
Matlx'Co.ntrol Si2nals Systems [1988"11:203-226 : Mathematics of Control, 
Signals, and Systems 
�9 1988 Springer--Verlag New York Inc. 

Persistency of Excitation Criteria for 
Linear, Multivariable, Time-Varying Systems* 

I. M. Y. M a r e e l s t  and  M. Gevers~: 

Abstract. For continuous-time, multiple-input, multiple-output, linear systems, 
we present conditions under which the persistency of excitation of one regression 
vector implies the persistency of another regression vector derived from the first 
via a linear, dynamical transformation. We then introduce a definition of sufficient 
richness for vector input signals in the form of a persistency of excitation condition 
on a basis regression vector. Finally we establish input conditions which guarantee 
the persistency of excitation of a large class of regression vectors obtained from 
both time-invariant and time-varying systems. 
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1. Introduction 

Persis tency of  exci ta t ion and sufficient richness have a longs tand ing  history.  These 
concepts  were first in t roduced  as condi t ions  for pa r ame te r  ident if iabi l i ty  in identifi- 
ca t ion  IL l .  In the adap t ive  cont ro l  context  they were in t roduced to gua ran tee  the 
exponent ia l  convergence of adap t ive  a lgor i thms [A-I, [MN'I .  Their  impor t ance  for 
the robustness  of  adap t ive  a lgor i thms  with respect  to model  errors  was first recog- 
nized in [ M N ] .  La te r  the concept  of  persis tency of  exci ta t ion was m o r e  fully 
deve loped  in [IK-I and  rAB]  where related no t ions  such as " d o m i n a n t  r ichness" 
have been in t roduced.  

A cont inuing research effort has a l r eady  p roduced  a wealth of  results  concern ing  
the genera t ion  of  pers is tent ly  excit ing "regression vectors" by fil tering a scalar-  o r  
vec tor -va lued  input  funct ion th rough  a dynamica l  l inear,  time-invariant filter. Both  
con t inuous- t ime  [ I K ] ,  lAB] ,  I 'BS1] and  discre te- t ime I-IK], IAB] ,  FBS], I-GM-I, 
[ G T ]  results are  avai lable .  O u r  con t r ibu t ion  is mot iva ted  by [ B G ] ,  where  per-  
sistency of  exci ta t ion is used in a nonstationary environment .  Also in [ B G ]  a more  
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general type of regression vector is introduced, which spurred us to consider in 
greater detail the relationship between different regression vectors. 

Our results are presented in continuous time, but our methods of proof, which 
are new and rather simple, can be transliterated into the discrete-time case without 
difficulty. This is unlike most previous approaches which were either specifically 
conceived for continuous time [D], [BS2], [DAT] or discrete time [GM], [JA], 
[AJI, [M]. 

The main contributions of this paper are as follows. We introduce a new definition 
of sufficient richness for vector input signals in the form of the persistency of 
excitation of a basis regression vector, and we present conditions under which the 
persistency of excitation of one regression vector implies the persistency of excitation 
ofanother regression vector derived from the first by a linear dynamical transforma- 
tion. This allows us, in particular, to establish the persistency of excitation of the 
output or state of a multiple-input, multiple-output (MIMO) system from the 
sufficient richness of its input vector. 

Some of our results for time-invariant systems already exist, but only in the more 
restricted context of stationary signals (having a spectral measure) together with a 
definition of sufficient richness based on spectral lines [AB], [BS1], [GM], I-BS2]. 
No stationarity assumption is required here. This important generalization allows 
us to treat time-varying systems. 

Indeed, we derive conditions under which these latter persistency of excitation 
results extend to linear time-varying systems with both slow and fast time variations. 
To the authors' knowledge, the only other instances where persistency of excitation 
results for nonstationary systems are considered, are found in I-D]. Our approach 
yields a simple proof for a more general result involving more general regressors in 
the presence of more general nonstationary effects; only slow time variations were 
considered in [D]. 

This paper is organized as follows. Section 2 contains the basic definition of 
persistency of excitation and introduces some notations. Section 3 contains some 
technical results, "swapping lemmas," which are used in Section 4 to infer the 
persistency of excitation of the output (the state) of one time-invariant MIMO 
system from the persistency of excitation of the output (state) of another MIMO 
system that is dynamically related to the first. This leads to a new operational 
definition of sufficient richness for vector input signals. In the case of single-input, 
single-output (SISO) systems a sharper result is obtained; it allows us to state exactly 
under what conditions persistency of excitation of a signal is or is not preserved 
through dynamical filtering. This is the object of Section 5. Finally, our most 
important results are in Section 6, where we give conditions under which the output 
(state) of a linear time-varying system is persistently exciting provided that the input 
is sufficiently rich. We present results for systems whose parameters vary slowly or 
rapidly compared with the dynamical behavior as excited by the input. 

2. Definitions and Notations 

In this section we define and comment on the concept of persistently exciting vector 
functions and introduce some notation. 
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Definition 2.1. A bounded locally square integrable vector function go: R - .  R n is 
said to be persistently exciting if there exist a constant s o and positive constants To 
and a such that 

-~.- [s+r~ go(t)gor(t) dt > otl > O forall s > s o. (2.1) 
lo ds 

Comment 2.1. Notice that if (2.1) holds for a T O > 0 it also holds for all T > To, 
possibly with a different a-constant, however, not smaller than cc/2. In particular, 
(2.1) implies that 

F 1 f',+r -] 
lim inf 2mi . 1-~- | go(t)go r(t) d t |  > ~/2 > 0 (2.2) 

r t ~  L ~ Js _! 

uniformly in s, for all s > s o. Alternatively, (2.2) obviously implies (2.1) for bounded, 
(locally) square integrable go's. Notice that if (2.1) holds for a given So it also holds 
for So = 0, possibly with a larger To and a smaller ~. We choose Definition (2.1) 
because it offers more flexibility. 

The importance of the concept "persistently exciting function" is captured by the 
observation that go(t) being persistently exciting is equivalent to the uniform (ex- 
ponential) asymptotic stability of the zero solution of the differential equation 

fC(t) = - -  go(t)go r ( t ) x ( t )  (2.3) 

[A], [MN-I. A far-reaching interpretation of this equivalence connects the per- 
sistency of excitation of go(t) to the concepts of uniform observability and identifi- 
ability, see, e.g., [A'l, I-MN-I, and [AJ]. 

Throughout this paper we assume that the signal vector u(t) is bounded and 
locally (Riemann) integrable. In addition we use the following notation: PE stands 
for persistently exciting or persistency of excitation; SR stands for sufficiently rich; 
BIBS stability stands for bounded input, bounded state stability; D denotes deriva- 
tive with respect to time; D2uv r = uDvr; II'll denotes the vector 2-norm or the 
corresponding induced matrix norm; and A adj stands for the adjoint of the matrix A. 

