An innovations approach‘ to the discrete-time

stochastic realization problem

SUMMARY

M. Gevers (*) and W. R. E. Wouters (**)

In a companion paper we have used the innovations concept to derive linear least squares
estimation formulas for discrete-time random’ processes that are related to an observation
process. We have shown that covariance information is all that is needed to detive a predictor
for an observation process [1]. In this paper we use these results to compute finite state-space
or auto-regressive moving average (ARMA) models for finite-dimensional stationary discrete
time processes whose covariance is given. The reason for computing such models is that the

predictor formulas become finitely recursive.

1. INTRODUCTION

In a companion paper [1] we have discussed the
discrete-time linear least-squates problem. Basic to
our treatment of the problem was the concept of

innovations and the General Innovations Filter (GIF).

We showed that with 2 given finite variance stochastic
observation process {y} one can associate a related
white noise process {€}, the innovations process,

that can be obtained from {y} by a causal and
causally invertible transformation. All that is needed
to make this transformation is the knowledge of the
covariance function of the process {yl.

Given the innovations process, all kinds of least-
squares estimates are easily obtainable, e. g a pre-
dictor for {y} can be built. The problem with the
GIF is that, although the filter can be computed
recursively from the covariance function, the com-
putations are in general not finitely recursive, so a
growing memory is required. However, we showed
that, when a finite dimensional model for the process
of interest is available, considerable simplifications

of the GIF formulas can be obtained, and finitely
recursive filters can be designed. Two kinds of models
were considered. We looked at so called state-space
models where the process {y} is given as a linear
projection of a related Markov process {x} corrupted
by additive white noise. Also considered were the so
called mixed auto-regressive moving-average or ARMA
models, where the process {y} is generated from a
finite linear combination of past y, values (AR) plus
a finite linear combination of some past and present

values of a driving white noise process (MA).

As we already said in the introduction of [1], because
of the tremendous success of the Kalman filter formu-
lation, which uses a state space model, the idea per-
meated most engineering circles that a lumped (i. .
finite dimensional) model of the observation process
was necessary to derive finitelj recursive estimation
formulas. Obviously, elementary estimation theory
tells us that covariance information is all that is
needed to solve the estimation problem. The question
arising then is whether it is possible to derive finitely
recursive estimation formulas from covariance infor-
mation. The answer is that, yes, for a given class of
covariance functions this is indeed possible. If we
have 2 process {y} which can be represented by a
finite dimensional white noise driven model, it is in-
deed possible to infer such a model from the covari-
ance function of {y}. Of course, once we have a
finite dimensional model we can, by the methods
presented in {1], obtain finitely recursive estimators.
The problem then we are going to tackle in this paper
is how to obtain a finite dimensional model for a

given process {y}, given its covariance function, and

assuming of course that such a finite dimensional
model does indeed exist. This is called the stochastic
realization problem. The concepts of innovations and
of innovations representation (IR) will be crucial to
the development. In this paper, as in its companion
{1], we shall try to present the subject in a tutorial
way. A necessary condition for this is that the presen-
tation be (as much as possible) self-contained. Be-
cause of this, and of the technical and conceptual dif-
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ficulty of the subject, we shall not treat the stochastic
realization problem in all its generality. First of all
we shall limit ourselves to (wide sense) stationary
purely non-deterministic processes {y}. This does
simplify the development considerably, and this class
of processes is, from a practical point of view, cer-
tainly the most interesting, Indeed, a lot of stochastic
processes either are (nearly) stationary or are by
simple transformations related to stationary processes
Secondly; it turns out that the treatment of the reali-
zation problem for a vector observation process re-
quires some background knowledge on the structural
properties of multivariable systems which are beyond
the scope of this paper. We shall, therefore, restrict
ourselves to the discussion of the realization prob-
lem for scalar processes.

Again, two types of finite dimensional models will
be considered; state-space and ARMA models. In
solving the realization problem we are trying to infer
structural and parametric properties of lamped mod-
els from properties of the covariance function. In
order to proceed efficiently, it is useful to study the
properties of the covariance function induced by a
known finite dimensional model. This is done in sec-
tions 2 and 3, first for state-space models, then for
ARMA models. In sections4 and 5 we give the solu-
tion ‘of the realization problem, and show how we
can obtain both state-space and ARMA models from
the process’ covariance function. In section 6 we give
some additional properties of finite dimensional
processes, and in a final section we discuss the results
obtained and give some comments about the realiza-
tion theory for vector processes.

Tn order to discuss the realization problem we have
to touch upon a lot of results related to stochastic
processes, Wherever possible we give a proof or a
justification for the properties presented. This should
increase the value of this paper together with [1] as
a study object for someone who wants an introduc-
tion to some of the finer points in the theory of
stochastic processes.

Most of the results presented are, of course, not new
but we try to present the material in a unifying and
(hopefully) tutorial way. The stochastic realization
problem has been extensively discussed and studied
in the last ten years (see e.g. [2] - [10]). The subject
is by now well understood, but research is still going
on with the objective of designing faster and numer-
ically stable stochastic realization {or spectral factori-
zation) algotithms. The list of references given at the
end is by no means exhaustive, but should never-
theless provide a feasible starting point for someone
wishing to explore some of the material in more

detail.

2. STATE-SPACE MODELS

dimensional process and actually define the dimen-
sion of a process. We shall also establish the relations
between the covadance function of the process {y;}
and the parameters of the state-space model. We
shall assume that the p-vector process {y;} can be
expressed as a linear combination of a related n--
vector process {x.}, plus additive white noise, i.e.

V= Hx +v, (2.12)
where H is a constant p x n matrix and v, is a p-
vector white noise with constant covariance matrix M.
M is, of course, a symmetric non-negative definite

p X p matrix.

The process {x;} introduced in (2.1a) is assamed to
be a first order n-vector Markov process, i.e.

x ,1=Fx +Gu (2.1b)
wheré F and G are constant n x n and n x m matrices
respectively, u; is a m-vector white noise with con-
stant covariance matrix Z, Z being 2 m x m full rank
covariance matrix. We shall furthermore assume that
the processes {v.} and {u;} are mutually correlated,
with m x p correlation matrix §, L. e.

u T T = S
ur v ]l = 6,

E{ T t.T
Vi S M

(2.2)

The p-vector process {y,} is thus a linear projection
of a n-vector Markov process, {xt}.

We shall also assume that {y, }is a (wide-sense) sta-
tionary purely non-deterministic process. This to-
gether with an observability condition on (H, F) im- .
plies that the process {x,} has to be (wide-sense) sta-
tionary and purely non-deterministic, and thus for

all t, we have

Efx, x, ) =1l (2.3)

where 11 is a nonnegative constant symmetric matrix.
Stationarity implies that II is the solution of the fol-
lowing equation

I-FOr =gzagTl (2.4)

An equation of this type is sometimes called a
Lyapunov equation, and a necessary and sufficient
condition for the existence of a nonnegative solution
is that the matrix F must have all its eigenvalues
strictly inside the unit disc centered at the origin of
the complex plane (sce e.g. [27]). The matrix F will
then be called an asymptotically stable matrix. Since
in this paper we are only interested in purely non-
deterministic stationary processes, we shall only con-
sider models of the form (2.1-2.2) where F is an
asymptotically stable matrix. The stochastic process
{y;} as generated by (2.1-2.2) will also be called a

In this section we shall examine wide-sense stationary
processes {y;} that can be described by state-space
models. We shall explain what is meant by a finite-

finite dimensional process. A precise definition will
be given a little later.

Next we shall derive an expression for the output
covariance funetion. Because of the stationarity as-
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sumption, the covariance function will be a func-
tion of the time shift (t-7) only. We shall then
adapt our notation accordingly, and define the co-
variance function as

.y A T
Ry(2E {y, o 7 )

Because of the assumption that {y,} is purely non-

deterministic, it follows that lim || ky| =
Jm Ry (k)

(2.5

where |j. [l is any matrix norm.

The covariance function R (k) can be expressed in
terms of the parameters ofy the state space (Markov)
model. An expression is derived as follows : consider
first k > 0. From (2.1) we can write
k5 g

x o+ 2 HFGu g

k=HF —(+1) * etk

(2.6)
Post. muitiplyi.ng (2.6) by the transpose of the ex-
pression {2.1a) for Ve taking expectations and using

the whiteness properties of {u,} and {v.}, one ob-
tains

P%(k):HFkHHT+ HrFt-lgs, k>0 (27)

et

For reasons that will become clear further down it
will be convenient to define a n x p matrix L

LAFIHT + GS (2.8)
so the function Ry(k) for k > 0 can be written as
R, (k)= H Fk-1lg {2.9)
For k < 0, we note that R (k) =E {y, || w11,

and because of the stationarity of the process this
can be written as

T
Ry(k)=E LA AN A
Thus it immediately follows that
Ry (K) = T (FT)|1<|-1 gT

Finally, for k=0, we obtain from (2.1a) and (2.2)

R;r, (ikl), k<0 (2.10)

k<0 (2.11)

R, (0) =HII HT + M (2.12)

So far in this section, we have developed expressions
for the autocorrelation function of a p—vecior process
{y¢} given the model parameters (F, G, H) and the
noise covariances {Z, S, M). There is one more result
we want to formulate now concerning the structure
of the autocovariance function. }

We define the Hankel matrix of R,y, as follows

[ R (N R (N +1)

Ry(Np+ 1) R (N +2)... R (Np+1)

Clearly this is a p(Ny-Nq +1} x p(Np-Nj +1) square
matrix. Of special interest to us are the matrices
#1,N(Ry) and 3 . (Ry)- The first of these two will
be called the finite Hankel matrix of order N, and the
latter the infinite Hankel matrix. Since it is clear that
we are considering Hankel matrices of Ry, we shall
simplify the notation and use ¥ 1,N and #q -

We have said earlier that a process {y,}, generated
through a state-space model such as (2.1} is called
finite dimensional. We are now in a position to be more
specific, and define the dimension of {y,}.

