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Abstract

All approaches to optimal experiment design for control have so far focused on deriving an input signal (or input signal
spectrum) that minimizes some control-oriented measure of plant/model mismatch between the nominal closed loop system
and the actual closed loop system, typically under a constraint on the total input power. In practical terms, this amounts to
finding the (constrained) input signal that minimizes a measure of a control-oriented model uncertainty set. Here we address
the experiment design problem from a “dual” point of view and in a closed-loop setting: given a maximum allowable control-
oriented model uncertainty measure compatible with our robust control specifications, what is the cheapest identification
experiment that will give us an uncertainty set that is within the required bounds? The identification cost can be measured
by either the experiment time, the performance degradation during experimentation due to the added excitation signal, or a
combination of both. Our results are presented for the situation where the control objective is disturbance rejection only.
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1 Introduction

The problem addressed and solved in this paper is a novel
formulation of an optimal experiment design problem,
in the context of “identification for robust control”. It
is novel essentially in that it takes the dual viewpoint
to the classical way of posing optimal experiment design
problems. To state this in a nutshell, the classical way
is to seek the optimal input signal (or the optimal input
signal spectrum) that minimizes some control-oriented
measure of the quality of the identified model, subject
to constraints on the input signal power (and/or on the
output signal power). Representative examples of such
approach can be found in [10,12,17,9,16,6,11]. From a
practical point of view [20], such approach is not always
the most sensible choice: one should not spend more
effort on the identification than what is needed to achieve
the required robust control performance.

Thus, here we consider a “dual approach” to this optimal
experiment design problem. Given some prior bounds
on the uncertainty around an identified model that is
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compatible with the robust control performance specifi-
cations when such model is to be used for robust control
design, we seek to minimize the identification cost such
that the uncertainty set around the identified model is
(just) within these prior bounds. Initial steps in the di-
rection of minimizing the input effort given a required
quality measure have been taken in [4], where open-loop
identification was considered with a constraint on the
total input power, together with an H∞ robust control
design criterion. The idea of minimizing the total input
power for open-loop identification, subject to achieving
a required quality measure on the estimated model, has
been further developed in [14], where a variety of quality
measures has been considered. Here we solve this opti-
mal experiment design problem in a closed-loop setup.

The problem formulation addressed in this paper is as
follows. We consider that an unknown “true” linear time-
invariant system G0 is controlled with an existing con-
troller Cid that is not fully satisfactory, and which one
wants to replace by a new controller. The control objec-
tive is regulation only, i.e. the normal operation of the
closed-loop system is with a constant reference signal,
which, for simplicity, we assume to be zero. For the pur-
pose of designing a new and robust controller, an identi-
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fication step is performed in closed loop with the exist-
ing controller Cid, leading to a model Ĝ of the unknown
system G0 and a parametric uncertainty region D cen-

tered around Ĝ and containing the true system G0 with
some pre-chosen probability, say β [17,1].

A new controller Ĉ(Ĝ) will be designed from this identi-

fied model Ĝ using a pre-defined control design method
(e.g. an H∞ control design method with fixed weights).
The requirement imposed on the new controller is that it
achieves a sufficient H∞ performance with the true sys-

tem G0. However, G0 is unknown and therefore Ĉ(Ĝ) is
designed in such a way that it achieves this sufficient level
of H∞ performance for a set of systems Dadm around
the estimated Ĝ (the set Dadm will be formally defined
at the end of Section 3). Returning now to the identifi-
cation part of the exercise, the whole idea of our optimal
experiment design program is to perform a closed-loop
identification experiment with the smallest possible cost
so that the uncertainty set D around the estimated Ĝ
lies within the admissible uncertainty set Dadm imposed
by the control performance specifications. This implies,
in particular, that the true system G0, which lies within
D with probability β, will also lie in Dadm with probabil-
ity at least equal to β, and will therefore achieve the re-
quired H∞ performance level with Ĉ(Ĝ) with the same
probability. The size of the identified D is a function of
the covariance matrix Pθ of the identified parameter vec-

tor θ̂N and, consequently, a function of the length N of
the identification experiment and of the power spectrum
Φr(ω) of the excitation signal r(t) used for the identifi-
cation (see Figure 1).

y(t)
G0

v(t)

u(t)0

r(t)

+ + +

-
Cid

Fig. 1. Closed loop [Cid G0] during an identification experi-
ment with r(t) as excitation signal.

It remains to specify what is meant by “identification
with the smallest possible cost”. In the present context
of a regulation problem, any external excitation signal
r that is added for the purpose of identifying the sys-
tem produces added perturbations yr and ur to the nor-
mal operating signals y and u. During the experiment
time, these perturbations increase the variance of y and
u beyond their normal value, and consequently cause a
degradation of the production quality. It is this degrada-
tion that we shall seek to minimize while achieving the
required precision (D ⊆ Dadm).

All results in this paper are derived under the assump-
tion that the system is in the model set, which implies
that we consider variance errors only. However, unlike
[10,12,9], our results are not based on the asymptotic

(in model order) transfer function variance expressions
[17][page 295], but on the more accurate parameter co-
variance expressions for finite model orders, that were
also used in [11].

Our first contribution, based on a classical result
[21][page 392], is to show that, when the controller Cid

is sufficiently complex, the model accuracy required for
any robust performance specifications can be achieved
at no cost at all, provided that one can wait long
enough, i.e. no external excitation signal r is required
provided the data length N can be made sufficiently
large. The minimal data length required to achieve the
desired model accuracy can be determined via an LMI
optimization. Such a strategy is not always practically
feasible. Indeed, the existing controller Cid may e.g. be
of insufficient order or one might have to wait an unduly
long time to get the required accuracy. Thus, we shall
present a number of optimal experiment design scenar-
ios, where the optimal design will be a trade-off between
data length and a sufficient amount of excitation power
Φr(ω). This is done by providing an LMI-based solution
to the following two experiment design problems:

• For a given excitation spectrum Φr(ω), determine the
minimal experiment time N that is necessary to meet
the robust performance constraint, i.e. D ⊆ Dadm.

• For a given experiment time N , determine the power
spectrum Φr(ω) which induces the smallest perturba-
tion with respect to the normal operating conditions
of the control loop [Cid G0], and which achieves the re-
quired robust performance constraints, i.e.D ⊆ Dadm.

Our tools for cheap identification for robust control are
developed for direct closed-loop Prediction Error identi-
fication [21][page 389]. The open-loop case was treated
in [3].

