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On the minimality of feedback realizationst

BRIAN D. 0. ANDERSONY and MICHEL R. GEVERSS$

Given minimel dimension realizations for two linear systems with exogenous and
feedback inputs, we derive necessary and sufficient conditions under which the feed.
back interconnection of these two realizations is itself minimal. The conditions
involve poles and zeros of certain transfer function matrices, and are relevant in
problems of identification of feedback systems,

1. Introduction

Consider the discrete time feedback system illustrated in Fig. 1 which
results from the feedback interconnection of two linear models

M1: y;=Fle)u, + Qz)w ' (1)
M2 w;=Hz)y,+ Kz, (2)

with y,eR? and u,eRm™,  F(z), G(z), H(z), K(z) are proper real rational transfer
function matrices. This arrangement oceurs commonly in problems of

lw
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v

Figure 1. Basic feedback system.
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identifying feedback processes : the processes {y;} and {u;} can be thought of
as the output and the input of a linear feedback process, and the processes
{m;} and {n;} can be thought of as noises acting on {y;} and {«;}, in which
case {w;} and {v;} are white noise sources and G(z) and K(z) shaping filters.
Of course, {w;} and {v;} can also be deterministic inputs to the processes
modelled by M1 and M2 '

We shall be concerned with the following problems. Assuming that M1
and M2 are described by two minimal (state space or matrix fraction descrip-
tion) realizations, under what conditions is the state variable realization
naturally induced in forming the feedback interconnection of these two realiza-
tions itself minimal? Equivalently, when is the McMillan degree of the
interconnection the sum of the McMillan degrees of M1 and M2 ¢

The conditions will be on the poles and zeros of F(z), G(z), H(z), K(z). Most
papers dealing with feedback interconnected models as shown in Fig. 1 have
been concerned with the stability of such feedback models (see, for example,
Desoer and Chan 1975, 1976, Callier et al. 1978, Anderson and Gevers 1981) or
with the properties of jointly stationary stochastic feedback processes (see,
for example, Gevers and Anderson 1981, Caines and Chan 1975) but questions
of minimality have turned out to be relevant (Gevers and Anderson 1981).
In Callier and Nahum (1975) the observability and controllability (and hence
the minimality) of feedback interconnected systems were studied for the
special case where m=0 and K (z)=1T in Fig. L.

u »| F +

Figure 2. Specialized version of scheme of Tig. 1.

We shall consider here three situations, which will be studied in §§2, 3
and 4, respectively. First we present a very simple result for the special
case represented by Fig. 2. In this case we show that the McMillan degree
of the transfer function matrix that links (m,n) to (y, u) is the sum of the
McMillan degrees of F(z) and H(z). In §3, we study the configuration of
Tig. 1 for the special case where all the signals are scalar. We derive a set of
necessary and sufficient conditions for the McMillan degree of the transfer
function matrix linking (w, v) to (y, «) to be the sum of the McMillan degrees
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of M1 and M2. In §4, we derive necessary and sufficient conditions for
this to hold for the same arrangement, save that {y;} and {u;} are vector
processes.

2. Notations and a preliminary result

Consider the set up of Fig. 1, with yeR?, ueR™, weR" with » > p, and veR®
with s>m. We shall consider polynomial matrix fraction descriptions
(MFDs) for F(z), G(z), H(z), K(z)

(1) left coprime MFDs denoted
F=Dy'Nyp, G=Dg'Ng H=Dyg' Ny, K=Dy*Ng (8)
(2) and right coprime MFDs denoted
F=N,Dp', G=N Dg', H =N Dy, K=NgDg?' (4)

Here the matrices Dy, Np, ..., N, Dy are polynomial matrices of appropriate
dimensions in the indeterminate z, with the denominator matrices Dy, D¢, ...,
Dy square.