Deﬁ'nition 2.1

The stationary stochastic process {y, } is a process of
dimension n’ if and enly if the rank of the infinite
Hankel matrix H e is 1, deee

dim ({y 1) =0’ = p(ay )= n 0

This is a rather abstract definition, so we shall try to give
it somewhat more body by considering further prop-
erties of the Hankel matrix. Always assuming that {y,}

is generated by a state-space model (2.1}, it follows
from the definition of # 3y and from the expressions
developed for R. (k) (equatlon 2.9) that 3y pcan be
factored into two matrices OF and CY, as follows

J{'LNA 0;}_-:;1 {2.14)
where
H
HF
HF2
of ¢ (2.15)
HFN—l
and ] )
Ch=[LFL, F2L, ..., FN-11] (2.16)

The matrix OF, isan observability matrix, and CK] isa
controllability matrix. The infinite Hankel matrix K1 w
can be factored in the same way as # | into the
product of an infinite obscrvablhty matrix QF, and an
infinite controllability matrix C* ie.

iy =05 CL, (2.17)

One property is immediately apparent. Recall that the
rank of the product of two matrices is bounded by

the minimum of the individual ranks of the factors, i.e.
here this becomes

(2.18)

HNl.,NZ(W):

| Ry(Ng) Ry(Np+1) o Ry(Ny +Ny-L)

with 0 < N; < N, (2.13)

plaey )= min (2(QF). A(CT))

Since QY isa ( % it) matrix, and Ckta (n x =) matrix

d we have p(O}) < nand p(CY) < n s0 it follows that
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Property 2.1.

The dimension of the stochastic process {y; } as gener-
ated by (2.1) is not greater than the dimension of the
state vector, X, i.e.

dhn({yt})sn 'O

Another property of the Hankel matrix will be for-
mulated now.

Property 2.2
If the process {y.} is of finite dimension n’, then the
Hankel matrix of order n’ has rank n’, i.e.

placy )=n"=p(ty =0 o

The proof of Property 2.2 will be given in a number
of steps. We shall first introduce some notational de-
finitions. Let

Ry

where Rim= € RP X = are block rows of Hy o If we

define the operator o, : RFX™ o RPX™ a5 the

R:
operator which drops the first p x.p block from an
element of IRP ¥ and then shifts the remainder p

- positions to the left, it follows from the Hankel
structure that

oo

s ol RT 50
Ri+j_aRRi i=0, i>0

i CR™-cCol R® 50, i
chCRi—CcRRi j=0, i>0

where C is an arbitrary matrix in RP*P.
Also we shall define the numbers py_ as

Ry
=R
Ry
or Py, is the rank of the pk x = matrix formed by tak-

ing the first k R"{ elements of Hq oo
The first result we obtain is -

Lemma 2.1.
Hpy 1= Py, then Pk+j=Pk for all j > 0 and further-

k
Res1= %, G Ry
From the property of the o, operator defined above

it follows that

oo k «a
O Ryy1=2 Gop Ry

or

oo o k—l
Rr+2= O Rpyit B GR

i+l

k w k-1 oo
=C 2GRy + 2 CGiRiy
80 RZ +2 is a linear combination of the same elements

as R; 17O Py o P Obviously, we can find ex-

pressions for RZ + (j> 0} as linear combinations of

o k -
®’7Y thus p £~ Pk forallj = 0.

N°ka=jli_,m,, pk+j=p(:;c1,“,-)=n' oo

The next thing we shall show is that the first n block
rows Riw are sufficient to span the same space as HY, o
or in other words

Lemma 2.2
pr(Jf.‘L wi=n", then

py-=n’ x|
Proof

We know that there is a finite integer k such that
Py<Pp<P3- <Py 1 SPL=Py 1 =Pp ="

Because of the strict inequalities for the pp i< k, we
have that

n'>p;>i, thus n" > p, =n" orpnizn' oo
Rather than considering the block rows R.? e RPX”
of the ¥, ,, matrix, we can also consider the block
columns C5 € R™ XP of Hq o0 L

Hl,““:[cl C2 ...]

In a way completely parallel to the way to prove that

more o =0’ =p{xH{ ) 0
’ Ed
Proof
Let o 1=Ps i.e. there exist matrices Ce RP*P Py.=p =p (HL «) (Lemma 2), we can prove
R”, the following Lemima.

such that

n
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Lemma 2.3.
Ifp (4 L)=n", then

p[C"f,CZ,...,CZ,]:n’ a
Proof
Left to the amusement of the reader. oo

Letuscall£7 4 [CT,...C7,] and

w0 w'T
R. a (R}

T] T we know

[0
yaee R
n’

Pl )=pla,,)=n

Consider the following diagram

. v"v'v.“
.’:}:0:0:0:0 .
Q’f.“‘ f
Hy oo™ se e RPY X
is E::, e R™ Xpn’
is¥y € RPR X prr
is RE" e RP*pn
Diagram 2.1.

Also consider

n’ A HR_( f4n’ pxpn’
RY 8 [R (DR (+1)... R+ )] € REXPY,
the jth block row of the £, matrix.

The elements R;’ forjefl,...n] are of course the

block rows of the ¥y p,, matrix. The proof of Property
2.2 can now be given

Proof of Property 2.2.
1t follows from Lemma 2.1, from the fact that the R;-'L’
are the truncated R}-ﬂ and from the fact that p(®) = n",

that there exist coefficients C,e RP X P such that
D’ n’ n! .
However, since the Rlill are also the block rows of the

£, matrix, it follows that we can express any jth block

n n
Ry Ry
b - =n’; but . =K o 50 p(.‘a‘fl,nf)=n
Rn Rn
n’ n’

Comment on Property 2.2.

The importance of Property 2.2 is that it holds for
arbitrary Hankel matrices. Indeed, in the proof we
have not used the fact that the 1.0 Matrix is gener-
ated through some state space model. Property 2.2 is
a very powerful result, and plays an important role in
realization theory.

This will be expanded upon in section 4.

One of the questions one might ask is under what con-
ditions will the dimension of the process {y;} be equal
to the dimension n of the state vector x, in the state
space model (2.1).

We prove the following property :

Properiy 2.3,

Let the process {y,} be generated by the state-space
model (2.1-2.2) where F is an n xn matrix. Then
dim ({y, }) =n if and only if the pair (F, H) is com-
pletely observable and the pair (F, L) is completely
controllable {*). I

Proof

Necessity: Let dim{{y,}) = n. Then by Property
2.2 p(sty )= n, and since

p(#q ) < min (p(Q]) » PIC]))

it follows that O: and C: must have rank n.

Sufficiency: If Orthasrankn,then so does OF,,
because O} is a submatrix of O and they both have n
columns; the same argument holds for C:; and C: .

Therefore by the following Sylvester inequality (see
[11] p. 66).

pO2) + P(CL) -n<p (O] -CL)=p00y )
(2.19)

we have p (79 o) =n= dim ({y;}}. oo

Notice that the complete controllability condition
depends upon the matrix L=F I HT + S G, which
depends upon the model’s noise covariances $ and T
(through 2.4) as well as upon the model’'s dynamic
parameters F, G, H. The controllability of (F, L) is
not implied by a controllability condition on (F, G)
as one might naively think. It is easy to show that

row as z linear combination of the first n” block rows.

Since p {E;’,) =’ we must also have that

(*) Recall that {F, H) completely observable is equivalent with
p(O:) =n and {F, L) completely controllabie is equivalent

with p{C;) =n.
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a model of the form (2.1-2.2) where {F, H)'is ob-
servable, and (F, G) is controllable, and where we
choose S =0 and F singular, will generate a process
{y;} of dimension smaller than n. Indeed, S=0

impHes that L= F II BT, and therefore
cl=F[AHT, 1, FL, F“‘ZL}

Hence p(C 1< p(F)<n by the assumptlon that ¥

is singulaz.

A model like (2.1-2.2) which is characterized by the
elements {F, G, H, Z, S, M} is called a realization

of the process {y;}. When ¥ € R™ ¥ and the dimen-

sion of {y.} is also n, we say that {F, H, G, Z, §, M} '

is a minimal realization of the process {y, }.

At this point we want to point out that several state-
space models may generate the same process {y;}, or
more precisely processes that have the same covariance
function R, (k). These models will be called covariance
equivalent realizations. A trivial way of generating

covariance equivalent realizations is as follows. Let
{F, H, G, X, 8, M} be a realization of {y.}; then, if

Te RP*0 4 any nor-singular matrix, it follows

that {T F Tbl,' H T'"l, TG, Z, 8, M} is a realization
of {y,}. This type of transformation does not involve
the driving noise covariances %, 8, M, but involves a
coordinate transformation in the state-space and in-
deed, leads to identical inputfoutput maps. It twrns
out that there are other equivalent realizations which
do not lead to identical input/output maps, but still
yield the same covariance function Ry(k). For a
given (F, H) which fixes the coordinate system for
the state space, any combination of elements (G, Z
8, M) which yields a given L (through (2.8)) and a
given R (()) (through (2.12)) while satisfying (2.4)
will give the same covariance function.