2 Prediction Error Identification aspects

We consider the identification of a stable linear time-
invariant single input single output system with a
model structure M = {G(z, θ), H(z, θ)}, θ ∈ Rk, that
is able to represent the true system. Thus, the finite-
dimensional true system is given by:

S : y(t) =

G0(z)
︷ ︸︸ ︷
G(z, θ0)u(t) +

v(t)
︷ ︸︸ ︷
H(z, θ0)e(t) (1)

for some unknown parameter vector θ0 ∈ Rk. In (1), e(t)
is a white noise with variance σ2

e and G(z, θ0), H(z, θ0)
are stable discrete-time transfer functions. The trans-
fer function H(z, θ0) is furthermore assumed monic and
minimum-phase. We shall also assume throughout the
paper that the model structure is globally identifiable at
θ0. This means that θ0 is the only value of θ for which
G(z, θ) and H(z, θ) represent the true system (see The-
orem 4.2 of [17]).
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This true system is operated in closed loop with an ini-
tial (but unsatisfactory) controller Cid : u(t) = r(t) −
Cid(z)y(t). The signal r(t) is zero in normal operation
but can be used to excite the system for a closed-loop
identification experiment (see Figure 1). With Sid ,

1/(1+CidG0), the closed-loop system can be written as:

y(t) = Sidv(t) +

yr(t)
︷ ︸︸ ︷
G0Sidr(t) (2)

u(t) = −CidSidv(t) + Sidr(t)︸ ︷︷ ︸
ur(t)

(3)

Suppose it is desired to identify a model Ĝ(z) =

G(z, θ̂N), Ĥ(z) = H(z, θ̂N) of the true system by apply-
ing an external signal r to the actual closed-loop system
with the controller Cid in the loop and by collecting
N input-output data, using a direct Prediction Error
(PE) identification method. We shall assume through-
out this paper that the signal r is taken as a part of
length N of a realization of a quasi-stationary signal
with power spectrum Φr(ω), yielding measured signals
{u(t), y(t), t = 1, . . . , N}. Φr(ω) is defined as the Fourier

transform of Rr(τ) = limN→∞
1
N

∑N
t=1 Er(t)r(t − τ).

The estimated parameter vector θ̂N is then defined

by: θ̂N
∆
= arg minθ

1
N

∑N
t=1 ǫ2(t, θ) with ǫ(t, θ)

∆
=

H(z, θ)−1 (y(t) − G(z, θ)u(t)). Note that ǫ(t, θ) depends
on the chosen signal r(t) via (2)-(3).

In this paper, as is usual in PE identification, the ex-
perimental conditions will be chosen/designed such that
the closed-loop identification experiment is “informative
enough” [17] i.e. such that the cost function:

V̄ (θ) = Ēǫ2(t, θ) = lim
N→∞

1

N

N∑

t=1

Eǫ2(t, θ) (4)

has a unique minimum (to which θ̂N tends w.p. 1 when
N → ∞). By our standing assumption that the system
is in the model set and that the model structure is glob-
ally identifiable at θ0, this unique minimum is θ0. The
informative character of the experiment depends on the
complexity of the controller Cid (see Section 5) and can
always be guaranteed by proper choice of Φr(ω). Indeed,
a signal r(t) generated by filtering a white noise with a
finite-dimension filter will always lead to an informative
enough experiment. See e.g. [17][page 427] for details.
Under these conditions, we have the following important
result.

Lemma 1 Consider a closed-loop identification exper-
iment, as described above, that is informative enough.

Then the identified parameter vector θ̂N is asymptotically
normally distributed around the true parameter vector θ0,

i.e. θ̂N ∼ N (θ0, Pθ) with Pθ a strictly positive definite

matrix given by [17][Chapter 9]:

Pθ =
σ2

e

N

�
Ē
�
ψ(t, θ0)ψ(t, θ0)

T
��−1

with ψ(t, θ) = − ∂ǫ(t,θ)
∂θ

.(5)

In this paper, the design variables with respect to which
we shall optimize the identification experiment are the
data length N , and the external signal r via its spectrum
Φr(ω). The following expression, which is easily deduced
from (3) and (5), shows precisely how the covariance
matrix Pθ in (5) depends on these design variables:

P
−1
θ =N

P
−1
r (Φr(ω),θ0,σ2

e)z }| {0� 1

σ2
e

1

2π

πZ
−π

Fr(e
jω
, θ0)Fr(e

jω
, θ0)

∗Φr(ω)dω

1A
+N

0� 1

2π

πZ
−π

Fe(e
jω
, θ0)Fe(e

jω
, θ0)

∗
dω

1A| {z }
P

−1
v (θ0)

. (6)

Here, Fr(z, θ0) = Sid
ΛG(z,θ0)
H(z,θ0) , Fe(z, θ0) = ΛH (z,θ0)

H(z,θ0) −

CidSidΛG(z, θ0), ΛG(z, θ) = ∂G(z,θ)
∂θ

and ΛH(z, θ) =
∂H(z,θ)

∂θ
.

Using Lemma 1, it is possible to define an uncertainty

region D(θ̂N , Pθ) around the identified model and con-
taining the unknown true system G(z, θ0) at any desired
probability level β [1]:

D(θ̂N , Pθ) =

{
G(z, θ) =

ZN (z)θ

1 + ZD(z)θ
| θ ∈ U,

U = {θ|(θ − θ̂N )T P−1
θ (θ − θ̂N ) < χ}

}
(7)

where χ is a real constant dependent on the chosen prob-
ability level β and ZN , ZD are row vectors contain-
ing delays and zeros. These vectors introduce a general
parametrization of G(z, θ) which will be important in
the sequel. Note that the size of the uncertainty region

D(θ̂N , Pθ) is a function of the covariance matrix Pθ and
thus, by (6), a function of the design variables N and
Φr(ω).

3 Control design objectives and control design
method

As stated before, our aim is to replace the “unsatis-
factory” controller Cid(z) by a “satisfactory” controller

Ĉ(z). In order to define what we mean by satisfactory
controller, we adopt the following performance measure
for a stable loop [C G]:

J(G, C, Wl, Wr) = sup
ω

J̄(ω, G, C, Wl, Wr) (8)
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with

J̄(ω,G,C,Wl,Wr) = σ̄(Wl(e
jω)F (G(ejω), C(ejω))Wr(e

jω))(9)

F (G, C)
∆
=

(
GC

1+GC
G

1+GC

C
1+GC

1
1+GC

)

where σ̄(A) denotes the largest singular value of A
and Wl(z), Wr(z) are chosen diagonal performance
filters. The performance measure (8) is quite gen-
eral: J(G, C, Wl, Wr) ≤ 1 ensures that the four en-
tries of Wl(z)F (G, C)Wr(z) have an H∞ norm smaller
than one. Simpler H∞ criteria can be chosen as
special cases; e.g., for Wl(z) = diag(0, W (z)) and
Wr = diag(0, 1), J(G, C, Wl, Wr) ≤ 1 corresponds to
‖W/(1 + CG)‖∞ ≤ 1. The performance filters Wl(z)
and Wr(z) are chosen in such a way that they reflect the
performance specifications that we want to achieve with
the true system. Thus, a controller C will be deemed
satisfactory for the system G0 if [C G0] is stable and if
J(G0, C, Wl, Wr) ≤ 1.

As mentioned in the introduction, we want to design the
new controller Ĉ(z) using an identified model Ĝ(z) =

G(z, θ̂N) of G0(z). For this purpose, we will use a pre-
selected nominal control design method:

Assumption 1 We have pre-selected a fixed nominal
control design method which will map the identified model
Ĝ to one controller Ĉ. This control design method has
been chosen in such a way that the controller Ĉstabilizes
Ĝ and achieves with this model a nominal performance
level:

J(Ĝ, Ĉ, Wl, Wr) ≤ γ < 1. (10)

where γ is a fixed scalar.

