-
mated rainfalls were then used as input of a river flow predic-
tion model.
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