Let {F,H, G, %, S, M} be a minimal realization for
el

A minimal realization which plays an important role
" is-the innovations representation for a stochastic.
process {y,}. This realization is defined as follows :

S 41 = F 8 + KP €, - (2-20a)

ye=Hs +e (2.20b)

where e, is a p-vector white noise (the innovations)
with covariance

Q=HPHT + M (2.21)
The nxp matrix K, and the nxn matrix P » 0 are

given by the solution of the following set of coupled
algebraic matrix equations :

These equations link the elements {K,, Q} of the
innovations representation to the elements {G,Z,5,M}
of the original model.

In order to show that the modei {2.20-2.22} does
indeed realize the same process as the model (2.1-
2.2), we shall compute the covariance function of
{7} as generated by the innovations model. It fol-
lows by straightforward calculation that we can

write

R, (0)=H IHT+Q (2.23a)
R (9=HFLL k>0 (2.23b)
where

L=FH1—1+KPQ : (2.24)

and I1 is the (nonnegative) solution of the Lyapunov
equation

N=FNFl+x QKg , (2.25)

This follows by exactly the same calculations as the
derivation of (2.9). We now show that L = L, and
that H T HT + Q=H I HT + M (cfr. eq. (2.12)).

Let us first establish a relationship between the co-
variance matrix of the state of the original realization,
11, the covariance matrix of the state of the innovations

representation, ilae {s; s?}, and the matrix P as.
defined by equation (2.22b}.

Lemma 2.3,
M=M+P (2.26)0

Proof
Recall that [1-F 11 FT = KP Q Kg and that

P-FPFT=GEGT—KPQK’£
Thus :
fi+ny-Fl+Fl=GZGT
and it follows that I1= 0+ P (see eq. (2.4)). oo

Using now the relationship M=1-Pin equations
{2.23a-b), we find

R, (0)= HIOH' +Q
—anaT-apuT+Q
~HOH + M

and

R, (k) =H pk-1f
~dF Y EII-P)HT + FPH  + G )

K, = [FPHT + G STHPHT 3 Ml (2223

P:FPFTMKP{HPHT+M]K’1£+GEGT
(2.22b)

k-1

where we made use of {2.21)-{2.22). We thus have

Journal A, volume 19, no 2, 1978.

95



established that (2.20}-{2.22) is indeed a covariance
equivalent realization of the process {y,}. This realiza-
tion will be denoted by {F, H, KP, QL

We shall now state the following properties about

{F: H’ K—P: Q }‘

Property 2.4.

Given a minimal state-space realization {F, H, G, Z,
S, M} for a p-vector process {y,} there always exists
a covariance equivalent minimal innovations represen-
tation {F, H, KP, Q1 such that

(i} the state noise process u, and the measurement
noise process v, are both replaced by the same p-vector

white noise e,

{ii} the covariance of the state of the innovations model
is always smaller {*) than the covariance of the state

of the original realization

(iii) the innovations representation is invertible, i.e.

the filter .

Opy1=(F-K Hjo + Koy, (2.27a)
€= y,-HO, ' (2:27b)
is stable. (m]
Proof

(i) and (i1} follow immediately from the development
preceding the formulation of property 2.4. Point (i)
is proven in Kalman [12]. oo

Comment

Property 2.4 (iii) shows that the innovations represen-
tation (2.20) and the filter (2.27) are inverses of one
another, i.e. the IR {2.20)is a recursive algorithm

that computes the {y,} sequence from the white noise
sequence {e, }, while the filter {2.27) computes the

{e.} sequence from the {y,} sequence. By comparing
the present results with section {3.2) of [1}, it can be
verified that {2.27), together with (2.21)-(2.22}, are
the quations for the predicted estimate %; ; 1/ of the
state x, , 1 of the system (2.1), Le. g, 1= Reppelt™)

We have stated the equations {2.20)-(2.22) of the IR
and shown that this IR is covariance equivalent with
the given model (2.1)-(2.2). The normal way to derive
the equations {2.20)-{2.22) is to compute the Kalman
predictor for the system (2.1)-(2.2), and then to invert
the predictor, i.e. to rewrite the predictor equations

in the form {2.20).

{*} If A and B are square matrices of the same dimension,
we say that B is smaller than A if (A-B) is a non-negative
definite matrix.

(**} Comparing the expression (2.22a) of the predictor gain
KP with (3.11) and {3.15¢) in [1] shows that we have an

additicnal téfm 4GS here. This difference 1§ due tothe
fact that we have assumed a correlation between {u, }
and {Vt} here (see {2.2)}, while in [1] we assume

Ty
E {ut VT}-—O.

~Let the-p-vector process {yy}-be-generated by-the

3. ARMA MODELS

In the previous section we discussed stochastic processes
that were modeled as Linear projections of Markov proc-
esses. Properties of such models were discussed and ex-
pressions for the covariance function were derived.

In this section we will be interested in another kind of
finitely recursive models for the process {y.}, the so-
called tnixed atitoregressive moving-average (ARMA)
models. ARMA models for stochastic processes are
widely used in time series analysis [13] and identifica-
tion (see e.g. [143, [15]).

Let the p-vector process {y,} be modeled by the
following ARMA model

S a
j=g 1

where A; and B; are px p matrices, and

(3.1)

M
Ye-i= iEO Biw, i

A0=B0=I, ANan and BM;EO.

The process {w, } is a stationary white noise with
covariance R. We shall furthérmore assume that R is
full rank. The matrices A; are also referred to as the
autoregressive {AR) parameters, and the matrices B;
are called the moving average (MA) parameters.

A more elegant notation can be obtained by introduc-
ing the backward shift operator q defined as follows :

qJ st é St*j_ (3-2)
This allows us to write (3.1) as
A(q)y,=Blg)w, (3.3)

where
N M
A(q) 21+ Z A;q and B(g)=1+ Z B;q
i=1 i=1

are matrix polynomials (or polynomial matrices de-
pending on how one looks at it} in the operator
variable g.

We want to give the following definition about poly-
nomial matrices.

Definition 3.1

Let M(q) be a square polynomial matrix in the complex
variable g. When the polynomial det (M{q)) has all its
zerces strictly outside the unit disc centered at the
otigin of the complex plane, M{q) is called a stable
polynomial matrix. m]
In order for {y,} to be a purely non-deterministic
stationary process, we have to satisfy a stability condi-
tion on the model {3.3). We quote without proof.

Property 3.1.

model
Alg) y,=Bla) w,
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where w, is a full rank p-vector (wide sense) station-
ary white noise process and A(q) and B(q) are pxp
polynomial matrices in the complex variable q. Then
a necessary and sufficient condition for {y,} to be
(wide sense) stationary and purely non-deterministic
is that A(q) is a stable polynomial matrix. i
Since in this paper we are only interested in purely
non-deterministic stationary processes, we shall al-
ways assume that A{q) is stable. This, together with
the fact that A{0) is non singular, also ensures that
Al (q) exists, i.e. Al {q) is a convergent series.

As in section 2, we shall define the autocovariance
function of {y} as

Ry (k) 2E {y g o}

Furthermore, we shall denote the cross covariance

between {wt} and {yt} by
Rypy () 2wy y 3, )

Now, since {w,} is a white process, and since y, does
only depend upon past and present wy, we have the

. Property .
Rwy(k)=0 for k>0 (3.4)

Consider then the autocovariance function Ry(k) for
k>M

%(k): E {Yt.|.k Y;F}

¥ T, Y T
=E{ i§1 AjYesk-iYe ¥ iEO B Witk-i¥e ]
and using {3.4) we obtain

N
Ry(k) + iElAiRY (k-i)=0; fork>M (3.5)
This set of equations for k> M are sometimes called
the Yule- Walker equations.

Note that these equations fix a linear relationship be-
tween some of the elements of the autocovariance
function and the autoregressive (AR) coefficients A ;.
These equations will play an important role in the
discussion on realization in section 5. One of the
things we would like to do now is to derive an expres-
sion for the autocovariance function R, (k) as a func-
tion of the A; and B; parameters and the driving noise

Similarly we can “transform” the sequences y¢ and w;
into infinite series Y{q) and W(q) as follows :

+ oo -
Y(@d T oyq (3.7a)
12—

i ca -
Wi g 2 wgq ' (3.7b)
]=—

By equation (3.3) we have
A(q) y;=Bla)w;

thus

AlQy;q =Bl@)wa"
and by summing over alli € [~ =, + o] we obtain a
relationship between Y{q) and W(q)
A(q) Y(q) = Blq) W(q)

which is just another way of stating that (3.3) holds
forall t.

(3.8)

Remember now that Ry(k) = E {yy yg} and

RWY (kj=E {wk yg}, anid that {wt} is a white noise,

so R (k)=R.8y o where 8} s the Kronecker delta,
ie.8y g=0fork«0 and 8 o=1.Post multiplying
equation (3.8) by yg and taking expectations yields

A(G) S,(2) = B(2) Syy () (39)

where
S 2% R gt
wy(q)=i£_m Wy(l) q *

The function Swy{q) is called the cross spectrum be-
tween the driving noise and the output process. An
alternative expression for Swy(q) may be obtained by
noting that, because of the stationarity assumption,

Ry (k)= Etwg y1,}

~ @y wah)'

covariance R. =rT {(-k)
In order to do this conveniently, we shall represent w
the function {Ry(k) 1 k=-w,...,+ =} asan infinite  s0
matrix series, and call this matrix series the spectrum % T o -l
of the process {y.}. Swy (q)= i:z—m R},w( i)q
Definition 3.2, or
=sT (gt 3.1
The-spectrum of the p-vector process-{yy}is-an-in S“’}' (@ = Syw (a ) (3.10)
finite series defined as follows
- ) An expression for Sywla) is easily found from
S, @24 Z R (q" (3.6) 0
¥ f=—w ¥
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Syu(@=E (Y (@) wy }
= A} (q) B(g) E {W(q) wy }
= 47" (g} B{q) R-

Therefore

— T, -1, »-T, -1, (*
Syy (@) =RBT(@H aT(gH ) (3.11)
Combining (3.9) and {3.11) and premultiplying by
AL(q) yields

s,@=2"@B@RBTGH AT (312

Equation (3.12) then relates the spectrum of the
process {y,} to the coefficient matrices (Aj, Bj) and
the noise covariance matrix R of the ARMA model
3.3).
E—&s a}shorthand notation for the model (3.1} or {3.3),
we shall employ the notation [A(q), B{g), R]. We
shall also say that [A(q), B(q}, R] is a realization of
the process {y,}. Two models {A(q), B{q), R] and

[A(q), B(q). R] will be called spectrally equivalent

if the spectra they generate are equal. Since the
process {y,J is, as far as we are concerned, fully
specified by its spectrum, any model which is spec-
teally equivalent to the original model [A{q), B(q), R]
is also called a realization of {y,}.