3. Some Swapping Lemmas 

I fa  vector go1 is PE, then clearly a vector go2 = Ago, with A constant and of full row 
rank is also PE. In analyzing adaptive identification and/or control algorithms it 
is important that we can infer the persistency of excitation of one vector-valued 
function from the persistency of excitation of another vector-valued function which 
is linked to the first by some linear, dynamical transformation. For example, we 
may want to infer the persistency of excitation of go2 from that of go1 when go1 and 
go2 are as follows: 

u u )T  

gox= u s + d  (s+~/)  " - f  ' 

go2 ----- U "'" 
S -k  C 1 S -t- Cn-  1 

with d positive and the ci positive and distinct. 
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In this section we set up some tools allowing us to do so. Consider the linear 
systems 

Yq(t) = Fixi(t) + Giu(t), (3.1) 

yi(t) = Hixi(t) + J~u(t), (3.2) 

where u is the m-dimensional input, x~ the nrdimensional state, and y~ the p~- 
dimensional output; F ,  Gi, H~, Ji are (real) matrices of appropriate dimensions. 
Define 

pt~ = det(sl - Fi), (3.3) 

Qt~ = Hi(sI - Fi) adj + Jl det(sl - Fi) (3.4) 

and introduce the notation 

fr~ = p~)s"' + pt~i)s"'-~ + . . .  + p~_~s + p~i~ with p~) = 1, (3.5) 

Q(i)(s ) = Q~d)s., + QtlOs.,-t + . . .  + Qtni~_lS q. Qt~. (3.6) 

The following result is a direct consequence of the Cayley-Hamilton theorem--  
see p. 657 of [K]. 

For the linear systems (3.1) and (3.2) with the definitions (3.3)-(3.6) we Lemma 3.1. 
have that 

and 

k - I  

Q~k o = jip~i) + ~ ,,,) ~ ~,,'z_ k = 1, n~, (3.7) F k - l - - l X a i a  i v i ,  " " " 
l=O 

Q~J~ = J~. (3.8) 

The next lemma links the inner product ofy~ and a suitable test function ~, with the 
inner product of u and ~,. 

Lemma 3.2. For any row vector test function ~k: R --, R', n~ times continuously 
differentiable on R we have 

f f/ pti)(-D2)yi(t)~k(t ) dt = Q~i)(-D2)u(t)~b(t ) dt + 9~ o, tl), (3.9) 
o o 

where gto is given by 

nj k - 1  
k - I  ( i )  F I k - l - I  t t  gr176 o, t ,)  = ~ )-' ( -  1) P.,-kHi ,xi(t)D ~k(t)l,o 

kffil /ffiO 

= _ H i ( _ D  2 ad 11 -- Fi) Jxi(t)~k(t) to" (3.10) 

Proof. Using integration by parts, and equations (3.5) and (3.6), 

y~(t)Dkg/(t) dt = ntxi(t)Dkd/(t) dt + J~u(t)Dkd/(t) dt 
o o o 
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= Hixi(t)Dk-ld/(t)ltt~ - HiFixi(t)Dk-l~k(t) dt 
o 

+ Jiu(t)DkO(t) dt - I-liGiu(t)Dk-lO(t ) dt 
o o 

k--1 ~ t  t 
= ~, ( -  1)'H~F/x,(t)Dk-l-~(t)l~o + ( -  1) k H,F~x,(t)~(t) dt 

l = O  o 

~t t' ~t I lk-1 + Jiu(t)Dk~b(t) dt - ~, ( -  1)lHiF~Giu(t)Dk-l-Sd/(t) dr. 
0 0 1=0 

Hence, using the definition of p(O(_D2), 

f: ' p(~ ) dt 
o 

= (-- l)kp~i]_ k Jiu(t)Dk~b(t) dt 
k=O o 

k-1 f f l  -F ( -  l ~ k + l  ~(i) 
-~, ~'~,-k ~ (-- 1) t HiF/Giu(t)Dk-l-ld/(t) dt 

k = l  I=0  o 

ni k--1 

+ Z (-1)kp~'~-k ~ (-1)'H,F/x(t)Dk-~-'~(t)l'/o. 
k = l  1=O 

Rearranging the double sums, and using Lemma 3.1, we arrive at 

f "  f : '  
p")(--D2)Yi(t)O(t ) dt = Q(~ ) dt - H i ( - D  2 -- Fi)"dJxi(t)J/(t)It,;. 

o o 

Expression (3.9) relates Yi to u since, roughly speaking, p"J(D)yi(t ) = Q")(D)u(t), 
without imposing restrictive assumptions on the differentiability of u and Yi. The 
following result goes a step further, establishing similar relationships between the 
outputs Yl, Y2 produced by the same input u but by different linear systems. We have: 

Lemma 3.3. Consider the systems (3.1)-(3.4) and assume there exist polynomial 
matrices T(1)(s), T(2)(s) such that 

T(1)(s)Qr = T~2)(s)Q(2)(s). (3.11) 

Then for any row vector test function d/: R ~ R', sufficiently continuously differenti- 
able on R, ~b ~ C", n = max(nz + deg T ~2), n 1 + deg T(1)), we have that 

ft " T(1)(--D2)p(1)(--D2)yl(t)~(t) dt 
o 

-~ T(2)(--D2)pt2)(--D2)Y2(t)O(t) dt + g(l'2)(to, tl) , (3.12) 
o 
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where #,,2~ is given by 

g TM 2)(t o ,  t l ) = - -  Tt l ) ( -  D 2 ) H  I ( - -  D 2 - F 1 )adJx I (t)@(t)1',1o 

+ T ( 2 ) ( - D 2 ) H 2 ( - D 2  - F2)adJx2(t)@(t)[:'o. 

Proof. The proof follows from a repeated application of Lemma 3.2. 

I. M. Y. Mareels  a n d  M. Gevers 

(3.13) 

4. Time-Invariant Systems 

In this section we show that if the output of a time-invariant M I M O  system is 
persistently exciting, the output of a "related" time-invariant M I M O  system is also 
persistently exciting. Roughly speaking, the relationship is in terms of the zeros of 
the second system being a subset of the zeros of the first. A precise statement is as 
follows. 