We use the usual definitions for the poles and zeros of a transfer matrix
(see, for example, Desoer and Schulman 1974) : z, is a pole of F(z) if and
only if det Dp(z)=0; 2, is a zero of F(z) if and only if rank N p(z,) <normal
rank Np(z), where normal rank Nj{z)= max {rank Np(z)}. We recall also

=

2!
that if F=Dyp Ny with Dy, N, left coprime, then the McMillan degree of
P, denoted 8(F), is equal to the polynomial degree of det Dp(z), where
det D{z) denotes the determinant of Dp(z). The MecMillan degree is also
the order of any minimal state variable realization of F(z).

Having defined left coprime MFDs for the individual transfer function
matrices F, G, H and K, we also define left coprime MFDs for the matrices
[F:G]and [H:K]. Let A(z) be the least common left multiple of Dy{z) and
Dylz); then A=EyDp=EzDgy for some polynomial matrices Eq(z) and
E{z), with Egand Ep left coprime. Then, defining B=EGNyand C=EpNg,
we have the following left coprime MFD for the transfer function matrix
[F:6)

[F:G]=A[B:C] (5)
with
A=EyDp=EyDg, B=EgNp, C=EpNg (6)

Similarly, a left coprime MFD for the transfer matrix [H:K] is defined as
follows
(H!'K1=L"1M:N} (7)
where
L=ExDy=EuDyg, M=EgNy, N=EuNg (8)

with K, and Ey left coprime.

From the coprimeness of the MFDs (6) and (8) it follows that the order
of any minimal realization of the model M1 is n, £deg det A(z), while the
order of a minimal realization of M2 is n,2deg det L(z). Now consider the
feedback connection of Fig. 1. From eqns. (1) and (2) it is easy to derive an
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expression for the transfer matrix W(z) linking the z-transform of the process

Wy Y
to the z-transform of the process

v %

Wz)= (9)

(I-FH)'G¢ (- FH)"FK
[(I ~HF)'HG (I-HF)K }

Equivalently, using eqns. (1) and (2), and the coprime MEFDs (6) and (8),
we can write W(z) using a natural MFD form as

4  -BT[C o
W(z)= [ } J £ P2)Q(2) (10}
-M L 0 N

With this natural MFD we associate the following polynomial matrix X(z)
which will be used frequently later on

T4 B C 0
X(z)é[ J (11)

-M L 0 N
Since
A - B
det P(z) 2 det [ ] =det 4 det [L— M A-1B] (12)

-M L

and since H=A-1B and K =L-1M are proper, it follows that deg det P(z)=
%y +ny.  Therefore, S[W]=8[F:G]+8[H K] if and only if the factorization
(11) of W(z) is left coprime. We shall thus be concerned with specifying
conditions under which the factorization (11) for W(z) is coprime.

We first prove a preliminary result for a simpler feedback configuration,
namely that of Fig. 2, i.e. Gz)=1 and K(2)=1.

* Theorem 1
Let F=Dpt Ny and H=Dy=1 Ny be left MFDs for F(z) and H(z), and
let W= P-1Q be a left MFD for W(z) with

Dy —Np Dy 0
Plz)= } Qz)= [ ] (13)
—-Ng Dy 0 Dy

Then P-1Q is left coprime if and only if D1 N p and Dyt N, are left
coprime,

Proof
Recall that a factorization DN is coprime if and only if the matrix
[D:N] has full row rank, and consider the matrix

Dy ~Np D, o0
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Then the resualt follows immediately from
0 -Nyp Dy 0 J

-Ny 0 0 Dy
=rank [Np Dp]+rank [N, Dy

rank ¥(z)=rank [

3. Scalar feedback systems

In this section we consider feedback configurations as shown in Tig. 1
where {y,} and {«,} are scalar processes. We introduce the following addi-
tional notation. Let F be a transfer function and lot zy be a pole of F; then
we denote by mp(z,) the multiplicity of the pole zg of F. Our main result
concerning scalar feedback systems is as follows.