Expression {3.12) is 2 very important relation in con-
nection with the stochastic realization problem. It is
clear from the model (3.3) that we can regard

H(q)2 A1 (q) B (q)

as the matrix transfer function between the white
noise input {w,} and the output {y,}. Equation (3.12)
then shows that when a white noise with covariance R
is passed through a stable filter with transfer function
matrix H(q), then the output {y,} of this filteris a
stationary process whose spectrum is given by

(@)=H(q) RE (¢}

(3.13)

5, (3.14)
Notice that S,{q) is a rational matrix in the variable g.
Conversely it can be shown that a rational spectral
matrix can be factored in the product form (3.14),
where H{q) admits a finite dimensional representation
as in (3-13). This result is also called the Spectral
Bactorization Theorem. We shall give a precise state-
ment and a proof, for scalar processes, in section 6.
References for the vector case will be given there.

The problem of how to find Alq), B(g) and R from
S4(q) so as to verify (3.12} is often called the spectral
factorization problem. All the methods of solution of
the stochastic realization problem for vector ARMA
__models are hased on the equation {3.12).

rather involved, and quite outside the scope of an
introductory tutorial paper. The special case p= 1, i.e.
{y¢ } is a scalar process, is rather interesting however.
From here on then, we shall consider scalar ARMA
equations. To make this very clear we shall in the
sequel replace the matrix coefficients A; and B; by
scalar coefficients a; and by

The stability condition for A(q) is also simplified,
since A(q) is now a polynomial, so A(q) is said to be
stable if all its zeroes are strictly outside the unit circle.
i we now define

n = max (N, M)
where N and M are the number of AR and MA terms
respectively, we can of course write (3.1) as

n n
Zo M Zo i -
where ag =by=1 éndak=0 forke[N+1,...,n]and
bk=0 forke[M+1,....,n].
Clearly, since n = max (N, M) it follows that aj and b,
can never be simultaneously zero.
Remember that, in section 2, we defined the dimen-
sion of the process {y;} as the rank of the infinite
Hanke! matrix formed with the elements of the co-
variance function Ry(k). The same definition, obvicusly,
applies here.
The following property holds :

Ye;= (3.15)

Property 3.1.

If {y;} is a scalar process generated by the scalar ARMA
model (3.15) then dim {y,} < n m]
Proof

Consider the semi-infinite Hankel matrix

R (1) R, (2)

oo

H =
n+l

P%,(r_;) Ry(n+1) e
R (n+D) R (a+2) ..
By the Yule-Walker equations (3.5) we have

Ry(k)=—él a; R(k-i)  k>n

Therefore the last row vector {of infinite dimension)
of R; 41 isalinear combination of the n previous row

vectors, whence
plal . 1) =p (&) < n. By the same argument

p{dit;_l_j)zp{&l:)en forall j= 0 i

The further discussion of vector ARMA models becomes

{*) We use the notation AT for (Ahl)T

Definition 3.3.

An ARMA realization [A{q}), B(a), R] of the process
{y;} is called a minimal realization when
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dim {y,} = n= max(8A(q), 6B(q)) where “5A(q)”
means “the degree of the polynomial A{q)” ]

Proposition 3.1.

A necessary condition for the realization [A(q), B(q),R]
to be a minimal realization of the scalar process {y; }

is that A(q) and B{q) are coprime, i.e. they have no
common polynomial factors. o

Proof

By contradiction. Consider a stationary process {y; }
of dimension n and let [A(q), B(g), R] be 2 minimal
realization of {y; }, i.e.

n = max [§A(q), 8B(q}]. Assume that A(q) and B(q)
have a common factor D(q) with 8D{q) =n""> 0, so

that A(q) = D{q) K(q) and B{q) = D{(q) B(q)-
Let n'=n-n" = max [§A(q), §B(q}].
Then :

s = A M@ B@RB(GH AT
~E @B RrRBEHA @D

The last relation shows that {A(q), B(q), R]isalso a
realization of the process {y,}. By property 3.1 it fol-
lows that dim {y,} < n” < n, which contradicts the
assumption. oo
As it turns out, A(q), B{q) coprime is in general not a
sufficient condition for the realization [A{q), B{q), R]
to be minimal. If we lock at a special class of ARMA
models however, namely those where the polynomial
B(q) is invertible, i.e. has all its zeroes outside or on
the unit circle, then A{q), B(q) coprime is indeed
necessary and sufficient for [A{q), B{q), R]tobe a
minimal realization. The proof of this is based on
some results on realization and will be discussed in
section 6.

Given now a minimal realization [A(q), B(g), R] of a
scalar process {y;} we shall show that one can always
find a spectrally equivalent realization [A(q), C(q),Q]
which is minimal and invertible, i.e. where C{q} has
all its zeroes on or outside the unit circle. Such a
realization will be called an ARMA innovations repre-
sentation (IR) for {y.}.

Definition 3.4.

[A{q), Clg), Q] is an ARMA innovations representa-
tion (I R} for {y,} if it is minimal and invertible. O
Given now a minimal ARMA model [A{q), B(g), R]
for the (wide sense) stationary process {y,}, we shall
construct an innovations representation for the same
process.

Consider the polynomial B(q). If B(q} has all its

B(q)=B¥ (q) B (q) - (3.16)

where BT (q) is invertible and B™(q) has all its zeroes
strictly inside the unit circle.

Let 8B {q)=n" < n, then B (q) can be factored as

F@=l-39 (3.17)

where p; are the inverse zeroes of B (q), s0 IViI >1,

We shall now define the polyromial B(q) as

(3.18)

n’

Blg)& Il (1-——q)
1:1 Vi

It is seen from (3.18) that B(q) has the numbers

71 > 1 as its zeroes, so E(q) is invertible. The relation-

ship between B {g) and B(q) is given by

’ -

B (g)=(-1)" ¢ ,ﬁl v B(qh (3.19)
1=

This last relationship follows straightforwardly from
(3.17) and (3.18).

Using now {3.16) and (3.19), we sce that we can express
the spectrum Sy(q) of {y.} as '

B4 @) Ba DY o T IRICUT T TLBgnt)

S.{q)=
Alg) Algh
By defining
Q2 Iﬁ 2 R
=i=1 i (3-20)
and
Clq}2BY(q) B(g) (3.21)

we see that S_(q) is also realized by the model

[A(q), C(q), Q] which is clearly an I R, since C(q) is
invertible. It follows from (3.20) and | »;| > 1 that
Q=R

Let us summarize the preceding argument in a proposi-
tion :

Proposition 3.2.

If the ARMA model [A(q), B(q), R] is an arbitrary
minimal realization of the stationary process {y;},
then {A(q}, C(q), Q] is the innovations representation
of {y,} where C(q) is invertible and Q > R.

C(q) and R are uniquely defined by the set of equations :

zeroes outside or on the unit circle we may put B(q)= BT (q) B (q) (3.22a)
C{q) = B(q) and Q =R and [A(q), Clq), Q] will be

the required I R. a’

If B{q) has some of its zeroes inside the unit cercle, B (q)= .1;11 (1-v,q) , ‘Vit >1, n" <n (3.22b)
we can factor B{q) as 1=
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’

Blg)= 11 (1-—1 g (3.22
(@)= 1, P -22¢)
C{g)=B* (q) B(y) (3.22d)
n’ g
Q=11 4 R (3.22;)

Naote that in order to obtain the IR from a given
model [A(q), B{q), R], 2 factorization of the poly-
nomial B(g) has to be carried out. Also note that the
variance of the driving white noise in the I R is never
smaller than the driving white noise in any other
spectrally equivalent realization.

4. THE STATE-SPACE REALIZATION PROBLEM

4.1. Introduction

In this section we show how to derive a state-space
model for a finite-dimensional stationary process {y, }
described by its covariance function R _ (k).

In Section 2 we have established the relations that
exist between the parameters of a state -variable model
and the covariance function of the output y, of that
model. We have also shown that to each arbitrary state-
variable white-noise driven model we can associate

an innovations representation {IR) that has the same
output covariance. This IR is the inverse of the Kalman
filter associated with the given state-space model. We
shall of course heavily rely on the results of Section 2
to solve the inverse problem, namely to derive a state-
space model whose output has a specified covariance.
We shall give a complete solution to this state-variable
covariance realization problem for scalar processes

{y ;-

We have shown in section 2 that the covariance func-
tion R, (k) of a process that admits 2 state-variable
model %as the following structure :

k-1

R () =HF L, k>0 (4.1.2)
=anH +M, k=0 (4.1.b)
=tPEDRET, oo (4.1.0)

where H, F are respectively the output matrix and

the state-transition matrix of the model, and L, IF and
M ate related to other model parameters including the
covariances of the driving noises.