Theorem 4.1. Consider two M I M O  systems (defined as in (3.1)-(3.6); i = 1, 2) with 
the followin# assumptions: 

A.1. 
A.2. 
A.3. 

u(t) ~ Loo. 
Re 2j(Fi) < O, i = 1, 2 , j  = 1 . . . . .  hi, and n, > n 2. 
There exist constants t l ,  ~, > O, fl, > O, T, > 0 such that 

1 ~,+r 
f l l l > - ~  y t ( z ) y r 1 ( r ) d z > ~ q l  f o r a l l  T A T , ,  t a t , .  (4.1) 

A.4. There exists  a constant matrix R e ff~P~ • o f  fu l l  row rank such that 

Qt2~(s) = RQ")(s). (4.2) 

Then there exist  constants ct 2 > O, f12 > O, and T 2 >_ T 1 such that 

1 ft '+r2 f12I > T22 y2(r )y2T(r )  dr > o~21 for  all t > t 1. (4.3) 

Proos 
of 

pr = yr(z), 

For any t > tl and T > T,, define cp(z) e R ~' on (t, t + T) as the solution 

tp(t + T) = t/1)(t + T) = - "  = tpt"'-l)(t + T) = 0, 
(4.4) 

and ~k(r) e R pl as 

~.k(r) = /2~(-D) tp( r ) ,  z e (t, t + T) (4.5) 

(~k is well defined because n I > n2). The Cauchy-Schwarz inequality yields 

y2(r)y~(r) dr ~b r(r)~k('r) dr 

T 
_ y2 (r) ~b r(r) y2(r)~k r(r) > ( f / + r  dz)  ( f / + r  d r ) .  (4.6) 
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By Lemma 3.3 

. yz(~r)~br(T) d~r = Ryl('c)y~(~ ) dz - 0(1'2)(t, t + T). (4.7) 

It follows by A.1 and A.2 that there exist Kt ,  K2 such that 

II~b(t)ll < Kt  < oo and IIg"'2J~(t, t + T)II < K2 < oo for all t, T, (4.8) 

where # (t,2)~ denotes the transpose of# "'2). Here and in the sequel of this proof, the 
underlying norm is the vector 2-norm. Therefore, for T > T~, 

1 f,+r 1 -~ y2(z)y2r(z) d'c > KZT--------~E~2T2RR r - 2fit TK21IRIII'I. (4.9) 

Denoting 

T * =  2~tKzllR[[ 
.~,lm~.(RR r) 

and taking T2 > max(Tt, T*) yields (4.3) with/~2 = IlY211~ and 

1 I- 2 r 2BIKzlIRII 1 

~'~ = ~-?/~'~'~~ ) ~ _1" �9 

(4.1o) 

(4.11) 

Comment 4.1. We might wonder how the bound T* in (4.10) can be reduced, 
or c~ 2 in (4.11) increased. This will be particularly relevant to our time-varying 
results of Section 6. Suppose p"~(s) and p(2~(s) are fixed, and note that ~, = 
(p(2~(_ D)/p,~(_D))yl ,  and that IIg(X'2~ll = O( I1~ II Ilyl II )- Assume now that the input 
signal amplitude is increased by a factor C. Then it follows that ~t, fit, K~, and K 2 
are increased by a factor C 2. Therefore/~t K 2 / ~ ,  and hence T*, remain essentially 
unchanged, and the same holds for ~ / K ~  and fl~/K~. It follows from (4.11) that ~2 
is roughly proportional to C 2, the input power. Another way to increase ~2 is by 
increasing ~/fl~, i.e., by decreasing the condition number of the PE matrix (4.1). 

Comment 4.2. In the case of periodic input signals (u(t + T) = u(t)), the result of 
Theorem 4.1 can be strengthened in the sense that (4.3) holds for T2 = 7"1 = T, 
provided t is large enough. This follows from the fact that, for periodic signals, the 
term g(t'2)(t, t + T) in (4.7) decays exponentially fast as t approaches infinity. 

Comment 4.3. It is possible to define ~o(t) as the solution of (4.4) with the end 
conditions determined in such a way that gel, 2~(t ' t + T) is zero for almost all t. The 
requirement g"'Z~(t, t + T) = 0 imposes a linear relation in ~0(0(t) and r176 + T) 
(i = 0 . . . .  , n - 1). A detailed and cumbersome analysis reveals that it is possible to 
satisfy this relation generically. The present approach is more straightforward, 
yielding more easily obtainable estimates for ~2, f12, and T2; however, it fails to 
show that 7"i = T 2 generically, which would follow from the above-mentioned 
alternative. 

Corollary 4.1. I f  xl(t) and x2(t ) are generated by (3.1) with assumptions A.1 
and A.2, and if  xl(t) is PE and there exists a constant matrix R E R "2• such 
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that 

then ~r is PE. 

(sl - -  F2)adJG2 = R(sl - -  Fl)adJG1, (4.12) 

Comment 4.4. In I'BS2] (and I-BS'] where the discrete-time case is discussed) a result 
analogous to this corollary is presented. The main difference is that here the signals 
(u, y) are not required to be stationary which is fundamental in the approach 
presented in [BS] and [BS2]. It is necessary to remove this condition in order to 
discuss PE (or SR) in the context of linear time-varying systems. 

Notice that the output vectors y l (t) and Y2 (t) of Theorem 4.1 can also be written 
(mixing time and Laplace transform notations) 

1 
y~(t) = ~ Q ~ ~  i = 1, 2. (4.13) 

The result then says that if ptl)(s) and p~2)(s) are Hurwitz, with deg(p tt)) > deg(p (2~) 
and if Qt2~(s)= RQtl)(s), then the persistency of excitation of yl(t) implies the 
persistency of excitation of y 2 (t). It seems natural, then, to characterize the sufficient 
richness of an input signal u(t) in terms of the PE of a particular regressor vector 
tp(t) from which all regression vectors generated by systems of a given order can be 
derived by a PE preserving dynamical transformation. 

D e f i n i t i o n  4 .1 .  

if, for any y > 0, there exist constants tl,  ~t > 0, and T > 0 such that 

1 f t+r -~ ~b(z)~kr(z) dr > ctl for all t > t 1 

with 

where n > max ni. 

A signal u(t): R ---, •m is called sufficiently rich of order (n t . . . . .  nm/n) 

- 1 

$ 

snt -1 

0 

0 0 

0 0 

1 

s 

S n2-1 0 0 

0 0 1 
: .. $ 

0 0 s " = - t  

(4.14) 

1 
~(t)  = 

(s + ~)"-~ 
u(t), (4.15) 
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The following result now follows immediately from Definition 4.1 and Theorem 
4.1. 

T h e o r e m  4.2. 
and let 

Let u(t): R ~ R m be sufficiently rich o f  order (n 1 + 1 . . . . .  nm + 1/n + 1) 

1 
y(t) = -'-;-z, Q(s)u(t) (4.16) 

p~sl 

with the following assumptions: 

(1) p(s) is scalar and Hurwitz  with deg(p(s)) < n. 
(2) Q(s) is a polynomial matrix of  dimension p x m with column degrees nl . . . . .  nm, 

and deg qo(s) < deg p(s) for  all i,j. 
(3) The system (4.16) is output reachable, i.e., there exists no a ~ O, a ~ R p such that 

Then y(t) is PE. 

0trQ(s) = 0 for  all s. 