Theorem 2

Let (EqDy)[E N 7 zNg] be a coprime factorization of [#(z):G(z)]
and let (BxDyy BNy E,N x] be a coprime factorization of [H(z): K(2)]
with By, Dg, Eg, ..., N x scalar but otherwise defined as before. Then the
rank of the matrix

EoDy  —BgNy EpNg 0
X(z)=

_EKNH EKDII 0 EHArK

Is strictly less than two at a point z,, i.e. the MFD in (11) for W(z2) is not
coprime, if and only if one of the following three conditions holds :

(i) 2o is & zero of H and K and a pole of P, if in addition % is a pole of
G, then mg(z,) < mp(z,) ;
(ii) z, is a zero of ¥ and @, and a pole of H, if in addition %y 1s a pole of
K, then m(z,) <My(ze) ;
(iii) 2y is a zero of @ and K, and a zero of [DypDy—NpNyl.

Equivalently, §[W 1=0[F G1+8[H K) if and only if none of the above
conditions hold,

Proof
(@) Necessity

Suppose rank X(z,)< 2 for some %. Then B Ny=0 or E,N x=0 at 2z,
We shall analyse the case where EpNg=0; the other case follows directly
by the symmetry between ¥, ¢ and & » K. EpNg=0implies £ =0 or Ng=0
or both. ‘

(1) Case 1. Assume H,=0. Then Dy =0 since EyDp=H,D,=0 with
By and E; coprime. Therefore Np#0 and Eg #0 by coprimeness. But
then rank X(z,) <2 implies EyNy=EuN,=0. Now E(20)#0, because if
By =0, then D; =0 and hence N x#0 and By +0 by coprimeness, which is
a contradiction. By the same argument K (z)) #0. It follows that N wlzy) =
Ny(z)=0. Therefore case 1 implies that a pole of F is also a zero of both
H and K. In addition, since EpDg is the least common multiple of the
denominators of F and @, B p(z) =0 implies that if & also has a pole at 2z,
then mq(2,) < mp(z,).
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(2) Case 2. Assume E,#0 at z. Then Ng=0, and hence Dg#0 by
coprimeness of Dy and Ng.  Therefore, B Dp#0, and rank X(z,)#2 only if
EHNI{ = 0.

Case 2. Assume first that E;=0. Then by symmetry with the case
when By =0, it follows from case 1 that z, is a pole of H which is also a zero
of both F and @. TIf in addition z, is a pole of K, then my(z) < mpr(2y)-

Case 2b. Assume now that Ep#0 at z. Then Ng=0 and Dy#0.
By coprimeness of Ny and Dy it follows that Dy #0, and therefore Hy #0.
It then follows that rank X(z,) <2 only if the 2x 2 matrix

-ExNy ExDy
is singular. But since Eg#0 and B #0, it follows that DpDy—NpNpg=0
at z,, Therefore, Case 2b implies that a zero of ¢ and K is also a zero of

DpDy—NpN,. Note that DpD y—NpNy is the denominator of the
transfer function of the closed-loop formed by F and H (see Fig. 2).

(b) Sufficiency

We show now that if any one of the three situations (i), (ii) or (iii) arises at a
point z,, then rank X <2 at that point. Since (i) and (ii) are completely
symmetrical (replace F by H and G by K), we consider only cases (i) and
(iii).

Case (i). Let Dp=Npy=Ng=0 at some 2, Then Np#0, Dg#0 by
coprimeness of Np, Dp and Ny, Dy, vespectively. Also HgDy= EpDg
implies BpDg=0. By the condition Melze) < Mplzp) 1t follows that B w(7Ze) =0,
because otherwise Dg=0 and By #0 at z, would imply that @ has a pole at
2o With mglzg) = mp(ze). It follows immediately that rank X(z,) <2, because
all columns except the second are zero.

Case (iii). Let Ng=Ng=0 and DpDy—NpNpy =0 at z,. Then clearly
every 2x 2 minor of X(z) is zero. (]

The conditions on pole zero cancellations between a pole of F and a
common zero of H and K, a pole of H and a common zero of F and G, or a
pole of the closed-loop transfer function and a common zero of G and K are
fairly straightforward and easy to interpret. The additional conditions on
the multiplicities of the poles of G and F (case (1)) or of the poles of K and H
(case (il)) are not so easy to interpret. We show now by a simple example
why these multiplicity conditions ave relevant.