‘The state-variable realization problem can now be
subdivided into two major steps :

a. factor Ry(k) ,fork > 0, into HFk'1 L,ie.
derive H, F and L of dimensions 1 xn, n xn and

n.X1 f"SPeCtively- frg_m Ry(k) suchthat(4 ‘1.'.3.}.. ST

holds with n minimal. This step is called, for
cobvious reasons, the covariance factorzation
problem.

b. once H, F and L have been computed in step a,
obtain a state-variable innovations representation
of the form (2.20)-{2.22} with cutput matrix H
and state-transition matrix F, where KP and Q are
derived from H, F, L and R (0).

This second step can be called the problem of state-
variable stochastic realization from given covaridance
factors. We shall treat these two problems separately.

4.2, The covariance factorization problem

We now address ourselves to the }'xoblem of factoring
a scalar covariance function Ry(k), k > 0, in the form

Ry (k) = HFElr, ks (4.1.2)

where the dimension n of F is minimal.
We introduce the following definitions :

Definition 4.1,
We shall call the triple {H, F, L} withH e ]Rl xno

FeR" *" , LeRr" %1, factorization of the
scalar covariance function Ry(k), if Ry(k) = HFk_lL,
k> Q. a
Definition 4.2.

The triple {H, F, L} is 2 minimal factorization of the
scalar covariance function Ry(k) if it is a factorization,
and if dim F = n = dim ({y, }}. a
We first observe that there is no unique minimal factori-
zation of Ry(k) Indeed, if {H, F, L} is one triple.of
minimal factors that satisfies (4.1.a), then

{HT"1 . TFT1 , TL} is an equivalent triple of minimal
factors provided T is any nonsingular n xn matrix. We
shall therefore solve the minimal factorization problem
by choosing a particular form for F that makes the solu-

tion unique,
Let n be the rank of the infinite Hankel matrix 3¢; _(R_),

or equivalently the dimension of the {y,} process
{see section 2). Then we know by property 2.2. that

plIy L)=plag )=n
Therefore, the (n+1) - throw of 37 ., {Ry) can be

uniquely expressed as a linear combination of the first
n rows. Let ag, ..., ay be the coefficients of this linear
combination, i.e. let

: n .
Ry(n+k) = "jzl a. Ry(n+k-1}, k=1 (4.2)

]

Notice that equations (4.2} are nothing else but the
Yule-Walker equations derived in section 3. Let us show

nmow-how thecoefficients-ajcanbe-obtained-from-the
covariance function R, (k).

First, we compute the rank n of the infinite-dimen-
sional Hankel matrix 31 o, (R},).
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Then we compute ay, ..., a, by solving the set of n

linear equations (4.2} fork=1,...,n _
R Ry(2) o R o, ||R 1)
PW(Z) Ky(3) ..... IS'(H +1} fa, 4 Ry (n+2)

Ry(n) RY(n+1) l%((én-l) 2y

| R, (2n)
T 43

The solution is unique because the matrix is invertible
since it is HI,H{RY), which has rank n (see Property
2.2 in section 2). ’

Comments

1) In practice, the test for the rank of the infinite-
dimensional Hankel matrix 57 , {(Ry)is of course not
an easy matter. However Property 2.2 suggests the
following practical procedure.

Test the rank of submatrices H1,j of increasing dimen-
sion. Suppose for a given j, rank [Kl,_j] =jq < j. Then
identify the parameters aq, .-, %, by solving the equa-
tions (4.8) with n=jq, and check whether the Yule-
Walker equations (4.3) are satisfied for k > jq. If yes,
then n=jy. If no, then increase the dimension of the
Hankel matrix ¥1,j until, for some j, rank

[Jcl’j] =jp < j, with jp > j1. Repeat the procedure
with jq replaced by jg. To test the rank of a finite

j xj Hankel matiix, one can use a recursive Hankel
factorization algorithm such as deseribed in [16], [17],
which besides factoring the Hankel matrix into a
product O*C* also computes its rank,

2) In many cases one does not have the infinite co-
variance sequence {R(k}, k=0,1,...}, butonly a
finite portion {RY {(k), k=0, 1,...,N}. In such case
one wants to obtain 2 model that fits this finite se-
quence of covariance elements. This is the so-called
partial realization problem. In such case, the Hankel
matrix that must be factored is of course always finite.
We shall not go any further into the partial realization
problem; in this paper, we shall assume that we have
the infinite covariance sequence and that the rank of
H1, oo (RY) can be computed, or at least estimated,

for all practical purposes.

Having thus determined n coefficients from the Han-
kel matrix, we can formulate 2 soclution to the co-
variance factorization problem in the form of a propo-
sition :

Proposition 4.1

following choice of H, F and L :

H=[1 0  ceveverenn 0] (44
0 1 0 aeerinen. 0
0 0 1 0 ...... 0
F=|° | (4.5)
0 e 0 1
:an -an_l ..... . -alq
L=[R {1} R (2) WIT (46
y y2h e 1% (4.6)
m]
Proof

First we shall prove by induction that
FkL =R (k+1), oo Ry (s 0¥, k>0 (4.7)

Assume that (4.7) holds for k, then for k + 1 we
obtain

PR Lo F(FRL) = FIR (1), Ry (kem)] T

but because of the special structure of F, this be-

COomes
[ l;%,i(k +2)

F(R, (k+1), ...,pw(km)]T S
Ry (k+n)

n ' -, . .
_—_El aJ-RY (k+n+1—_])'

From equations (4.3} we see that chis last entry can
be expressed as'RY(k+1 +n), thus we have shown
that

pitly =[Ry(k+1+1)e Ry (ke 14 "y

To conclude the proof of relation (4.7), notice that
for k=0

L=[R (L), Ry (n)
which holds by definition.

Premultiplying F kL by H has the effect of selecting
the first entry of FKL, thus

jT

Ry (k) = HEX-1L for k> 1

so we have shown that {H. E, L} is a factorization
of RY (k).

It is a minimal Factorization because the dimension

Letn be the rank of %7, . (R ) and Tertheelements

of the (n +1)-th row of 71, (R} be expressed asa
function of the elements of the f{rst n rows as in {4.3).
Then a minimal factorization is obtained with the

of Fiisn, the rank of #7 w{[(y). If theré wasa
realization with 2 matrix F of dimensionn” < n,
then by Property 2.1 of section 2 the rank of

1, (Ry) would be strictly smaller than n, which
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contradicts the assumption. oo

Comment :

The particular choice of Hand F in (4.4)-(4.5) yields
what is called the observability canonical form.

Notice that the observability matrix O* of [H, Flisthe
identity matrix.

Corollary 4.1 _

The pair (F, L) with F and L defined by equations
(4.5) and (4.6) respectively is completely controllable,
Le. ’

p[L, FL,... F*1

Ll=n =
Proof
From the definition of L, and from equation (4.7)

one sees that the controllability matrix is
n-lgq_
[L, FL,..., F* L) = 5)

The corollary follows from the fact that p (31 n} =n.
oo

The factors H, F and L of R (k) are expressed in
terms of the known elements Ry(l),...;R {n) and in
terms of the coefficients aq,..., 2, of the linear com-
bination (4.3).

The matrix F as defined by equation (4.5) in Proposi-
tion 4.1 is a stable matrix, i.e. all its eigenvalues are
strictly inside the unit circle. 'This result is formulated

as follows.

Proposition 4.2

The matrix F as defined in equation (4.5}, where the
aj are determined from the Yule-Walker equations, i.e.
they satisfy

n
Ry(n +k) + i§1 a; RY m+k~i)=0, k=1,
has ail its eigenvalues strictly inside the unit circle. 0

Proof

The sequence R{i+1) (i=0, 1, ...) can be considered

as the impulse response of the system

x{i+1)=Fx{3)+ Lu(i) .

R(i +1)= Hx (i)

withu(0)=1, ui)=0, i>0.

Since (F, H) is completely observable and (F, L) is

completely controllable, and im yR(i)| =0 (which
1— o

is true because {y,} is purely non-deterministic) it

must follow that F has all its eigenvalues inside the

unit circle. oo

described. we have obtained H, F, L from R {k) with
a minimal dimensional F matrix (see {4.1.2)). Now we
show how to compute K, and Q from H, F, L and
R(0} such that the output of the following state-
variable model

_str-i-l = F'st + K'P e (4.9.a)
{Yt =Hs, +e (4.9.b)
with

Efe e)=Qd,, {4.9.c)

has the prescribed covariance Ry(k).‘

We shall solve this problem using the state - variable
innovations model described in section 2. We shall
actually show that the expression {2.20) and (2.22)
we have derived in section 2 for K . and Q can be
rewritten in terms of quantities that involve only H,
F, L and R (0).

Proposition 4.3 -

Assuming that {H, F, L} is a minimal factorization
of the covariance function Ry (k) of a stationary
process, then (4.9) is a state-variable model for that
process with KP and Q computed as follows :

0 T 11
K =[L~-FIIH - 10,

p [ ]ERy(O) HIITH] (4.10.a)
Q=[R(0)-HII HT] (4.10.b)
and the nxn matrix II is the non-negative definite solu-
tion of the algebraic Riccati equation.

n=FIF 4 KPQK;f (4.11.a)

or equivalently

M=FIFT 4+ [L-FIH] [Ry(0) -HIHT Y- FieT]’
(4.11.b)
)

Proof

In section 2 we have shown that for any state-variable

realization {F, H, G, Z, §, M}

1°) the covariance of the output process {y,} has the
form (4.1),

2"} there exists a “covariance equivalent” innovations
representation (2.20)-(2.22) (whose output process
has the same covariance function).