One possible way to choose a control design method
satisfying Assumption 1 is to choose for Ĉ the central
controller of the four-block H∞ control design method
with performance objective (10). When this controller

Ĉ is applied to the true system G0, the achieved perfor-
mance will generically be poorer than the designed per-
formance. However, by choosing the design criterion (10)
with γ < 1, we ensure that there is a whole set of systems
G around Ĝ that are also stabilized by Ĉ and that achieve

J(G, Ĉ, Wl, Wr) ≤ 1. In the sequel, Dadm(θ̂N ) denote
the set containing all systems G(z) having these prop-

erties. This set Dadm(θ̂N ) of course contains G(z, θ̂N ).

4 Identification for control at the lowest cost

Let us now proceed to our experiment design prob-
lem. As stated earlier, besides the standard require-
ment of an experiment which is informative enough,

our objective is to determine the experimental condi-
tions (i.e. N and Φr(ω)) of the identification exper-
iment on the loop [Cid G0] in such a way that the

model Ĝ, identified through this experiment, delivers
a controller Ĉ which stabilizes the unknown G0 and
achieves J(G0, Ĉ, Wl, Wr) ≤ 1. Since G0 is unknown
but lies (with probability β) in the uncertainty region

D(θ̂N , Pθ), this performance constraint will be replaced
by the following checkable constraint.

Constraint 1 The experimental conditions (i.e. N
and Φr(ω)) of the identification experiment on the loop
[Cid G0] (see Section 2) must be such that the identified

model Ĝ = G(z, θ̂N) and the identified uncertainty region

D(θ̂N , Pθ) have the property that J(G, Ĉ, Wl, Wr) ≤ 1

for all G(z) ∈ D(θ̂N , Pθ). In the previous expression, Ĉ

is the controller designed from Ĝ using the control design
method presented in Assumption 1.

Since J(G, Ĉ, Wl, Wr) ≤ 1 for all G(z) in the set

Dadm(θ̂N ) defined in the last paragraph of Section 3,

Constraint 1 is ensured whenD(θ̂N , Pθ) is a subset of this

set Dadm(θ̂N ). Since Pθ > 0, D(θ̂N , Pθ) ⊆ Dadm(θ̂N ) is
always achievable if N and/or Φr(ω) are chosen large
enough: see (6). Moreover, we have the following trade-
offs: the larger N is chosen, the smaller Φr(ω) can be
while still verifying Constraint 1. Conversely, the larger
Φr(ω) is chosen, the smaller N can be while still verify-
ing this constraint.

Based on the reasoning above, it is clear that many possi-
ble choices of experimental conditions allow one to fulfill
Constraint 1. Among these, we seek to determine those
inducing the smallest possible economical cost. We now
define this cost. In normal operation the signals u(t)
(control signal) and y(t) (the controlled variable which is
in many cases the product) are given by: y(t) = Sidv(t)
and u(t) = −CidSidv(t). By applying an external signal
r(t) to the loop during the identification, we introduce
disturbances yr(t) and ur(t) on top of the normal oper-
ation signals: see (2)-(3). Those disturbances induce a
loss of production quality and thus entail an economi-
cal cost. Consequently, as far as the cost of the identifi-
cation is concerned, the ideal closed-loop identification
experiment would be, in many cases, one in which the
normal operation signals u(t) and y(t) are used for a cer-
tain length N without any external excitation, i.e. with
r(t) = 0. We show in Section 5 that such costless identi-
fication experiment can, in certain circumstances, fulfill
Constraint 1. We also show how to compute the mini-
mum number Nmin of measurements that are necessary
to reach this objective.

In the cases where Constraint 1 can not be achieved with
r(t) = 0, the application of a nonzero external signal
r(t) for a certain amount of time is unavoidable, but
we show how N and Φr(ω) can be chosen in order to

4



achieve Constraint 1 with minimal economical cost. This
economical cost will generally be a function of either
the experiment time N , the power of the perturbations
yr and ur, or a combination of both. In the sequel, we
will therefore distinguish three different situations and
determine for each of them how we can optimally choose
the experimental conditions.

Situation 1. The cost of the identification is mainly
determined by the power of the perturbations yr(t)
and ur(t). Based on the trade-off presented below Con-
straint 1, the experiment time N is in this case chosen as
large as we are allowed to. For such fixed N , the optimal
power spectrum Φr(ω) can subsequently be determined
by minimizing the following cost function Jr:

Jr = αy

0� 1

2π

πZ
−π

Φyr (ω) dω

1A + αu

0� 1

2π

πZ
−π

Φur (ω) dω

1A(11)
=

1

2π

πZ
−π

�
αy|G0(e

jω)Sid(e
jω)|2 + αu|Sid(e

jω)|2
�

Φr(ω) dω

while guaranteeing Constraint 1. Here αy and αu are
arbitrarily chosen scalars and Φyr

(ω) and Φur
(ω) are the

power spectra of the disturbance signals yr(t) and ur(t),
respectively.

Situation 2. Situation 2 is the converse situation: the
cost of the identification is mainly determined by the du-
ration of the identification. Based on the trade-off pre-
sented below Constraint 1, the power spectrum Φr(ω) of
the to-be-applied signal r(t) is in this case chosen at each
frequency as large as the constraints on the actuators al-
low. For such fixed Φr(ω), the optimal experiment time
is the smallest experiment time Nmin satisfying Con-
straint 1. Note that, in this situation, the identification
with r = 0 is generally not the optimal experiment.

Situation 3. Situation 3 is where N and Φr(ω) are both
important in the cost of the identification. In this situ-
ation, we can determine the optimal spectrum Φr(ω) as
in Situation 2 for different values of the length N . Since,
for increasing values of N , the optimal cost function Jr

decreases, such approach allows one to find the “opti-
mal” combination for the duration of the identification
and the induced disturbance Jr.