Proof. With ~b(t) as defined by (4.15), it is easy to see that y(t), given by (4.16), can 
be generated as 

(s + ~)n 
y(t) = - - R ~ , ( t )  

p(s) 

for some R e R p• By assumption A.3, R has full row rank. The  result then 
follows from Theorem 4.1. �9 

Comment 4.5. Theorem 4.2 allows us to establish easily the persistency of  excita- 
tion of  a number  of regression vectors that commonly  arise in adapt ive estima- 
tion and adaptive control  problems. In particular, if u(t): I~ ~ R '~ is P E  of order  
(n, n . . . . .  n/n), then the following commonly  used regression vectors are PE: 

U U )T 
~0:(t) = u s + d (s + d )n - l "  ' 

(u u/  
q~2(t)= U S + Cl S + Cn-1 

1 
r.p3(t)=p-~(U SU "'" Sn-lU) r, 

provided d > 0 for qh (t), the ci are positive and distinct for q~2 (t), and p(s) is a Hurwitz  
polynomial  of degree n - 1 for q~3(t). To  prove this, the only task is to establish the 
output  reachabili ty of the system from u to q~, which is easily done. 

In some problems the regression vector is of the following type: 

H,s,  Vy(t)-] q2(t) = t )Lu(t)J' y(t): I~ ~ R',  u(t): R --* R m, cp(t): R ~ W, (4.17) 
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where y(t) is the output of a time-invariant system driven by u(t) (see, e.g., [BG]): 

y( t )  = G(s)u(t) .  (4.18) 

To infer persistency of excitation of r from a sufficiently rich u(t), the main 
difficulty is to prove that the system (4.17)-(4.18) is output reachable. We have the 
following result. 

Theorem 4.3. Consider the system (4.17)-(4.18) with H(s) and G(s) proper. Let 
H(s) = Q(s)/p(s) where p(s) is the least common denominator of  the entries of  n(s), 
and G(s)= A-t(s)B(s), a left coprime polynominal matrix fraction description 
(PMFD). Then r is output reachable from u(t) i f  and only i f  

~rQ(s) = #r(s)[A(s) i - B ( s ) ]  for all s, 

for some ~ e R" and some #(s) e Re[s], 

implies ~ =0,  and #(s) =- O. (4.19) 

Proof.  
note that 

Let G(s) = M(s)R-l(s), where M(s)R-l(s) is a right coprime PMFD,  and 

Lu(t)] 
(4.20) 

Now r is output reachable from u(t) if 

~ r T ( s ) = 0  for alls, with ~ e R  r implies ~ = 0  (4.21) 

or, equivalently, if, 

r ^ , ,  I -M(s)7 
~d~S)lR(s) I = O L A  foral ls ,  with ~ e R "  implies ~ = 0 .  (4.22) 

Next we note that, since A-l(s)B(s) = M(s)R-l(s), it follows that [A(s) i -B( s ) ]  is 
I " - 1  

/re(s)/ Since /MtsH has dimension (p + m) x m  and in the left nullspace of LR(s ) j .  k R ( s ) j  

rank m, and since the p rows of CA(s) i - B ( s ) ]  are linearly independent for all s 
by coprimeness, it follows that they span this nullspace. 

a. Sufficiency. Suppose (4.19) holds, and suppose that there exists a vector ~ e R r 
such that 

T.- , ,  Fm(s)-I 
  SjLR(s)3 = 0 for all s. (4.23) 

f M (s)-] r 
Then ~ rQ (s)is in the left nullspace of,_| R(s)[" Hence ~ Q(s) = ~ r(s)[A (s) " - B(s)] 

- . I  

for some//(s), and this implies ~ = 0,/3(s) ~_ 0 by (4.19); hence r is output  reachable 
from u(t). 

b. Necessity. Suppose (4.22) holds, and assume that ~rQ(s) =/~r(s) rA(s) i -B(s ) ]  
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for all s, for some ete R' and fl(s) ~ RP[sI. Then 

 rQ(.s) = #T(s)rA(s) -n(s)3 Lg(s) j  = 0 for  a l l  s. (4.24) 

Hence ~ = 0 by (4.22), and therefore f i r ( s ) [A  (s) i -B (s ) ' l  = 0 for all s. This implies 
fl(s) =- 0 by coprimeness of [A(s), B(s)'l. �9 

Comment 4.6. We note that condition (4.19) implies in particular that H(s) must 
be output reachable. 

Corollary 4.2. Consider the system (4.17)-(4.18) with (4.18) SISO. Let H(s )=  
Q(s)/p(s) as before. Then a sufficient condition for output teachability of  tp(t) from 
u(t) is: 

(1) H(s) is output reachable. 
(2) deg Q(s) < deg G(s), where deg Q(s) = max{deg qu(s)} and deg G(s) is the 

McMillan degree of G(s). 

Proof. Let G(s) = b(s)/a(s) where a(s) and b(s) are coprime polynominals in s. Then 
~p(t) is output reachable if 

ctrQ(s)I~((:ll = 0 for all s implies ct = 0. (4.25) 

By (1), ctrQ(s)= 0 for all s implies ct = 0, and by the degree condition and the 

coprimeness of [a(s), b(s)], erQ(s)( r 0) cannot be in the left nullspace of a(s) " 

It follows immediately that if u(t) is sufficiently rich of order (2n/2n) and if (4.18) 
is SISO with McMillan degree n, then the following commonly used regression 
vectors (see, e.g., lAB] and ['BG]) are PE: 

1 
q94(t)=(S+OOn_ t [y sy "'" sn-ly U SU "'" Sn-IU] T, 

Y Y U . . . . . .  , 
tPs(t)= Y S + C  1 S+C,-x  S+Cl  S+C,_I  

with ~ > 0 in q~4(t) and the c~ positive and distinct in ~Ps(t). This follows from 

the fact that these regression vectors can be written as q~(t)= (Q(s)/p(s)) u(t) 

with Q(s)/p(s) output reachable by Theorem 4.3 and with deg Q(s) _< n - 1 and 
deg(p(s)) = 2n - 1. 

5. A Special Case: SISO Systems 

In the previous section we have related the persistency of excitation of the output 
of one linear time-invariant system to the persistency of excitation of the output of 
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another linear time-invariant system driven by the same input. Restricting ourselves 
to SISO systems it is possible to derive a more complete result, describing how 
persistency of excitation is propagated through linear systems. 

L e m m a  5 .1 .  

tions 
Consider the followin# time-invariant SISO systems with transfer func- 

y,(t) = Hi(s)u(t), i = I, 2, (5.1) 

q,(s) 
Hi(s) pi(s)" (5.2) 

Assume that the Ht(s)'s are strictly stable, proper but not strictly proper, and have the 
same zeros with zero real part. Under these conditions, i f  Yl is PE, i.e., i f  there exist 
al, ill, 7"1 > 0 and tl such that 

1 i t+Tl a, <_ -~I y2(Q dz <_ fll for t > t 1, (5.3) 

then Y2 is PE, i.e., there exist ot 2, f12, 7"2 > 0 and t 2 such that 

1 i '+r2 ~2 <- ~ y~,Cr) dr <_ fl~ for t >_ t~. (5.4) 

Proof. Under the assumptions we have 

2(deg Pl - deg qt) > deg P2 - deg q2- (5.5) 

In fact, both sides of (5.5) are zero. The Cauchy-Schwarz inequality yields 

,+r2 y~(r) dz > y2(Qq~(r)  dr r dr. 