Now we show that this covariance equivalent innova-
tions representation can be expressed entirely in terms
of the quantities H, F, L and R _{0} of the given model,
with L and R{0) as defined by (2.8) and {2.12).
Conversely therefore, if we are given the quantities H,
F, L and R (0} derived from the covariance function

4.3. Computation of the gain K.P...and.. the noise
covariance Q

Through the covariance factorization method just

R (k} ofa -process----{yf-}-;-t-hen--t-he---i;rmovations-represen-—------------ e e oo

tation {2.20}-{2.22), with KP and Q expressed as func-
tions of H§, F, L and RY(O)’ will generate an output
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—gbtained-from-the factorizationof ]

process {y, } that has the required covariance and is
therefore a solution to the stochastic realization prob-
lem. Now let us get to the heart of the proof.

By replacing in (2.25) Ko and Q by their expressions
{2. 22) we get :

=FOFL +[FpHT + Gs][HPHT + M) [FPHT 4+ Gs]T
(4.12)
Now we replace P by II- i following (2.26) :

1= FOFT + [FIHT - FIHT + GS] [HOHT - HIHT + ML

.(FEHT - FiIHT +Gs)T (4.13)
Finally, using (2.8) and (2.12), we get :

n=-rirT+ [L-FfIHT][%(O)-HfIHT]“1[L-FfIHT]T

Similarly : (4.14)
K,=L-F HT] [R(0) - aiaT) ! (4.15.0)
Q =[R(0)- HIIHT] (4.15.b)

It is now clear from (4.15) that K and Q depend only
onH,F, L R (0) and on [, which itself is the non-
negative deﬁmte solution of the Riccati equation
(4.14) that depends only on H, L, Fand R {0) ‘This
completes the proof. s
For the sake of clarity we recall the major steps of

the state-variable stochastic realization procedure : .

1°) From the covariance function R (k) of the studied
finite-dimensional stationary process {y,}, com-
pute the rank of the Hankel matrix 7 =(Ry)-
Let n b this rank.

2°) Compute a minimal factorization H, F, L of R (k),
k > 0, in observability canonical form (see (4.4)-
{4.6)) by solving the normal equations {4.8).

3°) Compute the non-negative definite solution If of
the algebraic Riccati equation {4.11.b).

4%} Compute K, and Q via (4.10).
Then (4.9) is a state-variable realization of the
process {y,} with the prescribed covariance func-

tion Ry(k)

Comments

1) We have derived the innovations model (4.9}-(4.11)
for the process {y, } with covariance factors H, F and
L by first showing that the output of the innovations
model (2.20)-{2.22) has a covariance Ry(k) =HFk-1y,
and by then making the simple algebraic substitution
P=1II-1Iin (2.21}-{2.22) so as to get rid of the un-
known quantities P, M, G, § and £ which cannot be

proof of the proposition; however it would not have
given the reader a feeling as to where the equations
(4.10)-(4.11) originate.

2) Solving the algebraic Riccati equation (4.11.b) for
the non-negative definite solution II is by no means
an easy matter. One practical way of doing this is to
seatch for the steady-state solution of the iterative
Riccati equation

~ -~ . ~ ~ __1
I, =FILFT +[L-FILHT] [Ry(0) -HILHI L

- FILHT]T (4.16.2)

fly=0 (4.16.h)
It can be shown (see e.g. [18], {10]) that the steady-
state solution of (4.16) is the non-negative definite
solution of the algebraic Riccati equation (4.11.b}:

4.4. Discussion

The development in this section comprised two major
steps. First we obtained, from the covariance function,
a factorization {H, F, L }. Then, given this factoriza-
tion and R, (0) we could compute the elements KP
and Q of the state-space innovations representation

{F, H, K, Q} for {y.}. In fact, the development in
this second step did not inany way rely on the fact
that Ry(k} is a scalar covariance function, so the
results caery over immediately if {y,} is a p-vector
process. The solution method we described was first
published (for the discrete time case) in 1972 [5].

The first step, the factorization of Ry(k) in {H,F,L}
did, in our presentation, hinge on the fact that Ry(k)
was a scalar covariance function. Similar results can

be obtained for the p-vector case, but in order to
understand these results a good background knowledge
of structural properties of multivariable systems is
required. This background can be acquired in e.g. [19].
The covariance factorization for vector processes is
equivalent to the deterministic reafization problem of
vectorial impulse responses namely the factorization
of matrix impulse responses H(k) into HFKG, This
problem is treated e. g in[9].

5. REALIZATION OF ARMA PROCESSES

5.1. Introduction

In this section we show how to derive an ARMA model
for a finite dimensional stationary scalar process {y;}
described by its covariance function R, (k). Of course
this ARMA model can be obtained by first deriving a
state-variable innovations model from the covariance
function using the techniques of section 4, and then
computing the transfer function {or, equivalently, an

SlkirItcanalso
be verified directly that the output of model (4.9)-
{4.11) has the prescribed covariance given by (4.1).
This direct verification would provide a valid and short

ARMA model} from this state-space model. However,
we want to be able to compute an ARMA representa-
tion directly from R, (k) without going through this
indirect route. The results of this section will of course
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heavily rély on Section 3, where we have established
the relations that exist between an ARMA realization
[Alq), B(q), R] and the spectrum Sy(q) of the output
process {y;} of this model, namely

Syla) =47 (q) Bla) RBY (g7 a7 (g7

We recall that the spectrum is just an alternative de-
scription of the covariance function as an infinite
power series. One way of solving the ARMA realiza-
tion problem would be to compute the spectrum of
the given covariance function R (k), to find a closed
form expression of $,,(q) as a rational function of q,
and then to factor Sy(q) into A(q), B{q) and R such
that (5.1) holds and that the realization [A{q}, B{q), R]
is minimal. This procedure, based on the factorization
of Sy(q), is called spectral factorization. The spectral
factorization problem is of course totally equivalent
with the covariance factorization problem, the only
difference being that spectral factorization is perform-
ed in the spectral domain (where one works with
rational functions of the complex vadiable g), while
covariance factorization is Perfor_med in the time
domain (where one works with functions of the time
variable t, or k). In this section we shall solve the
stochastic realization problem in the time domain, as
we have done throughout this paper. We shall there-
fore use covariance factorization methods rather than
spectral factorization methods. The reason for doing
so is that we want to exploit the time-domain innova-
tions resnlts of our first paper, rather than resort to
algebraic methods. We have given the spectral domain
interpretations mainly because they add a lot of insight
into the stochastic realization problem, particulatly
for the ARMA realization problem. Indeed, transform-
ing Ry (k) to Sy (k) has enabled us to write the explicit
relation (5.1} between the spectrum of {y, } and an
ABRMA model for {y;}, No such explicit relation can
be written between Ry(k) and the parameters A;, B;
and R.
Just as in section 4, we shall now restrict our attention
to scilar processes {y.}; the solution of the vector
realization problem reqitires background knowledge
on the structure of multivariable systems. The ARMA
realization problem can then be stated as follows :
“Given the covarance function R_(k), k=0,1, 2, ...
{or equivalently the spectrum Sy(a) of a scalar discrete-
time zerc-mean stationary process {y, } and assuming
dim{y,f=n < =, find ther a minimal realization
[A{g), Blg), R] (see Definition 3.3) where A(q) and
B(q) are polynomials, and R is a positive scalar’.

(5-1)

We shall see that, just as for the state-variable realiza-
tion problem, the coefficients 2; of the polynomial
A(q), which determine the poles of the model (i.e. the
autoregressive structure), will be obtained as the soln-
tion of linear Yule-Walker equations, while the con-
stant R and the coefficients bj of B(q} will be obtained

representatiof, which was called the ARMA innova-
tions representation. We shall therefore solve the
ARMA realization problem by computing the innova-
tions representation, thereby using the results of sec-
tion 4 of our first paper [1] on predictors for ARMA
models.

5.2. Computation of the AR parameters

Let n be the rank of the infinite Hankel matrix Kl,m(Ry):
or equivalently the dimension of the {y,} process. We
assume that n has been determined from #q . (RY) by
the procedure described in section 4. Then, by the same
arguments as in section 4 we can uniquely compute the
solution aq, ..., a, of the Yule-Walker equations (4.3).
The coefficients afy versdy will be the AR parameters

of our ARMA model. To show this conclusively we
have to first construct the complete ARMA model, i.e.
also compute the coefficients by and R. But it is at least
plausible that the a; are the AR coefficients, since they
obey the Yule-Walker equations that the AR paramerers
of an ARMA model obey (see Section 3).

Lemma 5.1.
n .
The polynomial A(q)=1+ _21 a; q" is stable, i.e. all
1=

its zeroes are outside the unit circle. &)

Proof

We have shown in Proposition 4.2 that the marsix F,
whose last row is [-a_, —a_ 1, ... a1 ] (see (4.5))
has all its eigenvalues strictly inside the unit circle.
where det (AI-F) =" + aq P ap- It turns -
out that A(q) = det (I- qF). Therefore A{q) has all its
zeroes strictly outside the unit circle: oo

5.3. Computation of the MA parameters

To proceed further we now define the auxiliary process

1

n
iy, + iEI aiyt_i=i§0 a;y,_; withag=1

(5.2)
and we show some properties of the {r,} process.

Proposition 5.1.

The process {rt} is a zero mean stationary finite variance
process. ks covariance function Is truncated, i.e.
RJ_(t,t—k)=0forfki>n. O

Proof

1) Eir,}= éo a B {y,_;} =0 (5.3)

via the d§ymptotic solueen of 7 set of nonlinesr eqiiar
tions. .