5 Costless identification experiment

In this section, we show that there are conditions under
which Constraint 1 can be achieved using an identifica-
tion experiment on the closed loop [Cid G0] without any
external excitation signal r(t), i.e. using only the exci-
tation due to the noise v(t). We have called such exper-
iments “costless identification” since r = 0 also implies

Jr = 0. The main condition for this to be possible is that
Lemma 1 holds in this situation or, in other words, that
the closed-loop identification experiment with r(t) = 0 is
informative enough i.e. that the expected identification
criterion V̄ (θ) defined in (4) has a unique global mini-
mum at θ0. A necessary and sufficient condition for this
to hold is that ǫ(t, θ) = ǫ(t, θ0) =⇒ θ = θ0. In closed-
loop identification with r = 0, this condition specializes
to the following result [21][page 392]: V̄ (θ) has a unique
global minimum at θ0 if and only if, for any θ,

H−1(z, θ)(1 + CidG(z, θ)) = H−1(z, θ0)(1 + CidG(z, θ0))

=⇒ θ = θ0. (12)

A sufficient condition for this identifiability condition to
hold, in the case of a linear time-invariant regulator Cid

considered here, is that the regulator be sufficiently com-
plex (i.e. of sufficiently high order). One can make this
statement more precise by considering specific model
structures. This has been done in [21][page 416] in the
case where the model structure M is ARMAX or ARX.
Here we extend the results of [21] to OE and BJ model
structures. The model structures we consider are all spe-
cial cases of the general classM = {G(z, θ); H(z, θ) } of
model structures having the following parametrization

G(z, θ) =
z−nkB(z, θ)

F (z, θ)A(z, θ)
H(z, θ) =

C(z, θ)

D(z, θ)A(z, θ)

with A(z, θ), B(z, θ), C(z, θ), D(z, θ) and F (z, θ) poly-
nomials of degree na, nb, nc, nd and nf , respectively.
We also consider that the controller Cid is represented
as Cid = X/Y where X and Y are polynomials of degree
nx and ny, respectively.

We make the following assumption concerning the true
closed-loop system and the parametric model structures.

Assumption 2 Consider the true system [G(z, θ0) H(z, θ0)]
in closed loop with the controller Cid = X/Y where X
and Y are polynomials of degree nx and ny, respectively.
The identification is performed with a model structure
that is contained in the general class of structures de-
scribed above, with the following assumptions:

(1) for the true system (i.e. with θ = θ0) there is no
common factor in the polynomials {A, B, C}, the
polynomials {B, F} are coprime, and the polynomi-
als {C, D} are coprime;

(2) the controller polynomials X and Y are coprime;
(3) the closed loop denominator polynomial does not

cancel any root of C(z, θ0);
(4) the degrees nk, na, nb, nc, nd, nf used in the model

structures are those of the true system (i.e. they are
assumed known).

The coprimeness assumptions for the true system and
for the controller parametrization are very weak. The

5



assumption that the zeros of the noise model are not
cancelled by the closed loop poles is generically satisfied
given that the controller Cid is fixed, while the noise
model numerator C(z, θ0) is unknown. The only really
restrictive assumption is the last one on exact knowledge
of the degrees of the true system.

Proposition 1 Consider the closed loop identification
described in Section 2 with Cid a linear time-invariant
controller, and assume that r(t) = 0 ∀t. Consider that
the controller and the chosen model structure obey As-
sumption 2. Then, V̄ (θ) has a unique minimum in θ0:

• in the caseM = ARX (C = D = F = 1) or ARMAX
(D = F = 1) if and only if either nx + nk > na or
ny > nb;

• in the case M = BJ (A = 1) if and only if nx + nk >
nd + nf or ny > nb + nd;

• in the case M = OE if and only if the controller Cid(z)
is not identically zero.

Proof. The proof consists of verifying (12) for each
of these model structures. For the ARX and ARMAX
model structures, the result has been established in
[21][page 416]. In the Box-Jenkins case, the left-hand
side of (12) becomes:

D(θ)[F (θ)Y + z−nkXB(θ)]

C(θ)F (θ)
=
D(θ0)[F (θ0)Y + z−nkXB(θ0)]

C(θ0)F (θ0)
(13)

The polynomials C(θ0) and D(θ0) are coprime by con-
dition 1 of Assumption 2, while the polynomials C(θ0)
and F (θ0)Y + z−nkXB(θ0) are coprime by condition 3.
Suppose now that F (θ0) and D(θ0) have a common poly-
nomial factor H , i.e.

F (θ0) = F̄0H, D(θ0) = D̄0H. (14)

Since, by condition 4 of Assumption 2, degC(θ) +
degF (θ) = degC(θ0) + degF (θ0), it follows that the so-
lution set of (13) is given by C(θ)F (θ) = C(θ0)F̄0M and

D(θ)[F (θ)Y +z−nkXB(θ)] = [F (θ0)Y +z−nkXB(θ0)]D̄0M

where, by condition 4 of Assumption 2, M is an arbitrary
polynomial of the same degree as that of H . Equivalently,
the solution set is described by

C(θ)F (θ) = C(θ0)F̄0M

D(θ)F (θ) = F (θ0)D̄0M + ξz−nkX

D(θ)B(θ) = B(θ0)D̄0M − ξY (15)

where ξ is an arbitrary polynomial. The solution set re-
duces to

C(θ)F (θ) = C(θ0)F̄0M

D(θ)F (θ) = F (θ0)D̄0M

D(θ)B(θ) = B(θ0)D̄0M (16)

if and only if either nx +nk > nd +nf or ny > nb +nd. It
now follows from the first and second of these equations,
using (14), that

C(θ)

D(θ)
=

C(θ0)F̄0

D̄0F (θ0)
=

C(θ0)F̄0

D̄0HF̄0
=

C(θ0)

D(θ0)
.

It follows from the second and third equation of (16) that

B(θ)

F (θ)
=

B(θ0)

F (θ0)
.

From these last two expressions and condition 4 of As-
sumption 2 about the known degrees, we conclude that
the only solution is θ = θ0.

Finally, for the OE case, the left-hand side of (12) be-
comes CidG(θ) = CidG(θ0). As long as the linear time-
invariant controller Cid(z) is not identically zero, the
latter implies θ = θ0.

We have given conditions on the controller complexity
under which an identification experiment with no exter-
nal excitation delivers a cost function V̄ (θ) that has θ0

as its unique global minimum, i.e. the closed-loop iden-
tification with r(t) = 0 is informative enough. It is then
trivial to show that, under those conditions, Constraint 1
can be made to hold.

Theorem 1 Consider a closed-loop identification exper-
iment as presented in Section 2 with r(t) = 0 and with Cid

satisfying the conditions in Proposition 1. Then, Con-
straint 1 can always be achieved by using for the identi-
fication a set of (normal operation) input-output data of
sufficient length N .

Proof. When r = 0, expression (6) of P−1
θ becomes

P−1
θ = NP−1

v (θ0). Since the experiment is informative
enough, we have, via Lemma 1, P−1

v (θ0) > 0. Therefore,
with N sufficiently large, P−1

θ = NP−1
v (θ0) can be made

such that D(θ̂N , Pθ) ⊆ Dadm(θ̂N ) for any set Dadm(θ̂N )

around G(z, θ̂N ), which implies that Constraint 1 holds
(see Section 4).