Brample 1
Let
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Then

(z—1)2 ~1 (z—3)(z—1) 0
= 1)z—4) (2—2)z—4) 0 (z—1)(z—2)

All the conditions of Case (i) of theorem 2 are satisfied at z=1; we find
rank X(1)=1, and the feedback connection of M1 and M2 will not be minimal,
Suppose however that F=1/(z—1) rather than 1/(z—1)2, ie. mp(l)=mg(1).
Then X(1) is non-singular, and the feedback connection of M1 and M2 will
still be minimal despite the fact that I has a pole in common with a zero of
both H and K.

4. Minimality conditions for multivariable feedback systems

We now consider the case where {y;} and {u;} are multivariable processes,
and we present a set of necessary and sufficient conditions on the poles and
zevos of F, G, H, K that will guarantee that the McMillan degree of the feed-
back interconnection will be the sum of the McMillan degrees of M1 and M2,

In the scalar case, the first condition under which coprimeness failed
required that z, be a zero of H and K and a pole of F; also, if z, is a pole of
@, it must be a pole of lesser degree. We now explain how to express these
conditions in a form suitable for the multivariable case.

We shall say that the transfer function matrices A followed by B have a
zero of A cancelling a pole of B if and only if the matrix product B4 can be
formed, and with 4 =N ,D,* and B=N Dy~ constituting coprime matrix
fraction descriptions, N, and D, ave not left coprime.  (Thus in the expression
BA=N, D, N,D,, there is an internal cancellation.)

To capture a multivariable version of the second part of the first scalar

condition, suppose that
Dy Dy
= S (14)
Dg Dg

where 8 is a greatest common right divisor of Dy and Dg.  We shall define
T as the part of F excluding poles of G by

F=D,* Ny (15)

It is trivial that the MFD here is coprime when D! Np is coprime.

These two definitions allow us to restate the first condition in the scalar
problem as : [H K] followed by F has a zero of [H K] cancelling a pole
of 1.

The second condition of the scalar problem is restated for the multivariable
problem in an obvious way. The third condition needs rather more restating.
In the scalar case, a zero of ¢ and K eannot be simultaneously a pole of G or
K, or, a fortiori, a pole of F and @ or of H and K ; in contrast, this situation
can happen in the multivariable case, and we have to take the possibility
into account. _

Consider the redrawing of Fig. 1 in the form of Fig. 3 (a), where 7' is the
greatest common right divisor of Dy and Dy, and G, A, K are defined in
the obvious way. The arrangement of Fig. 3 («) is further redrawn as Fig. 3 (b).
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TFor the scalar problem, we were concerned with a zero in both entries of the
diagonal transfer function linking [w »]" to [m n)’ cancelling a pole in the
transfer function linking [m 7] to [y u]. Such cancellations in the scalar
problem are identical with the cancellations which occur if [m n}] is replaced
by [# #]. This is not so in the vector problem, where it proves necessary
to work with % #].

The relevant transfer function matrices in the vector case are definable by

7 (67 01 w S 07[E 0] w
il [0 K|lvw 0 T|L0 Kj|lwv
"D, 0 Ng 0 J[w
= (16)
| 0 .DI{—I 0 AVI{ v
Y " I —F'[S8t 90 7
% | -H 0O Ty %
[ Dy -Np ] [Dp 0 [
(17)
. —Nu Dy 0 Dyl # :
The MFDs in (16) and (17) are easily checked to be coprime,

Before proving the main theorem, we shall establish an equivalent state-
ment for the zero pole cancelling ideas, involving left rather than right MFDs.

i

and

i

il

Lemma 1

Let A=D,* N,, B=Dg' N, be coprime realizations. Then 4 followed
by B has a zero of A cancelling a pole of B if and only if

Dy Ny 0 '
V(z)= (18)
0 D, N,

is not left coprime.