We have shown in section 3 that every ARMA realiza-
rion is spectrally equivalent with an invertible ARMA

n .
2) By Eemma-5:1-we knowthatA(q):{} b a_i ql 153
i=
stable polynomial. Therefore {r¢ } is a finite variance
process because it is obtained by passing the finite
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variance process {y;} through a stable filter.

n n
3) R(,t-k}=E {(iéo Y i (jE o Ye-k-j }
a2 s Ry (kejoi)]
= 2 ay +j-i

i= 0 R (5.4)
We see from equation (5.4) that R.(r, t~k) isa func-
tion of k only, whence we shall use the notation R (k)
for R {t,t- k).
By section 4 (eq. {4.2)) we have

n -
iEO a; RY (k-1) = k>n; a5=1 (5.5)
Therefore it follows from equation (5.4) that
R_(k}=0 for Jki>n (5-6a)

= E aJ[E al%(k-l-_] -i)] forlki<n

(5.6b)
on

Our next step is to obtain a white noise driven model
for {rt }. Since {rt} is a stationary process with a
truncated covariance function of width at most equal
to n, it can be modelled as a purely moving average
{MA) process of degree n.

T 1§0b W, _i» {5.7)
with wy a zero mean white noise process with some
unknown variance R. It now remains to show how the
coefficients bj and the variance R can be computed.

It turns out that there are several ways of doing that,
but all of them involve the solution of nonknear equa-
tions as we now show.

The covariance function Ry(k), k=0, 1, ....n of the

{r } process can be computed from the covariance
functlon (k through (5.6), We can now express
R (k), k=0, ., as a function of the unknown
coefficients bl, ..+; by and R by using (5.7) :

R9=ELE bwe ) (E by )

n

=R(.E bi bi_k), k=0,1,...,n (5-8)
i=k

Equation (5.8) constitutes a set of n +1 equations in
the n+1 unknowns bq,..., b, and R. However these
equations are non-linear. Their solution therefore.
requires an iterative method; in addition this set of
equations, as any set of nonlinear equations, admits
more than one solution. This last fact is, of course,
entirely consistent with our observation in section 3

ARMA innovations representation. Instead of trying

to derive an algorithm for the direct solution of equa- -
tion (5.8), we shall use the general innovations filter
{GIF) formulas of our first paper [1] to obtain pa- )
rameters for a MA model (5.7). We shall thereby insure
that the obtained model is an innovations model, i.e.

I, =€ + 331 c; €3

=C(q) €, (5.9)

where the polynomial C{q) is invertible.

In other words, among all solutions of the set of non-
linear equations (5.8), we shall find the unique solu-
tion for which the polynomial C (g} has all its zeroes
on or outside the unit cizele.

In section 4 of our first paper [1] we have derived
finitely recursive expressions for the predictor £, ft-1
of a process r; that has the “truncation” property.

The inverse of this predictor can of course be used as
a model for the process r,, Le. £

n=f .+ € {5.10)

The predlctlon formulas for £ £ o1 assuming observa-
tions {‘7}; (t > 0), given in [1], are repeated here

for convenience

t/t = kE R (tt-k) R, (t k, t- k)e. K
(5.11a)

et:rt_-ft/t—l . t=0,1,... {(5.11k)

where

R (t7) 2R (1;7) 40 for 7<0 (5.11c)
-1

We also recall that the coefficients R {t t-k) R

{t -k, t —k) of this predictor can be recursively com-
puted from the covariance function R (k) as follows
(see eq. (4.10)-(4.11) of [1]) :

R (1, t-k) = R (k)

TR R T -k
- » celtt=s) R {t-s,t-5)R (t~k, t-s)

J o os=kel (5.12a)

Re(t, t) =R (8, 1) {5.12b)

t=0,1,...

again with the constraints {5.11c) and with initial con-
dition

k=90,1,.

that there are several minimal ARMA realizations
which are spectrally equivalent. We also know that
there is a unigue minimal invertible realization, the

R (0,0} = (5.12c)

R,{0,0) = R {0}

The prediction filter equation (5.11a) is a non-stationary
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filter, and the innovations {e,} defined by (5.11b)
form a non-stationary process. This non-stationarity
is caused by the fact that, although {r;} is a stationary
process, the observation process is not (we only start
to observe ry at t= ty). However, if we let tg tend
to —o, the predictor for {r.} will become time in-
variant, and {€,=r, - f, Jt-1 } will be a stationary
finite variance process. Reversing the argument, if
we start at t = 0, thén for t = o, i.e, asymptotically,
{eg=r,—fj¢-1} will become stationary, and the
limits

lim R (t,t-i) ;

L= ==

i=0,1,...,n

do exist. Furthermore tli_inm R_ (t, t} is the asymptotic

variance of the innovations. We may actually note that
R (¢t t) {or, equivalently, R.(t, t)) is always bounded
by R.(0) since setting k=0 in (5.12a) shows that

R, ¢(t, t) is obtained by substracting a non-negative
definite term from R (0). Recall also that R (0) is
bounded by Proposition 5.1.

Let us then define coefficients ¢; and a constant Q as

Q= lim Reo(t 1) (5.14a)
6= lim Rt - ol (5.14b)

The model
r,=Cla)e, s Efe €} =Q6t,,r

where the coefficients of C(q) are given by equation
{5.14b),is then an innovations realization for the
process {r.}, since it is obtained as the sum of the
asymptotic innovations predictor f; /3 for r, and
the innovation € {see (5.10}). The polynomial C(q)
is therefore invertible,

The preceding argument can be summarized in a
Proposition.

Proposition 5.2.

Let R, (k) be the covariance function of a (wide-sense)
stationary process {r.}, and let R (k) =0 for Ik| > n.
Consider the iterative algorithm :

Rpelii-k)= Ry (k)

- 2 R_(hi-s) R (i-si-s)RE (i-kiis)
- s=k41 ¢ K € -8Ryl
(5.152)
R (L i) =R (i 1) (5.15b)

Then
a) the sequences R, (i,i-k), k=0, 1, ...,n, converge

to a set of constant values Ty asi- =.

b) the model re = C(q) €, with

n k - el
Clg)=1+ k§1 e 9 5 Cp=Cp ¢ {5.15e)
where {€,} is a white noise with covariance
Q=7 (5.15f)
is an invertible realization of the process {rt} . o
Proof

‘The proof is provided by the argument preceding the
proposition. Ko
We have presently given a complete solution to the
stochastic realization problem for scalar ARMA models.
Indeed, by putting together the invertible moving
average model r; = C(q) €, and the stable autoregressive
model A (q) y, = r;, we obtain the ARMA innovations
model

Alg)y,=Cla)e

We have solved the realization problem by constructing
a model piece by piece; it is an easy matter to verify
that the process {y,} generated by (5.16) has indeed
the prescribed covariance.

Actually, for k > n, the covariance function R, (k} of
the output process {y,} of (5.16} obeys the Yule-
Walker equations (4.2) because the parameters

at, ..., ay have been obtained through (4.3), In addi-
tion it follows from (5.5) and (5.6) that R (k) is entirely
determined by the elements Ry(0)s Ry(L), oy Ry(n)
of the given covariance function. Since the parameters
€1, ---s & and Q have been chosen such that (5.6) is
satisfied, it follows that the covariance elements

Ry (0}, Ry(1), .--5 Ry(n) of the output process {y;}

of the model {5.16} coincide with the first o +1
elements of the given covariance sequence. By the
Yule-Walker equations, the complete covariance
sequences coincide. We can therefore state thisasa
Proposition.

(5.16)

Proposition 5.3.

Assuming that aj, ..., a;, are the solutions of the Yule-
Walker equations (4.3) and that ¢y, ..., ¢ and Q have
been obtained by {5.15), then the model (5.16) is an
innovations model for the process {y; }. O
For the sake of clarity we recall the major steps of
the realization algorithm :

i=0,1,...; k=0,1,....n (i) From the covariance function R, (k), determine -
. C. the Hankel matrix 3§ _ k}), and find its
with Ryl i-j} = 0 and R (i-j, i-j) = 0 forj > i, rank 1= (Rylk)
: {5.15¢)
T ii i 423y to find the n AR coet-
and with initial condition {11) ?i(i:l tzqatzatlons (4.3) to en coe
R, (0, 0}=R(0) (5.154) (iil) Compute the (truncated) autocovariance func-

tion R (k) from equations (5.5)
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(iv) Using R (k), iterate algorithm (5.15) to obtain
the constants € (k=0,...,n). The MA pa-
rameters are given by ¢} = T C5~ , and the

driving noise covariance by Q = ¢,

5.4. Discussion

It is noteworthy that steps (1) and (i} are identical
to the first two steps required in order to obtain a
state space model. Actually step (ii) determines the
pole structure of the realization (both here and in
Section 4) and requires the solution of a set of linear
equations. In order to determine the zero structure
(KP in section 4, and C {q) here) we have to solve a
quadratic equation. Iterative solutions have been
given.

Finally we should observe that just as in Section 4,
the computation of the moving average part

r, = C(q) € of our ARMA miodel did not rely on
the fact that Ry(k) is a scalar covariance function.
Actually the algorithm (5.:15) is valid for a p-vector
process {r;}. To the best of our knowledge the use
of (5.15) as a solution to the stochastic realization
problem has not been published before, even though
the prediction formulas (5.11}-(5.12) are well known
[20].

6. DISCUSSION AND SOME MORE RESULTS

In this section we shall give some comments and
further results that can be obtained from the material
we have presented in sections 2 through 5. First let
us give an extra definition :

Definition 6.1

A stationary ‘covariance function R'Y(k) e RP*P i
called factorable if there exists an integer n > 0, and
constant matrices He RPXD, F e ROXD ynd

L € R™*P such that Ry(k) can be expressed as
Rik) = HF KL (k> 0) O
The following statements about the process {y.}, its
covariance function RY(k) and its spectrum Sy(q)
are then equivalent :

6.1, Equivalent statements

(a) {yi} is generated by passing white noise
through a finite dimensional (i.e. lumped)
dynamical model.