Theorem 1 shows that, if the controller complexity is
chosen such that the closed-loop experiment with r = 0
is informative enough, the identification leading to a new
and satisfactory controller Ĉ for G0 can be achieved
without identification cost: we just need to measure the
input and output signal in normal operation (i.e. with
r = 0) for a sufficient amount of time. The computation
of the smallest data length Nmin for which the robust-
ness Constraint 1 is satisfied with r = 0 is the special
case of Situation 2 when the given reference excitation
spectrum Φr(ω) is equal to 0; a method to compute this
minimal number of data will be presented in Section 6.
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6 Least costly identification when costless iden-
tification is impossible

An identification with r = 0 may be impossible or non
desirable for three reasons: i) the initial controller Cid,
which can often not be chosen by the user, is of lower
complexity than is required by the conditions of Proposi-
tion 1, ii) the data length required to satisfy Constraint 1
(see Theorem 1) is unrealistic (e.g. too long) or iii) the
controller Cid performs so badly that it is more econom-
ical to seek for the shortest identification duration (see
Situation 2, Section 4). When identification with r = 0
is ruled out, the least costly identification experiment for
control is defined by the problems presented at the end
of Section 4. Those problems involve the computation
under Constraint 1 of either the power spectrum Φr(ω)
minimizing Jr for a given N (Situations 1 and 3) or the
smallest data length for a given Φr(ω) (Situation 2).

We first examine Situation 1 in which the data length
N is fixed and one seeks to satisfy Constraint 1 with a
power spetrum Φr(ω) that minimizes the identification
cost Jr defined in (11). We restrict our search to signals
whose power spectrum Φr(ω) can be written as [16]:

Φr(ω) = Rr(0) + 2

m∑

i=1

Rr(i)cos(iω) ≥ 0 ∀ω (17)

where m is a positive integer selected by the user. By
designing a spectrum as (17), we always ensure that the
corresponding identification experiment is informative
enough and thus that Lemma 1 holds. Indeed, the pa-
rameters Rr(i) (i = 0...m) can be interpreted as the
auto-correlation sequence of a signal that has been gen-
erated by a white noise passing through an FIR filter of
length m + 1.

Another important property of the parametrization (17)
is that P−1

θ and Jr (see (6) and (11)) are affine functions
of the design variables Rr(i) (i = 0...m), as we show
in the following proposition. Note that there are other
parametrizations of Φr(ω) that have the same property
and could therefore also be considered here: e.g. Φr(ω) =∑m

i=1 Rr(i)δ(ω − ωi) corresponding to a multisine sig-

nal r(t) [7], or Φr(ω) =
∑m

i=0 Rr(i)
(
Bi(e

jω) + B∗
i (ejω)

)

where Bi(e
jω) are preselected basis functions [14].

Proposition 2 Consider the expression (6) of P−1
θ

and let Φr(ω) be parametrized by (17). Let M̃k(θ0)
be the sequence of Markov parameters of FrF

∗
r i.e.

Fr(e
jω , θ0)Fr(e

jω , θ0)
∗ =

∑∞

k=−∞
M̃k(θ0)e

−jkω with

Fr(z, θ0) as defined in (6). Then, P−1
θ ∈ Rk×kcan be

written as:

P−1
θ = M̄(θ0) +

m∑

i=0

Mi(θ0, σ
2
e) Rr(i)

where M̄(θ0) = NP−1
v (θ0), M0(θ0, σ

2
e) = N

σ2
e

M̃0(θ0),

and Mi(θ0, σ
2
e) = N

σ2
e

(M̃i(θ0) + M̃T
i (θ0)) for i = 1...m.

Moreover, the cost function Jr defined in (11) can be
written as:

Jr = [αyc0(θ0) + αud0(θ0)]Rr(0)

+2
mX

i=1

[αyci(θ0) + αudi(θ0)]Rr(i),

where the coefficients ci(θ0) and di(θ0) are the Markov
parameters of G0G

∗
0SidS

∗
id and SidS

∗
id respectively, i.e.

G0(e
jω)G0(e

jω)∗Sid(e
jω)Sid(e

jω)∗ =
∑∞

k=−∞
ck(θ0)e

−jkω

and Sid(e
jω)Sid(e

jω)∗ =
∑∞

k=−∞ dk(θ0)e
−jkω .

Proof. The first part of the proposition is a direct con-
sequence of Result 5.6 of [16] applied to the closed-loop
expression for P−1

θ as given in (6). The second part
is a direct consequence of result 5.4 of [16] applied to
yr(t) = G0Sidr(t) and ur(t) = Sidr(t).

With the parametrization (17) for Φr(ω), the experiment
design problem corresponding to Situation 1 can then
be formulated as follows.

Experiment Design Problem 1: Consider the closed-
loop identification experiment of Section 2 with a fixed
number N of data. Determine the parameters Rr(i) (i =
0...m) of the spectrum Φr(ω) in (17) which minimize Jr,
subject to satisfaction of Constraint 1.

We show in the sequel that this problem can be expressed
as an LMI-based optimization problem [5]. For this
purpose, we express the robust performance constraint

J̄(ω, G, Ĉ, Wl, Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ) at one partic-
ular frequency ω as an LMI, linear in P−1

θ . Note that,

according to (8), J(G, Ĉ, Wl, Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ)

⇐⇒ J̄(ω, G, Ĉ, Wl, Wr) ≤ 1 ∀ω and ∀G ∈ D(θ̂N , Pθ).

Proposition 3 Consider the controller Ĉdesigned from

the model G(z, θ̂N ) using the control design method pre-

sented in Assumption 1. Consider the set D(θ̂N , Pθ) de-

fined in (7). Then Ĉ achieves J̄(ω, G, Ĉ, Wl, Wr) ≤ 1

with all G in D(θ̂N , Pθ) if and only if ∃ τ(ω) > 0,

τ(ω) ∈ R and L(ω) = −L(ω)T ∈ R(k+1)×(k+1) such that

τ (ω)E(ω, θ̂N ) −R(θ̂N ) + j L(ω) ≤ 0 (18)

where E(ω, θ̂N ) = Ω∗(ejω)

(
I4 0

0 −1

)
Ω(ejω) with

Ω =

0BB�0�I2 ⊗

0�Wr

0� Ĉ

1

1A1A1AWl 0

0 1

1CCA0BB� ZN 0

ZD 1

ZD + ĈZN 1

1CCA
7



Ω(z) has the dimension 5 × (k + 1) and ⊗ denotes the
Kronecker product. Finally:

R(θ̂N ) =

0� Ik

−θ̂T
N

1AP
−1
θ

0� Ik

−θ̂T
N

1AT

+

0� 0 0

0 −χ

1A ∈ R
(k+1)×(k+1)

Proof. See Appendix A.

The previous proposition shows that Constraint 1 can
be replaced by LMI’s at each frequency, linear in P−1

θ

and thus, via Proposition 2, linear in the decision vari-
ables Rr(i) of Experiment Design Problem 1. Combin-
ing this fact with the fact that its cost function Jr is also
linear in Rr(i), Experiment Design Problem 1 would be
solvable exactly if the parametrizations of P−1

θ and Jr

with respect to the design variables Rr(i) were not func-
tions of the unknown θ0 and σ2

e , and if condition (18)

was not a function of the to-be-identified θ̂N . This dif-
ficulty can be circumvented by using a-priori estimates

for those quantities: θo,est, σ2
e,est and θ̂N,est. The solu-

tion is then obtained by solving the LMI optimization
problem described in Theorem 2 below. In Section 7 we
shall present an attractive alternative to the reliance on
a-priori estimates; it is based on a small adaptation of
the LMI problem of Theorem 2.