Proof

(Only if) with N, ete. as in the definition of zero pole cancelling, there
exists «#0 and z, such that «TH ,(z9)=0, «TDy(z)=0. But also, because
the factorizations A =D, N, =N _ D, and B=Dp ' Ny=N D, are all
coprime, the left nullspaces of

N 4(zp) N 1(%)

_ and B

D 4(z) Dy(2)
are spanned by the rows of [D,(z,) — N 4(z,)] and [Dp(zy) — Npl(z,)], respec-
tively. Hence there exists A, #0, A,# 0 with

AT[D 4(z0) — N 4(z5)]=[aT 0]
MT[Dglzg) — Np(z)] =10 o]
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Figure 3. (a) Redrawing of Fig. 1 when F, G or H, K have common poles. (b)
Rearrangement of scheme of Fig. 3 (a).




154 B. D. 0. Anderson and M. R. Gevers

whence

I:DB(Z()) ~ N p(z) 0 J
(AT —A"] =0
()

0 'D.tl (zO) - lVA

This establishes the claim. The converse follows by simply reversing the
above argument,

We now can state the main theorem, which parallels the earlier scalar
result.

Theorem 3 ' :

Let [EgDp1 " E.N, EyNg] be a left coprime MFD of [F:G] and
(BxDyl ExNy EyNg] a left coprime MFD of [H:K], with E,, D, etc.
as defined previously. Let F and A be defined as above. Then the matrix

BqDyp ~ BNy EyNg 0 Xy(z)
X(z)= , & (19}
— BNy By Dy 0 ByNy Ko(2)

has less than full normal row rank at zy if and only if one of the following
conditions holds :

(i) the cascade connection of [H : K] followed by F~has a zero pole
cancellation (i.e. a zero of [H:K] cancels a pole of F);

(ii) the cascade connection of [F ‘@] followed by H has a zero pole

cancellation ;
S olfae o
0 7T|lo K
1 el A S I )
-H I 0 7t

has a zero pole cancellation ; assuming neither condition (i) nor
condition (i) holds, any such zero is also a zero of @ and K, and a

pole of
Y A
-H I

If none of these three conditions hold, then
SW]=8[F:G)+8[H:K]

(iii) the cascade connection of

followed by

Proof

The final conclusion is obvious if the first part of the theorem can be
proved. Accordingly, assume X(z,) has less than full rank and that there
exist constant vectors A;, A, not both zero such that MT Xy (z) + 23T Xy(ze) = 0.
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Observe immediately that both A; and A, are non-zero. For if say A, =0,
A, # 0, we have at 2z,

NI ExNy ExDy ByNgl=0 (20}

which violates the coprimeness of (ExDy) [ExNy EyNg]. Now we have
at once that
‘ AT Bp(zg)Na(2) =0, A" Bpy(zo)N iclz0) =9

Case 1. A Egplzg)=0. Then \T Eg(z)#0 and

[ 0 ~EgNp © 0 ]
AT AT 1X () =[AT A7)
—EKNII EKDH 0 EHNK
0 —~N, Dy 0
=[A" Bg Aa’i‘][ ] (21
“'EKNH EKDH 0 EHNK

(Note that EgD = EzDg) This means that condition (i) holds by lemma 1.

Case 2. AT Eylzg)=0. This yields condition (ii), by & parallel argument
to that for case 1.

Case 3. o, =NT Eplzg) #0 and By =A% Ep(2)#0. Then we verify easily
that at z,

[—A" Bg — AT Bx AT Ep AT Egl
" Dy, ~Np Dy 0 0 0
~Ny Dy 0 Dy 0 0

b =0 (22)
0 0 Dy 0 Ng O

0 0 0 D 0 Ng]

-

This yields condition (iii) using lemma 1.
We now consider the converse. Consider first case 1 and suppose that

at zy
_EKNH EI('DH 0 EHNK

fails to have full rank. Then there exist a;, ay, not both zero (and it is easily
seen that both must be non-zero) with [oyT 7] a left nullvector. Now at