Defining ~o(t) and ~b(t) as the unique bounded solutions of 

r = P2(-  D)~  (-- n)~k(t), (5.6) 

y,  (t) = p, ( -  O)q2(- O)~k(t), (5.7) 

where ql(D) = ~i(D)~(D), ~contains the common zeros of ql and q2, qi has no zeros 
with zero real part (by assumption), hence guaranteeing the existence of ~b. Notice 
that (5.5) implies that tp is well defined via (5.6). Using the swapping Lemma 3.3 we 
then have 

t+r2y~(Qdz >_ y~(~)dz + 9(t , t  + 7"2)) / ~  ~p2(~) dr. 

The proof continues along the lines of the proof of Theorem 4.1. �9 

L e m m a  5.2. Consider the two time-invariant SISO systems (5.1) and (5.2). Assume 
now that the transfer functions Hi(s) are strictly stable, strictly proper, and have the 
same zeros with zero real part. Then Y2 is PE i f  Yl is PE. 
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Proof.  If  H t and H 2 do not  satisfy condit ion (5.5), then a repeated appl icat ion of 
the p roof  of  L e m m a  5.1 with condit ion (5.5) yields the desired result. Indeed,  it is 
possible to construct  a finite sequence of H2 ~ j = 1 . . . . .  m, such that  each pair  
(H1, Ht21)) . . . . .  (n2 ~ H2 ~§ . . . . .  (Ht2 m~, H2) satisfies the assumpt ions  of  L e m m a  5.2 
and condi t ion (5.5), hence obtaining the sequence of implications: 

Yt PE  =*- Ht21)u PE =:-"" ~ Ht2m)u PE =~ Y2 PE. �9 

Comment 5.1. It  is clear that  P E  propert ies  can only be lost by actual  canceling of 
the effect of  certain frequency componen t s  present  in the input  signal. There  is also 
a very simple frequency domain  interpretat ion of L e m m a  5.1. If  a scalar signal u 
has a spectrum and if y = Hu, with H scalar, stable, and output  reachable and with 
jco axis zeros jcol . . . . .  jco n, then y being PE  is equivalent  to the spectral  measure  of  
u being suppor ted  on at least one point  different f rom co~ . . . . .  co n (see, e.g., [AB], 
[BS],  and [BS2]). 

6. Time-Varying Systems 

6.1. Slow Time Variations 

In this section we derive persistency of excitat ion condit ions for t ime-varying 
systems whose pa ramete r  variat ions are sufficiently slow. In the first theorem we 
compare  the persistency of excitation for the ou tpu t  of  a slowly t ime-varying system 
with that  of  an approx imat ing  t ime-invar iant  system. 

Theorem 6.1. Consider the time-varying system 

I Yc(t) = F(t)x(t)  + G(t)u(t), 

y(t) = H(t)x(t)  + J(t)u(t), 

with x: R ~ R N, u: R ~ R m, y: R -~ R p, and with the following assumptions: 

A.I. 
A.2. 

A.3. 

A.4. 

(6.1) 

F(t), G(t), H(t), and J(t) are bounded, regulated matrix functions o f  t. 
There exist K > 0 and a > 0 such that [[O(t, to)l[ < Ke  -~tt-'~ for  all t, to, 
where O(t, to) is the state transition matrix o f  i(t) = F(t)z(t). 
There exist e > 0 and T > 0 such that, for  all t and for  all s, �9 ~ (4 t + T), 

and 

IF(s) - F(z)ll < e, 

IIG(s) - G(~)II < e, 

IIH(s) - H(z)ll < e, 

IIJ(s) - J(v)ll < ~. (6.2) 

There exist ot 2 > 0 and T 1 with 0 < 7"1 < T, and, for  all to, there exists 
a ~ (to, t o + 7"1) such that: 
(i) Re 2~(F(a)) < - c t  2, i = 1 . . . . .  n. 
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(ii) The output y(t) o f  the frozen system 

{~(t) = F(a)2(t) + G(cr)u(t), 2(to) = X(to), 
( 6 . 3 )  

y(t) H(a)~(t) + J(a)u(t) 

is PE over an interval of  length TI, i.e., there exist % > 0 and t_ > 0 such 
that 

I fto+rt 
- -  y(z)yr(z)  dz >__ ~sl  for all t o > t_ > 0. (6.4) 
Tl dto 

Then y(t) is PE for ~ sufficiently small, i.e., there exists e 1 > 0 such that i f  e < el, 
then there exists ~4 > 0 such that 

1 fto+Tt 
- -  y(z)yr(z) dz >_ a , I  for all t o _> t_ > O. (6.5) 
Tl ot o 

Proof.  Consider  an arbi t rary  to > t_ and a a ~ (to, to + Tt) satisfying A.4. Denote  
e(t) = x(t) - ~(t), t ~ (t o, to + TI). Then 

e(t) = eP~"- ' ) {  IF(r) - F (a ) ]x (O + [G(r) --  G(~)]u(r)}  dr. 
o 

It follows by A.2, A.3, and A.4 that 

sup IJe(t)tl ~ Kt~llufl~ (6.6) 
to ~ t  ~ to  + Tt 

for some finite Kt  > 0. N o w  

y(t) - y(t) = H(cr)e(t) + [H(t) - H(~)]x(t) + [J(t)  - J(~)-]u(t). 

Therefore,  uing A.1, A.3, and (6.6) 

sup []y(t) -- y(t)]] < K28]lu]]oo (6.7) 
tOg t ' ( t o+  T 1 

for some finite K2 > 0. N o w  for all to > t_ 

1 fro+T1 
y(z)yr(z)  dr 

T1 ,,/t o 

1 f to+T' 1 f to+T' 
- [y(r)  - y( r ) ]  [y(r)  - y( r ) ]  r dr 

>- 2T1 O,o y(r)y(r)  r dr -~1 o,o 

> ( ~ -  K~e2llul,| (6.8) 

Let e I = ( ' v / ~ ) - - .  Then,  for e < e~, there exists ~4 > 0 such that  (6.5) holds. �9 
K2 Ilult~ 

Comment 6.1. The  main assumption in Theorem 6.1 is A.3 which characterizes 
the slow time variations. No te  also that assumptions A.2 and A.4 are not  com- 
pletely independent  given A.3, i.e., given that  the system is slowly t ime-varying: see 
Chapter  1 of  [C].  
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Our main result for slowly time-varying systems shows that if the input is 
sufficiently rich of prescribed order and if the variation of the parameters is slow 
enough, then a regressor vector containing filters of the input and output is per- 
sistently exciting provided a uniform output reachability condition is satisfied. 