Theorem 2 Consider the approximations θ0 ≈ θo,est,

θ̂N ≈ θ̂N,est and σ2
e ≈ σ2

e,est and the shorthand nota-

tions: ci = ci(θo,est), di = di(θo,est), M̄ = M̄(θo,est),

Mi = Mi(θo,est, σ
2
e,est) and E(ω) = E(ω, θ̂N,est). Then

the auto-correlation sequence Rr(i) (i = 0...m) which
solves Experiment Design Problem 1 is the solution of
the following LMI optimization problem:

min
Rr(i)(i=0...m)

[αyc0 + αud0]Rr(0) + 2

mX
i=1

[αyci + αudi]Rr(i)

under the constraint that there exist a matrix Q = QT of
appropriate dimension, τ(ω) > 0, τ(ω) ∈ R and L(ω) =

−L(ω)T ∈ R(k+1)×(k+1) such that

τ (ω)E(ejω) −

0� Ik

−θ̂T
N,est

1A M̄ +
mX

i=0

Mi Rr(i)

!0� Ik

−θ̂T
N,est

1AT

−

0� 0 0

0 −χ

1A+ j L(ω) ≤ 0 ∀ω (19)

and that

0� Q− ATQA CT − ATQB

C −BTQA D +DT −BTQB

1A ≥ 0 (20)

with the following definitions of A, B, C, D:

A =

0� 0 0

Im−1 0

1A B =
�

1 0 ... 0
�

C =
�
Rr(1) Rr(2) ... Rr(m)

�
D = Rr(0)

2

The optimal spectrum Φr(ω) can then be computed us-
ing (17).

Proof. As shown in [16] via the Positive Real Lemma,
the constraint that there exists a symmetric matrix Q
such that (20) holds is a necessary and sufficient condi-
tion for Rr(0) + 2

∑m

i=1 Rr(i)cos(iω) to be positive at
each ω and thus for (17) to represent a spectrum. Con-
sequently, the result in this theorem is a direct conse-
quence of Propositions 2 and 3.

Comment 1. Condition (19) must be considered at ev-
ery frequency. This is impossible in practice. The optimal
spectrum can nevertheless be approximated by using a
finite frequency grid. An exact but more cumbersome so-
lution consists of using the Kalman-Yakubovitch-Popov
(KYP) lemma [19]: see Appendix B.

Comment 2. Additional constraints such as Φu(ω) <
βu(ω) and Φy(ω) < βy(ω) ∀ω can also be treated (see
[16]).

We now consider the experiment design problem corre-
sponding to Situation 2.

Experiment Design Problem 2. Consider the closed-
loop identification experiment of Section 2. Consider also
that the power spectrum Φr(ω) of the excitation signal
r(t) is given and leads to an informative enough identi-
fication experiment. Determine then the smallest length
N of a part of r(t) that must be applied to [Cid G0] in
order to fulfill Constraint 1.

Since (6) shows that P−1
θ is linear in the decision variable

N of Experiment Design Problem 2, it can be solved
in a similar way and with the same approximations as
Experiment Design Problem 1.

Theorem 3 Consider the approximations θ0 ≈ θo,est,

θ̂N ≈ θ̂N,est and σ2
e ≈ σ2

e,est and the shorthand nota-

tions: P−1
r (Φr(ω)) = P−1

r (Φr(ω), θo,est, σ
2
e,est), P

−1
v =

P−1
v (θo,est) (see (6)) and E(ω) = E(ω, θ̂N,est) (see (18)).

Then, the minimum duration N which solves Experiment
Design Problem 2 is the solution (rounded up to the near-
est integer) of the LMI optimization problem minimiz-
ing N under the constraint that there exist τ(ω) > 0,

τ(ω) ∈ R and L(ω) = −L(ω)T ∈ R(k+1)×(k+1) such that
the constraint (19) with M̄ +

∑m
i=0 Mi Rr(i) replaced by

N (P−1
r (Φr(ω)) + P−1

v ) holds at each frequency ω.
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7 A robust optimal design procedure

Theorems 2 and 3 require that initial estimates of θ0, θ̂N

and σ2
e be used. If those approximations are not accu-

rate, this could lead to poor results. In this section, we
present a procedure that renders the computed optimal
design solution more robust w.r.t. these unknown quan-
tities. Very often, estimates of θ0 and σ2

e are available,
because the initial controller Cid has been computed
from an identified model. This initial identification de-
livers estimates not only of θ0 and σ2

e , but also of un-
certainty regions for those quantities. It is then possible
to deduce from this initial identification a (truncated)
Gaussian probability density function which defines the
likelihood of each element of these uncertainty regions.
If this is not possible, the density functions are chosen
uniform over the uncertainty regions. The estimate, the
uncertainty region and the probability density function

of the to-be-identified θ̂N are typically chosen equal to
those of θ0. To summarize, from an initial identification

one can assume that q0 =
(

θT
0 θ̂T

N σ2
e

)T

lies in a set Q

and that the likelihood of the event q = q0 is given by a
probability function p(q). Based on this information, one
can robustify the procedure that consists in adopting a
unique and possibly poor estimate of q0 for the design
of the experimental conditions. This is achieved by the
use of randomized algorithms (see e.g. [23,22]). In the
case of Experiment Design Problem 2, we want to deter-
mine the smallest duration N for which Constraint 1 is
verified for all possible values of q0 in Q. This is equiv-
alent to computing an estimate N̂ of supq∈Q Nq where
Nq is the solution obtained by Theorem 3 with the ap-
proximation q. Considering Nq as a function of q, this
can be done [22] with accuracy ǫ and confidence 1 δ by
generating n ≥ ln(δ−1)/ln((1− ǫ)−1) estimates qj of q0

according to the probability density function p(q), and
by determining the corresponding optimal Nqj

for each

of these estimates qj using Theorem 3. An estimate N̂ of
supq∈Q Nq is then given by supqj (j=1...n) Nqj

. In the case
of Experiment Design Problem 1, the approach above
can not be considered since we determine the parame-
ters Rr(i) (i = 0...m) of Φr(ω) rather than Φr(ω) itself.
Instead, the so-called scenario-approach can be consid-
ered (see e.g. [23, Chapter 12]). This approach is also
based on a randomized algorithm which uses the prob-
ability density function p(q). However, whereas for Ex-
periment Design Problem 2 we apply Theorem 3 a fixed
number of times for estimates of q0 randomly generated
from p(q), for Experiment Design Problem 1 we solve the
optimization problem only once, but with several robust
performance constraints (19), each evaluated at a differ-
ent estimate of q0 randomly generated from p(q). The
scenario approach is thus similar to the idea presented
in [14] (and [3]) which was based on a gridding of Q.