{b) {yc} is a finite dimensional process, i.e.
dim ({y;})=n< =

(c)  {y;} has a rational spectral density function,
Sy(a)

statements; they can be demonstrated from the mat-
erial presented in previous sections (for scalar proc-
esses at least). By presenting these equivalent state-
ments we merely wanted to highlight the fact that
there are various ways of characterizing finite-dimen-
sional processes.

6.2. The spectral factorization theorem

As promised in Section 3, we shall give a statement
and proof of the Spectral Factorization Theorem for
scalar processes.

Proposition 6.1 (Spectral factorization)

Let Sy(q) be a rational spectral density. Then Sy(q)
can be factored as Sy(q) = H{q) RH(qL) where
H(q) is a rational transfer function of the form
H(q) = B(a)/ A(q). A(g) and B(q) are finite poly-
nomials, and A(q) has all its zeroes strictly outside

~ the unit cercle. o

Proof

The result follows immediately from Section 5, where
we showed that we can always find an innovations
representation [A(q), C(q), Q] for a given rational
spectrum Sy(q). oo
Proposition 6.1 is an existence theorem. In Section 5
we gave a constructive procedure to compute a fac-
torization of S, (q) if Sy(q) is rational. The existence
follows thus trivially @ posteriori.

A similar theorem can be formulated for vector
processes, i.e. when S_(q) is a rational matrix func-
tion. For results on this see e.g. [21].

6.3. Characterization of a minimal ARMA realization

In section 3, we gave necessary conditions for an
ARMA realization [A{q), B(q), R] to be a minimal
realization of a finite dimensional scalar process {y, }.
This was the subject of Proposition 3.1. Using the
results from section 5, we shall now be able to givea
sufficient condition as follows.

Proposition 6.2

Let [A(q), B(q), R} be a realization for a finite dimen-
sional scalar process {y,}, and let n= max (3 A, 3B).
Then dim ({y,}) =n if A(q) and B(q) are coprime

and if B(q) is invertible. w]

Proof

By contradiction. Let (A, B) be coprime, B{q) be
invertible, and assume dim ({y.})=n" < n. It then
follows from the. realization theory for ARMA models
that there exists a realization {A"(q), B"(q), R] with
B'(q) invertible and n” = max (3 A, 3B"). Further-
more; since [A, B, R] and [A", B", R’] realize the

{d) {yy} hasa factorable covardance functiomn,
Ry (k).

We shall not prove the equivalence between these

same process we must have
B'(g) R B’(q") _ _B(q) R B(g)
A'lg A'lgh Alg) Alg™h
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or B(g) R” B"(q™1) A(q) A(g™)

= B(q) R Blg™}) A'(q) A(q™H) (6.1)

Let’s for convenience define the polynomials L(g)
and R{q) as

L{a) = B'(9) R" B’{q™}) Aq) Alq™h)  (6:20)
R(g) = Blg) R B(g™}} A'(q) A(q)  (6.2b)
Now, let '
r n’ L4 n
B'(q)=,%,(1-e5q Blg)=.7(1-a,;q)
(6.3a)

'A’(q}=1.£1 (1-7%4q) A(Q)zi:il(l—ﬂ'iq)
' (6.3b)

Since dim {y,}= n" it follows from Proposition
3.1 that A"(q) and B"(q} are coprime or equiva-
lently ¥4, je(1,...,n"), a{ .

Equation (6.1) expresses an equality between two
polynomials, namely L{q) = R{q). This must mean
that all the zeroes of L{q) are also zeroes of R{(q).
From equations (6.2, 6.3) it follows that the zeroes

of L(q) are given by the set £ which is the union of
the two sets £1 and £ defined as follows :

£=£1 U£2

where

£1_Q_{!1§,-&1?.; iel, sn’}
L, 4 {m: 1 ier n;
2: 1’ 3 3 ? ’

The zeroes of R{q) are given by the set & as follows

agalu Ry

where #4 4 {7}, = ; iel,...,n"}
1 1 T

1

fiqg 2 {ai’ q
We must have from equation (6.1) that

=& (6.4)

Since a; # 'ij', for every zero in £y there must be a

; iel,...,n}

corresponding zero in &9, and for every zero in &1
there must be a corresponding zero in 1.

At the end there will thus be 2(n-n’ )>0zeroesinty
and 2{n-n") > O zeroes in & 5 that are not matched by
zeroes in & 1 and £y respectively. These 2(n-n") > 0
zeroes in o have to match the 2{n-n") > 0 zeroes in
f9. Furthermore, since by assumption |7} > 1 and

tion that A(q}, B(q) were coprime. oo
With a simple example we shall illustrate the fact
that the invertibility of B(q) is really required to make
Proposition 6.2 wotk.

Example 6.1

Take' the realization A(q)="1-0.5q, B(q) =1-2q,

R =1 > 0; note that B(q) is not invertible, because -
it has a zere at 0.5.

The number n is defined as n = max{aA, 3B) = 1.

In order to determine dim {y,}, we look at H1, oo

it follows straightforwardly here that

Ry(1) =Ry(2) = ... = 0, thus dim {y;} =0 <n= 1.0

7. CONCLUDING REMARKS

This paper is on stochastic realization theory and
algorithms. Basically, we have studied properties of
covariance functions. First we have seen what happens
if we pass a white noise process through a stable linear
filter, i.e., what properties are induced by the filter
structure into the covariance function of the output
process. This was done in sections 2 and 3 for state
space models and ARMA models respectively. Two
basic results emerged from this. Firstly the fact that
the Hankel matrix of the covariance function has
finite rank. Secondly the fact that, if the given realiza-
tion (we shall call a white noise driven model generat-
ing {y,} a realization for {y;}) is minimal, then we
can always find a unique invertible minimal realiza-
tion, or a so-called innovations representation.

In sections 4 and 5 we considered the inverse prob-
lem, namely : given a covariance function, how can
we infer a realization from it. The link between sec-
tions 2, 3 and sections 4, 5 was provided by the
Hankel matrix of the covariance function. Indeed, if
we find out that the Hankel matrix has a finite rank,
then we can infer finite dimensional white noise driven
models (i.e. realizations) for the process {y}.

The algorithms we have used to construct such models
were based on the innovations filters derived in our
first paper, and therefore led to innovations realiza-
tions (i.e. invertible models).

The construction of minimal invertible realizations,
i.e. realization algorithms, involves three steps. First,
we have to determine the rank of the infinite Hankel
matrix of the covariance function. This is not a trivial
problem, and some discussion is given in section 4,
Second, we have to solve a linear problem, namely the
solution of the Yule-Walker equations. This problem
is trivial in the scalar case and more involved in the
p-vector case (in this paper we did not discuss the
vector case). For state space realizations this linear
problem is also called the covariance factorization
problem; for ARMA realizations it means that we

la;] = 1 (A{q) stable and B(q)invertible!)'there must
be a polynomial D(q) of degree n-n" > 0, and with all
its zeroes strictly outside the unit circle which is com-
mon to A{g) and B(q). This contradicts the assump-

obrain the AR part of the realization.

In a final (third} step then we had to solve a non-
finear problem {actually a quadratic problem). For
state space madels we had to find a solution for an
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Algebraic Riccati Equation (ARE), and for ARMA
models we had to solve a (matrix) polynomial
spectral factorization problem. For both cases we
have given algerithms to compute the solutions but
we have not explicitely shown the equivalence of
both quadratic problems (see also the discussion in
section 4.4 and section 5).

We shall consider now the application of the realiza-
tion results in estimation theory. In our first paper
[1], we presented the GIF {General Innovations
Filter) for prediction. As we commented there, the
GIF can be recursively computed from the covariance
function R {k), but the recursions are not finite, so
a growing memory is requj:ed. Here, however, we
showed that, if the process {y,} admits a finite
representation, a finite innovations representation
(IR) can be obtained from covariance information.
Given such an IR, we can obtain, by a trivial trans-
formation, a prediction filter for {y,}. This is dis-
cussed in [6] for state space models and in {22],
[23] for ARMA models. We should comment that if
our only interest is in prediction, we could get away
with just ARMA models since they contain all the
necessary information that is required to compute
predicted estimates. However k-step predicted esti-
mates of y, (ie. §; ¢ k) are more easily computed
with state space models

In addition it may be that we are also interested in
the estimation of a process {x,}, related to the
observation process {y;}. Again from [1], we know
that, given cross-covariance information (Le. Ry {k)),
the GIF formulas provide a (non-finitely) recursive
solution. The construction of finite dimensional
estimators based on covariance information has been
treated in [6] for the case where the cross covariance
ny(k) is given in a factored form.

We have in this paper and in [1] restricted ourselves
to discrete-time processes. The continuous-time results
dealing with the state-space realization problem are
given, for instance, in [4], where a factored form of
the covariance function is assumed to be given.

As a final comment we want to mention the fact
that stochastic realization theory plays an important
role in the problem of systems identification. It is
by no means clear that realization algorithms (based
on an exact knowledge of the covariance function)
are also good identification algorithms (based on co-
variances estimated from a finite data record).
Stochastic realization results have, however, provided
important insight in the structural aspects of the
identification problem. Some identification schemes
are actually directly derived from the stochastic
realization theory (see e.g. [24]-[25]). Some of the
structure determination methods are also based on
these results (see e.g. [26]).
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