Theorem 6.2. Consider the time-varying system (6.1), and the regression vector 

1 ^,s, [y(t)]  
,p(t) = ~ ~t ~ Lu(t)J' (6.9) 

where p(s) is a polynomial and Q(s) is an r x (p + m) polynomial matrix, with the 
following assumptions: 

A.1. F(t), G(t), H(t), and J(t) are bounded, regulated matrix funct ions o f  t. 
A.2. There exist K > 0 and a > 0 such that II~(t, to)]l < K e  -~t-t~ for  all t, t o, 

where ~(t ,  to) is the state transition matrix of  ~(t) = F(t)z(t). 
A.3. There exist  e > 0 and T > 0 such that, for  all t and for  all s, x ~ (t, t + T), 

l iE(s)  - F (~) l l  < e, 

JIG(s) - G(x)ll < ~, 

IIH(s) - H(z)ll < e, 

and 

IIJ(s) - J(~)[I < ~. 

A.4. p(s) is Hurwitz  and deg p(s) ~- q >_ maxi./deg qo(s). 
A.5. u(t) is bounded and sufficiently rich o f  order (n + q + 1 . . . . .  n + q + 1/ 

n + q + 1), i.e., there exist  t I, ~1 > O, o~ 2 > O, and T l > O, and, with T 1 < T, 
such that 

1 f:+Tl a l I  _< ~ ~(z)~r(z) dT <_ a2I for  t >__ t 1, (6.10) 

where ~(z) is defined as in (4.15) with nl,  n 2 . . . . .  n m and n replaced by 
n + q - I - 1 .  

A.6. There exist  o% > 0 and a 4 > 0, and, for  all t > 0 and to, there exists a e 
(to, to + t) such that: 

(i) Re ,~i(F(a)) < - a a .  (6.11) 

(ii) With H(a) [ s l  - F(a)]- lG(a)  + J(a) ~- Mo(s) = B~(s)/a~(s), where a~(s) 
is the least common denominator o f  the entries o f  M~(s), the system 

1 ^ , ,  FM,(s )]  
- ~ ( S ) l  Im I is uniformly output reachable, i.e., 

T~..F B,(s) 7F Bo(s) 7L.T.. 
c  tS, L a o ( s ) , . j L a . ( s ) , . j  ts, c _> (6.12) 

fo r  al l  such a, al l  s, and al l  c ~ W with IIcll = 1.  
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Then tp(t) is PE for sufficiently small 5, i.e., there exist 5" > O, ct s > O, and T 2 >_ TI 
such that 

1 f(+r~ -~: ~p(z)<pr(z) dr > oql for all t > t 1 and 0 < 5 < 5". (6.13) 

Proof .  

Step 1. We generate Cp(~) from a frozen system and establish an upper bound for 
IJ~p(z) - Cp(z)l[. Consider arbitrary t o and t with t 1 ___ t o, 0 < t _< T and a a ~ (t o, t o + t) 
satisfying A.6 and let ~(t) be generated by (6.3) for that fixed a. Define 

Q(s) Fy(z)l (6.14) = 

Then, by assumptions A. 1-A.4 and the fact that t _< T, it follows that 

sup Ilcp(~) - ~(~)ll -< 5CIlull| (6.15) 
t o ~ t o + !  

for some finite constant C, a function of the system (6.1) and the filter Q(s)/p(s). 
Notice that C is proportional to the operator gain K/a of the system (6.1). 

Step 2. We show that the regression vector of the frozen system is PE. Notice that 
~(z) can be written as 

1 . . , ,  [ -  B.(s) -] (s + y) "+q 
Cp(z) = p(s)%(s) Uts)ka,(s)z.J = p(s)a,(s) R,r (6.16) 

for some R ~  R "X("("+q+~)). We can therefore apply Theorem 4.1 to ~, and ~, 
with the following identifications: ~, = yl ,  ~ = Y2, and R, = R, noting that 
2mi.(R,R T) >__ ~,~ for all a, byA.6(ii). Therefore there exists ~6 > 0 such that 

1 f t~ 
- -  ~p(t)~r(z) dz >_ Ct6I for T 2 > max(T1, T*), (6.17) 
T2 Jto 

whcre 

and 

T* = 2ct2K211RIl~~ and llRIl~o = sup llR~ll (6.18) 

~6 = ~2K, cc~a,~ -T2- 'J" (6.19) 
[ 2a2K2 [IRII•'] 

Here K1 and K 2 have the same meaning as in (4.8). They depend on ~, ~1, ~2, p(s), 
Q(s), and the unknown system via a,(s) and B,(s): see (4.4), (4.5), and (3.13), and recall 
Comment 4.1. 

Step 3. By combining the PE property of ~(z) and the closeness of tp(z) and t~(~), 
we show that tp(T) is PE for e sufficiently small. For to -> tt,  and provided T2 -< T 
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(see (6.18) and A.3), we have, using (6.17) and (6.15), 

1 ~to+T2 
tp(r) cp r (r) dr 

~22 J t o 

1 f to+T2 1 rt~ 
> - 2T2 O,o c~(r)~r(r) dz -- ~ J'o I-cp(r) - t~(r)'l I'cp(r) - c~(r)] r dr 

Therefore ~o(r) is PE, i.e., (6.13) is satisfied for some % > 0 provided in A.3, with 
T > max(T~, r*) ,  e < e*, where 

e* = 1 /a 6 
Cllulloo V 2  ct 2 . �9 (6.21) 

Comment 6.2. In A.5 we have assumed that u(t) is SR of order (n + q + 1 . . . . .  
n + q + 1/n + q + 1) rather than (n I . . . . .  nrJn + q + 1) with different nl. This is 
because we have not made any assumption on the structural indices of B, in A.6. 
Of course, if more knowledge about the structure of the time-varying system is 
available, it can be used to weaken the SR requirement on u(t) in A.5. 

Comment 6.3. It follows from Comment 4.1 that ct 6 increases in proportion to the 
input signal power Ilull~. Therefore the ratio ~6/IIulL is essentially unaffected by 
the amplitude of the input signal, while C is a function of the actual system and is 
proportional to K/a (see A.2). It follows that 5" in (6.21) can only be increased, within 
a limited margin, by decreasing the condition number ~2/cq in the PE condition on 
u(t): see (6.10). Some very preliminary results on how to choose u(t) to minimize the 
condition number of the PE matrix in (6.10) are discussed in [MB]. 