1 This means that Pr(Pr(Nq > N̂) ≤ ǫ) ≥ 1 − δ.

8 Simulation results

In order to illustrate our results, we consider as
true system the following ARX system [15]: y(t) =
(z−3B0(z))/(A0(z))u(t)+(1)/(A0(z))e(t) with B0(z) =
0.10276 + 0.18123z−1, A0(z) = 1 − 1.99185z−1 +
2.20265z−2− 1.84083z−3 + 0.89413z−4, and e(t) a real-
ization of a white noise process of variance σ2

e = 0.5. The
control performance criterion J(G, C, Wl, Wr) focuses
on the sensitivity function. It is defined as in (8) with
the filters: Wl(z) = diag (0, W (z)), Wr(z) = diag (0, 1)
with W (z) = (0.5165 − 0.4632z−1)/(1 − 0.999455z−1).

The true system initially operates in closed loop
with a controller Cid which has been designed us-
ing an initial estimate of the true system θo,est =
(−1.9755, 2.1965,−1.8495, 0.8881, 0.0817, 0.172)T and
the 4-block H∞ control design method of [8] that sat-
isfies Assumption 1: Cid = (0.036249(z + 0.9244)(z2 −
1.951z + 1.101)(z2 − 0.5109z + 0.8248)(z2 − 0.1828z +
0.9416))/((z − 0.9995)(z2 − 1.002z + 0.3641)(z2 −
1.279z + 0.835)(z2 − 0.1746z + 0.9229))

10
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10
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0

10
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10
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10
0
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Fig. 2. Costless identification with N = 4901:

supG∈D(θ̂N ,Pθ)

��� 1

1+Ĉ(ejω)G(ejω )

��� (solid), |(1 + ĈĜ)−1| (dash-

dot) and |W |−1 (dotted)

Costless identification. The order of the initial con-
troller Cid is sufficient for the experiment with r = 0 to
be informative enough (see Proposition 1). Thus, Con-
straint 1 can be verified with an identification experi-
ment using normal operation signals y and u. The min-
imal length for this data set can then be determined
using Theorem 3 with Φr(ω) = 0 ∀ω. This theorem is
applied here using the initial estimates θ0 ≈ θo,est and

θ̂N ≈ θo,est (an estimate of σ2
e is not necessary since

P−1
v (θ0) is not a function of σ2

e). This delivers a minimal
length Nmin = 4901.

In order to verify the validity of this result, we have
measured 4901 samples of the signals y(t) and u(t) ob-
tained in normal operation on the loop [Cid G0] and we

have identified a model Ĝ = G(z, θ̂N ) along with its un-

certainty region D(θ̂N , Pθ). From Ĝ, we have then de-

signed a controller Ĉ using the method of [8] and we have

verified whether Ĉ achieves J(G, Ĉ, Wl, Wr) ≤ 1 with

all G in D(θ̂N , Pθ), or equivalently
∣∣∣ 1
1+Ĉ(ejω)G(ejω)

∣∣∣ ≤
|W (ejω)|−1 for all G in D(θ̂N , Pθ). This is indeed the
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case as can be seen in Figure 2. Moreover, we also ob-

serve in Figure 2 that sup
G∈D(θ̂N ,Pθ)

∣∣∣ 1
1+Ĉ(ejω)G(ejω)

∣∣∣ =

|W (ejω)|−1 in low frequencies. Consequently, N = 4901
is indeed the smallest N for which, in this example, Con-
straint 1 holds with Φr(ω) = 0 ∀ω.

Sensitivity to the initial estimates. The initial esti-
mate θo,est chosen to approximate the unknown quanti-

ties θ0 and θ̂N has, in this example, delivered accurate
results, as shown by Figure 2. This may not always be
the case. Thus, it is always safer to compute the mini-
mal data length N using the method proposed in Sec-
tion 7. We illustrate the application of this method to
our example. In order to generate multiple estimates of
θ0 (which are then used to approximate both the true θ0

and θ̂N ), we have used the information delivered by the
initial identification which had delivered θo,est. This was
an open-loop identification with 2 Φu(ω) = 1 ∀ω and
N = 500. Using the covariance matrix of θo,est, we have
randomly generated 46 parameter vectors θi (i = 1...46)
around θo,est; 46 samples correspond to an accuracy and
a confidence of 80%. For each of these estimates, we have
applied Theorem 3 and we have thus obtained 46 differ-
ent lengths Nθi

. A more robust choice of the length N
is then (see Section 7): maxθi

Nθi
= 5897. Note that the

standard deviation of the 46 found values of Nθi
was 383.

Least costly identification with external excita-
tion. For the same example, we have also studied the
effect of applying least costly identification signals for
a range of data lengths that were too short to lead to
identifiability using only the noise excitation. Thus, we
have computed the optimal signal spectra Φr(ω) using
Theorem 2 for data lenghts N ranging from 500 to 4,500
by steps of 500. For each of these data lenghts, we have
then compared the identification cost Jr resulting from
the application of the optimal excitation signal (when
m = 10 in (17)) with the cost that would result by apply-
ing a white noise reference excitation (i.e. m = 0 in (17))
with a variance that is sufficient to satisfy the robust
performance Constraint 1. The comparison between the
cost of the least costly experiment and the cost of a cor-
responding identification experiment with white noise
excitation is shown in Figure 3. As can be seen from this
figure, the use of an optimally designed excitation sig-
nal r reduces the identification cost by a factor of 2 to
3 whatever the data length. Note that similar compar-
isons leading to similar conclusions can be found for the
open-loop identification case in [13].

9 Conclusions

We have proposed a new paradigm for optimal experi-
ment design in an identification for robust control con-

2 This initial identification was too cheap to verify Con-
straint 1.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

N

Jr

Fig. 3. Cost of the least costly experiment that satisfies Con-
straint 1 (circles) and of the white noise experiment that
satisfies the same constraint (crosses), for different values of
the data length.

text, where the objective is to design an identification ex-
periment at the smallest possible cost that just meets the
demands of the robust control performance in terms of
the quality constraints on the estimated model. In other
words, the identification cost must be as small as pos-
sible while still delivering a model uncertainty set that
just meets the robust control performance constraints.
The cost is expressed either as the experiment time, or
in terms of a measure of the deterioration of the closed-
loop performance, during the identification experiment.

Even though these are classical assumptions for optimal
experimental design in the PE framework, the assump-
tions that the true system can be described by the cho-
sen model structure M and the use of the covariance
matrix expression asymptotic in the data length are the
restrictive aspects of the methodology. The first assump-
tion can be relaxed. In the recent contribution [2], the
“least costly identification for control” framework is in-
deed extended to the case of model structures M of re-
duced order. Further research will also focus on the re-
laxation of the second assumption. See e.g. the results
in [13][Chapter 4] and [2]. Note that the counterpart for
both relaxations is that only model structures linear in
the parameter vector can be considered.
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A Proof of Proposition 3

Lemma 2 Let A = A∗ ∈ Cn×n. Then

yT Ay ≤ 0, for all y ∈ Rn (A.1)

if and only if

there exists L = −LT ∈ Rn×n such that A + jL ≤ 0. (A.2)

Proof of Lemma 2. (A.2) ⇒ (A.1). Note that, for any
y ∈ Rn and for anyL = −LT ∈ Rn×n, yT jLy = 0. Con-
dition (A.2) implies then that, for all y ∈ Rn, yT Ay ≤ 0.