%

Dy
[y 0] =0
Dg

Dy
(Ee "‘EF][ }=0 (23)

and
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Dy
where [E; — Ep] has full row rank and has full column rank. There-
Dg
fore, o;T= AT Bylzy) and 0=, T B yp(z,) for some A,. So at 2z, with Ag=a,
0 —EgN, EuD, 0

[AT AJ}[ ]:o and AT =0

""EKNH EKDH 0 EHNK

from which it is immediate that (AT A,T]X(2))=0.
Case 2 proceeds similarly. Finally, suppose that

[ Dy —-Np Dy 0 0 o0
~Nyg Dy 0 D, 0 o

0 0 Dz 0 N, O

0 0 0 Dy 0 Ng|

fails to have full row rank, and let [oy" o, 3T «,T] be a non-zero left null-
vector. Since oy Dy +aT D=0, it follows using (23) again that

aT=~ANT Bg, o"=\T Ep,
for some A;. Similarly

It is then immediate that [A,T A,T]X(z,)=0.
Last, we must show that if condition (iii) holds, but not condition (i) nor

I —F
condition (ii), G(z) and K(z) have a zero at 2, and [ has a pole
-H 1
there. Let Aj, A, be as in the previous paragraph. We have AT E,#0,
A" By #0 since conditions (i) and (ii) do not hold. Hence at 2y, T Ng=0,
ay" N =0 for non-zero g, «,. Also

I —-F]* [ D, -N.J-[Dp o
~H I Ny Dy 0 Dy

Dy —Ny
[“J.T azT} =0 (24)

and at z,

If a; and «, were zero, we should have 3T Dg Ng]=0 and [ Dy Ng] at
% with oy, oy non-zero, which is a contradiction. Hence (24) is non-trivial,

I —Fi
and has a pole at z,. ]
~-H I
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We conclude this section by showing that the class of feedback models
which we have called ‘ generic ’ in the context of feedback models for jointly -
Yi
stationary stochastic processes (Gevers and Anderson 1981) always have
u;
the property that the feedback representation of the joint model obtained
from individual models M1 and M2 is minimal if the individual realizations
are minimal. We first recall the definition of generic feedback models (see
Gevers and Anderson 1981).

Definition

. Let F, ¢, H, K be the transfer function matrices of a feedback model as
in Fig. 1 and let [F:G]=A[B:(] and [H:K]=LM:N] be left coprime
MFDs. Let R(z)=diag (2™, ..., #») where 7, is the row degree of the kth
row of A(z), and S(z)=diag (2, ..., 2°7) where s is the row degree of the kth
row of L(z). The model F, G, H, K is called generic if for every z:

(1) the polynomials det [C(2)CT(zY)R(z)) and det [N(z)NT(z"1)S(z)] are
coprime ;

(2) the matrix Q(z) has full rank
' Al -B@) CEOMEY)RE) 0
’ (25)
—M{z) Lz 0 N@)NT(z-1)8(z)

Qz)=

We shall not develop here the significance of generic feedback models, or
the interest of this notion in the context of identification of feedback systems.
We refer the reader to (Gevers and Anderson 1981, 1982, Anderson and Gevers
1982) for details. Let it be sufficient to say that almost all systems are
generie.

Theorem 4

Consider a feedback model obtained from the feedback connection of a
minimal realization of M1 and a minimal realization of M2, and let ¥, G, H, K
be generic. Then 8[W]=8[F:G]+ 5[H K].

Proof
With X(z) as defined in (14), one can check that
I 0 0 0 ]
0o I 0 0
Qz)=X{(z)
0 0 CT1)R(2) 0
10 0 0 NT(z1)S(z)

so that if Q(z) has full row rank, so must X(z). ]
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5. Conclusions

We have derived conditions under which the McMillan degree of a linear
time invariant feedback model is the sum of the degrees of the two component
models. Stated otherwise, we have answered the question: under what
condition is the realization obtained in the natural way from the feedback
interconnection of two minimal realizations itself a minimal realization ?
Finally we have shown that generic feedback processes, as defined in earlier
work, always have the desirable property that the McMillan degree of the
feedback realization is the sum of the degrees of the two component models.
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