6.2. Fast Time Variations 

The result of Section 6.1 shows that the persistency of excitation condition derived 
for linear time-invariant systems is robust with respect to sufficiently slow time 
variations in the system description. We now extend this result to include also the 
effects of sufficiently fast time variations. (Actually we prove a more general result, 
concerning the effect of integral small perturbations on PE of which fast time 
variations are a special case.) 

The main result of this section relies on the following lemmas, which discuss the 
effect of "integral small" perturbations on the dynamics of linear time-varying, 
stable systems. 

Lemma 6.1 [C, p. 6]. Consider the time-varying, linear system 

s (t) = F(t)x 1 (t) (6.22) 

and the perturbed linear system 

:t2(t ) = (F(t) + Fl(t))x2(t ). (6.23) 
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Assume that: 

A. 1. Equation (6.22) is uniformly asymptotically stable, i.e., there exist K >__ 1 and 
a > O, such that its transition matrix ~l( t ,  z) satisfies 

[l~x(t, QI[ < Ke-~ for all t, 3. (6.24) 

A.2. F(t) and Fx (t) are uniformly bounded, regulated matrix functions: 

IlVll~ = M, IIFxll~ = m.  

A.3. Fx (t) is integral small, i.e., there exist h > 0 and 6 > 0 such that for all 
It I - t2l < h 

i '2  Fl (t) dt l < 6. 

Under these assumptions the perturbed system has a transition matrix ~2(t, z) satisfying 

11~2(t, 3)11 < K(1 + 6)e -b('-') for all t, T, 

where 

b = a - 3 M g 6  + vloge[( + 6 ) K ]  . (6.25) 

Comment 6.4. Lemma 6.1 states that stability is preserved for sufficiently small 6 
and sufficiently large h, e.g., 6 < a/12MK and h > (4 loge(1 + 6)K)/a guarantees 
b > a/2. 

The next lemma considers the effect of an integral small input on the response of 
an asymptotically stable linear system. 

Lemma 6.2. 

Assume that: 

A.1. 

A.2. 

A.3. 

Consider the time-varying, linear system 

~(t) = F(t)x(t) + B(t), X(to) = Xo. (6.26) 

The homogeneous system has a transition matrix satisfying (6.24) for some 
K > _ l a n d a > O .  
F(t) and B(t) are regulated, bounded matrix functions of  t with 
max(llglJ| [IBII~) = M. 
B(t) is integral small, i.e., there exist h > 0 and 6 > 0 such that for all 
Itx - t21 < h 

i '  2 B(t) dt l < 6. 

Under these assumptions the solution of (6.26) satisfies 

Ilx(t; to, Xo)ll < Ke-a('-'~ + C~ for all t, to 

where 

C=K(I + M ) / ( 1 -  e-~ (6.27, 



Persistency of Excitation Criteria for Time-Varying Systems 

Proof.  The  solut ion of (6.26) can be written as 

x(t; to, Xo) = ~(t, to)Xo + (I)(t, T)B(~) d~. 
o 

Define 

f: C(~) = B(s) ds 
1 

In tegra t ing  by parts ,  we then have 

for some arb i t ra ry  t l .  

221 

(6.28) 

~It2 ~t2 
(1)(t, z)B(~) dz = (I)(t, z)C(z)lt,~ - F(~)d)(t, ~)C(T) d~. 

1 1 

Using A.3, for all It 2 - tl[ < h 

f[ 2 dz 1 t , �9 (t, r)B(z) <_ Ke-"(t-t~)3 + M K 3 - e  -a( - 2) 
t a 

F o r  the last term in (6.28) we obtain 

@(t, < @(t, z)B(z) dz + O(t, z)B(z) dz , (6.30) 
o k = O  d t o + k h  o+nh 

where n is Such that  

t o + n h < t < _ t  o + ( n +  1)h. 

Using the est imate (6.29) in (6.30) and using A. 1 for the first term in (6.28) yields the 
desired result. �9 

Integral  smallness captures  a large class ofper turba t ions ,  e.g., it is preserved under  
mult ipl icat ion with a signal having a "band limited" spectrum: 

L e m m a  6.3. Provided v(t) and r are uniformly bounded, 

Ilvll~ = Vo, IIOL -- v , ,  

and that B(z) is integral small, i.e., there exist h > 0 and 5 > 0 such that for all 

It1 - t21 < h 

j 't~ dt B(r) < 5, (6.31) 
t t  

then B(~)v(~) is also integral small, and for all I t t -  t2[ < h 

B(z)v(~) d~ < ~(Vo + hVl). (6.32) 
�9 I 
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Proof. By partial integration we have 

B(t!v(t) = B(t) dt v(t2) - B(z) d'r O(t) dt 
I 1 1 I 

< tS Vo + t~ Vt h. �9 

The previous lemmas allow us to establish our main result on preservation of 
persistency of excitation under integral small perturbations. The next theorem is a 
counterpart  of Theorem 6.1. It establishes that if the output of a time-varying system 
is PE, then it remains so if the system dynamics and its input are perturbed by 
integral small perturbations. 

T h e o r e m  6.3. Consider the linear time-varying system 

~l(t) = F(t)xt( t  ) + G(t)u(t), X(to) = x o, 

yl(t) = H(t )x t ( t  ) + J(t)u(t), 

and the perturbed system 

5c1(t ) = (F(t) + Ft(t))x(t ) + G(t)u(t) + Gl(t ), 

y(t) = H(t)x(t) + J(t)u(t). 

Assume that: 

A.1. 

(6.33) 

(6.34) 

X(to) = Xo, (6.35) 

(6.36) 

F(t), F 1 (t), G(t), G1 (t), H(t), and J(t) are bounded, reaulated matrix functions 
o f t :  

max(llfll~, Ilfxll~, IJall~, IIGIL, Ilntl~, Ildll~) = M 

and u(t) is bounded: Ilull~ = U.  
A.2. The transition matrix cD(t, T) for ~(t) = F(t)((t) is exponentially stable, i.e., it 

satisfies (6.24) for some K > 1 and a > O. 
A.3. yl(t) is PE, i.e., there exist ~1, ill, T > O, and tt such that 

1 f t+r  
cql < ~  j t y l ( z )y l (~ )rdz<_f l l l  fora l l  t>__t 1. 

A.4. F 1 (t) and G t (t) are integral small, i.e., there exist 6, h > 0 such tha.t for all 
I~1 - ~ 1  < h 

I t ~ t  

d~ <cS, 

There exist positive constants 6*, ~ ,  and h* depending on the system and on et  such 
that i f  .4.4 holds with h > h* and 0 <_ ~ < min(8*, (h*/h)(~*) then the perturbed 
system is BIBS stable and the output y ( t )  is PE. 