(A.1) ⇒ (A.2) is proved by contradiction. Assume thus
that (A.1) holds and that:

there is no L = −LT ∈ Rn×n such that A + jL ≤ 0.(A.3)

Since Condition (A.1) holds, we have that:

for all S = ST ≥ 0 ∈ Rn×n, Trace (SA) ≤ 0. (A.4)

On the other hand, based on Lemma III.1 in [18], con-
dition (A.3) is equivalent to the fact that there exists
W = W ∗ ≥ 0 (W ∈ Cn×n) such that:

Trace (W (A + jL)) > 0, for all L = −LT ∈ Rn×n.(A.5)

Note now that

Trace(WjL) = −Trace(Im(W )L) = 2

n(n−1)
2∑

i=1

wili

where wi (i = 1...n(n−1)
2 ) are the n(n−1)

2 non-zeros en-
tries of the upper-triangular part of the skew symmetric
matrix Im(W ) and li are the corresponding entries of L
in the same location. Thus, (A.5) is equivalent to:

Trace(WA) + 2

n(n−1)
2∑

i=1

wili > 0 for all li ∈ R

which is equivalent to wi = 0 (i.e. the matrix W is real)
and Trace(WA) > 0. The latter is in contradiction with
(A.4) and the proof is thus completed.

Proof of Proposition 3. From [1], for G ∈ D(θ̂N , Pθ),

J̄(ω, G, Ĉ, Wl, Wr) ≤ 1 can be written as:

G∗(ejω)

0� x∗xI2 0

0 −1

1AG(ejω) ≤ 0 (A.6)
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with x = Wr(e
jω)
(

Ĉ(ejω) 1
)T

and

G =

0�Wl 0

0 1

1A0BB� ZNθ

1 + ZDθ

1 + (ZD + ĈZN)θ

1CCA .

If we define θ̄ = (θT 1)T , expression (A.6) can be rewrit-

ten as θ̄T E(ω, θ̂N)θ̄ ≤ 0. On the other hand, the con-

straint θ ∈ U of (7) can be rewritten as θ̄TR(θ̂N )θ̄ ≤

0. Consequently, proving that J̄(ω, G, Ĉ, Wl, Wr) ≤ 1

for all G ∈ D(θ̂N , Pθ) is equivalent to proving that

θ̄T E(ω, θ̂N )θ̄ ≤ 0 for all θ̄ ∈ R(k+1)×(k+1) such that

θ̄TR(θ̂N )θ̄ ≤ 0. Using the S procedure [5], the latter is
equivalent to proving that ∃τ(ω) > 0 such that, for all

θ̄ ∈ R(k+1)×(k+1), θ̄T
(
τ(ω)E(ω, θ̂N ) −R(θ̂N )

)
θ̄ ≤ 0.

The proposition then follows by applying Lemma 2.

B Kalman Yakubovitch Popov (KYP) Lemma

Theorems 2 and 3 show that the robust performance

constraint J(G, Ĉ, Wl, Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ) can be
treated by an infinite set of LMI’s (i.e. the LMI condi-
tion (18) at each ω). In this appendix, we show in Propo-
sition 4 that we can replace this infinite set of LMI’s by
a single LMI by removing the frequency dependence of
condition (18) using the KYP lemma. Before applying
the KYP to this condition, note that condition (18) is

not the unique way to express J̄(ω, G, Ĉ, Wl, Wr) ≤ 1

∀G ∈ D(θ̂N , Pθ) as an LMI linear in P−1
θ : in [1], we

developed another LMI condition. That LMI condition
involves the real part of a frequency-dependent matrix.
Note also that, in [14], the authors apply the Real Posi-
tive (RP) lemma (a special case of the KYP lemma) to a
LMI condition of the type in [1]. For this purpose, they
need to multiply the LMI by the least common denomi-
nator of its entries. While entirely correct, this approach
can lead to a final frequency-independent LMI which
has an unnecessarily large state-space representation.
Consequently, we have here developed the frequency-
dependent condition (18) in such a way that the corre-
sponding frequency-independent LMI obtained via the
KYP lemma has the lowest possible state-space repre-
sentation. This frequency-independent LMI is given in
the following proposition:

Proposition 4 Consider Proposition 3 and an arbi-
trary positive integer b. Define B(z) = (1, z−1, ..., z−b)T .
Then, condition (18) holds for all ω (or equivalently

J(G, Ĉ, Wl, Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ)) if there exists
Pf = PT

f and Pλ = PT
λ of appropriate dimensions, real

numbers λi, i = 0...b and Lp ∈ R(k+1)×(b+1)(k+1) of the

form:

Lp =





0 lT12 lT13 ... lT1(k+1)

−lT12 0 lT23 ... lT2(k+1)

... ... ... ... ...

−lT1(k+1) −lT2(k+1) −lT3(k+1) ... 0





with lij ∈ R(b+1)×1 such that:

(
AT

f PfAf − Pf AT
f PfBf

BT
f PfAf BT

f PfBf

)
+

(
CT

f

DT
f

)
Xf

(
Cf Df

)
≤ 0

(
Pλ − AT

λ PλAλ CT
λ − AT

λ PλBλ

Cλ − BT
λ PλAλ Dλ + DT

λ − BT
λ PλBλ

)
≥ 0 (B.1)

Here (Aλ, Bλ, Cλ, Dλ) is as (A, B, C, D) in Theorem 2
but with m and Rr(i) replaced by b and λi, respectively.
(Af , Bf , Cf , Df ) is a state-space representation of F(z):

F(z) =





(I5 ⊗ B)Ω(z)

Ik+1 ⊗ B

Ik+1



 and (B.2)

Xf =





(
I4 0

0 −1

)
⊗





λ0 · · · λb

... 0 0

λb 0 0




0 0

0 0 LT
p

0 Lp −R(θ̂N )





(B.3)

Proof. First note that, via some algebraic ma-
nipulations, constraint (18) can be rewritten as
F∗(ejω)XfF(ejω) ≤ 0 if one defines, in (18), τ(ω) =

λ0+
∑b

i=1 λi(e
jiω+e−jiω) and j L(ω) = L(ejω)+L∗(ejω)

where L(z) = Lp (Ik+1 ⊗ B(z)) is a matrix of FIR
transfer functions such that L(z) = −L(z)T . Sec-
ond, note that this expression of jL(ω) has the
structure of Proposition 3 and that τ(ω) is ensured
to be a positive scalar at each ω via (B.1). In-

deed, τ(ω) = λ0 +
∑b

i=1 λi(e
jiω + e−jiω) > 0 ∀ω

is ensured by the existence of a symmetric matrix
Pλ such that (B.1) holds (see [16]). In this con-
text, the existence of λi (i = 0...b) and of a ma-
trix Lp such that F∗(ejω)XfF(ejω) ≤ 0 implies that

J̄(ω, G, Ĉ, Wl, Wr) ≤ 1, ∀G ∈ D(θ̂N , Pθ). The result of
the proposition follows then from a simple application
of the KYP Lemma [19].
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