Proof. We first establish the existence of positive constants 6t, h*, and C 1 and a 
time t 3 such that 

Ily(t) - yl(t)ll < C1~ for all t > t3 (6.37) 
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provided A.4 holds with 6 < 6* and h > h*. The constants 62 and h* only depend 
on the system parameters,  and C 1 depends on the system parameters  and h. F r o m  
this it follows that  for all c with IJcll = 1 and for all t > t a 

1 
-~ (cry(z)) 2 dz > ~- o,. ,~,3 

> el - Cf62 

-T" 
The last inequality holds for 0 < 6 < min(6~', ( v /@) . (1 /C~(h ) ) ) ,  h > h*. 

We now establish (6.37). With  e(t) ~- x(t) - xt(t), we have 

~(t) = (F(t) + Fl(t))e(t) + F1(t)xt(t ) + at(t), e(to) = O. 

From assumptions  A.1 and A.2 it follows that 

K M  
Ilxl(t)H < Ke -~176 + U for all t and t o. 

a 

Choos ing  t > t2, t 2 ~- to(loge(MU/a [Ixx(to)ll)/a), and using (6.33) we have 

2 K M  U 
Ilxa(t)[[ < foral l  t > t2, 

a 

I[•t(t)ll< + 1  M U  foraU t>_t2. 

From Lemma 6.3 (equation (6.3.2)) applied to F~ (t)x~ (t) we obtain that  F t (t)x 1 (t) is 
integral small, i.e., for all t, s > t2 with It - sl < h, 

f s ' F t ( z ) x , ( ~ ) d z l < 6 ( 2 K M u + ( 2 - K a M ~ +  1 ) M U h ) .  

Define 

]/ h * = 4 1 o g e  1 + K a, 

6~ = a/(12MK). 

This guarantees that  the perturbed system (6.35) is BIBS stable for 6 < 6" and 
h > h* as explained in C o m m e n t  6.4. 

N o w  use Lemmas  6.1 and 6.2 to obtain 

[ ] lie(011 < g ( l  + 6)e-("/2)t'-t2)lle(t2)[I + g(1  + 6) 1 + ---a-)l(1 - e -(a/2)h) 6 

x 1 + U M  + - - + 1 h for t > t  2, 
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with M' = max(2M, M(1 + (2KM/a)U)). Define 

2 (1 + 2M'/a)(1 + UM(2K/a + (2KM/a + 1)h))6 
t3 = t2 - - l o g e  

a (1 - e -t~ lle(t2)tl 

Ca(h ) = 2K(1 + 6~')(1 + 2M'/a)(1 + UM(2K/a + (2KM/a + 1)h)) 
( 1  - e -t~ 

We then have, for all t > t3, 

Ile(t)[I < C3(h)6. 

This establishes (6.37) by assumption A.1, with C~(h) = MC3(h). The result then 
follows by identifying ~ as 

6~'= inf ~ h l  ~X/~ 1 
h>h* X[ 2 C~(h) h* = C~(h*)" �9 (6.38) 

Comment 6.5. Assumption A.3 stating that the output of the time-varying system 
(6.33)-(6.34) is PE might be established using Theorem 6.2. Of course, the unper- 
turbed system (6.33)-(6.34) could be time-invariant as well and then any PE criterion 
(e.g., those of Sections 4 or 5) could be used to guarantee A.3. 

Combining Theorems 6.3 and Theorem 6.2 we deduce that the PE property is 
robust with respect to the (combined) effect of slow time variations and integral 
small perturbations in the description of the dynamics of the underlying systems/ 
filters. A corollary in the style of Theorem 6.2, including both slow time variations 
and integral small perturbations is obvious. 

Comment 6.6. Notice that given the stability properties of the unperturbed system 
as well as cq, a lower bound for the minimum eigenvalue in the PE condition on 
the output of the unperturbed system, we can compute the ~t, 62, h* characterizing 
how much the system can be perturbed without losing stability or PE of the output. 
On the other hand, given 6~', 6~', h* it is not always possible to preserve PE after 
perturbation, as 6~' (see (6.38)) varies in inverse proportion to the condition number 
of the excitation, ~i/fl~ (notice that/~i = O((KM/a)U)2) ! Recall Comment 6.1. 

Comment 6.7. We comment upon the class of integral small perturbations. As 
pointed out in I-C, p. 81, a subclass of the integral small perturbations are zero mean, 
fast time-varying, almost-periodic perturbations. Indeed, it is not difficult to show 
that for any F(t) almost-periodic, zero mean, and for any positive 6 and h there 
exists an co c = co(h, 6) such that for all co > coc the signal F(ogt) is integral small, i.e., 

Jf I F(cot) dt < 6 for all It1 - t2l < h. 
t 

Comment 6.8. The meaning of slow and integral small signals can be deduced from 
the bounds (6.21) and (6.38), respectively. For slow signals of the form sin cot, e in 
A.3 of Theorem 6.2 is of the order of o~. Recalling that C ,,, K/a, where K/a is the 
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gain of the unperturbed system, it follows that (6.21) requires that co << a. This is 
completely in agreement with intuition; slow means frequencies well within the pass 
band of the system. For  integral small signals of the form M sin cot, c5 and h in A.4 
of Theorem 6.3 are of the order M/co and 1, respectively. Bound (6.38) on c5 requires 
then that coa >> M 2. Hence the larger the perturbations are in magnitude the faster 
these should be. It is clear from this that integral small perturbations capture the 
significant effects of fast perturbations. 

7. Conclusions 

A major stumbling block in establishing exponential convergence of adaptive 
estimation or control schemes is often in demonstrating the persistency of excitation 
of a regression vector somewhere in the adaptive loop given that a dynamically 
related regression vector is PE or, better still, that an input signal (or reference 
signal) is sufficiently rich. We believe that this paper significantly contributes to the 
removal of this stumbling block in two major ways. 

First we have produced conditions under which the output (or state) of a time- 
invariant MIMO system is PE when it is dynamically related to the output (or state) 
of another M IMO system. Defining a "sufficiently rich" vector input signal in terms 
of the persistency of excitation of a basis vector (output or state of a first MIMO 
system), and realizing that most commonly used regression vectors can be described 
as the output (or state) of a MIMO system that is dynamically related to the first 
one in a way that satisfies our conditions, we thereby solve the problem of estab- 
lishing PE conditions for a large class of regression vectors arising in time-invariant 
MIMO systems. 

Our other major contribution is to extend these results to a large class of MIMO, 
linear, time-varying systems, where the time variations must be either sufficiently 
slow or integral small, or a combination of these. We have observed that sufficiently 
fast time variations are contained in the class of integral small ones. We have also 
given a rough quantitative description of the required frequency separation, in that 
the slow time variations must be much slower than the dominant (i.e., slowest) 
frequencies of the system, while the fast time variations must be much faster than 
these. We finally note that by combining the results of Sections 6.1 and 6.2, we have 
produced conditions on the time variations of a time-varying system (containing 
both slow and fast parameter variations) that will guarantee the persistency of 
excitation of a regressor derived from that system provided the input vector is 
sufficiently rich in a well-defined sense. 
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