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Abstract-Previous results on estimating errors or error 
bounds on identified transfer functions have relied upon prior 
assumptions about the noise and the unmodeled dynamics. This 
prior information took the form of parameterized bounding 
functions or parameterized probability density functions, in the 
time or frequency domain with known parameters. Here we 
show that the parameters that quantify this prior information 
can themselves be estimated from the data using a maximum 
likelihood technique. This significantly reduces the prior infor- 
mation required to estimate transfer function error bounds. We 
illustrate the usefulness of the method with a number of simula- 
tion examples. 

The paper concludes by showing how the obtained error 
bounds can be used for intelligent model order selection that 
takes into account both measurement noise and under-model- 
ing. Another simulation study compares our method to Akaike’s 
well-known FPE and AIC criteria. 

I. INTRODUCTION 

HE starting point of just about any robust control design T principle is the assumption that the design engineer 
possesses not only a nominal plant model, but also precise 
knowledge of the uncertainty bounds around this nominal 
model. Both the nominal model and the uncertainty bounds 
are usually assumed to be given in the frequency domain, for 
example, in the form of a Nyquist plot of the nominal model 
with uncertainty bounds around it. 

In many practical applications, the nominal model will be 
obtained as the result of an identification experiment. The 
need of robust control designers for uncertainty bounded 
model descriptions is viewed by members of the identification 
community as a major theoretical challenge, and it so hap- 
pens that present-day identification theory is not able to 
deliver the uncertainty bounds that robust control designers 
require. 

Bias Error and Variance Error 
The errors in the estimated transfer functions have two 

components. The first component, often called variance er- 
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ror, is caused by the noise in the data that make up the 
particular realization that is used for identification purposes. 
The second component, often called the bias error, is caused 
by the fact that the parameterized model structure is, at best, 
a simplified (low order) version of the true system. That is, 
given the restricted complexity of the nominal model, there is 
no parameter value for which the nominal transfer function 
can equal the true transfer function at every frequency. 

A key tool used for the computation of the first component, 
i.e., variance errors, is the Cram&-Rao lower bound on the 
estimated parameters. Zn the case of exact model structure, 
this tool produces reasonable variance error expressions for 
the estimated transfer functions; see, e.g., [17] and [8]. This 
variance error typically decreases like 1/N, where N is the 
number of data. Zn the case of restricted complexity model 
structures, the parameters of the model have essentially no 
meaning: they converge to values that bear no connection 
with the parameters of the true system transfer function if 
such objects exist. The classical CramCr-Rao expression 
does not apply. However, recent work has produced an 
asymptotic procedure for the computation of variance errors 
on the model parameters in this situation [ 131. 

We now turn to the estimation of the second component; 
bias errors in the case of restricted complexity models. In 
the case of noiseless data, this is essentially a trivial prob- 
lem. Indeed, when there is no noise and given sufficient 
excitation, one can estimate as many parameters as there are 
data points, say N. If N is large enough, such a high-order 
model will be as close as desired to the true system, assuming 
it is linear. If a low-order model is then extracted for control 
design purposes, the exact bias in that low-order model, 
rather than just a bias error bound, can be computed by 
reference to the known high-order model. 

The characterization of the bias error in the case of a 
finite set of noisy data is much more difficult. Asymptoti- 
cally, of course, the same argument applies as in the noise- 
less case since the noise is averaged out, which allows for the 
estimation of very accurate high-order models. But our ambi- 
tion in this paper is to handle the case of estimation of 
restricted complexity models from a Jinite noisy data record. 
The first results on a characterization of the bias error are 
due to Wahlberg and Ljung [28], who provide an implicit 
description of the bias error using Parseval’s formula. This 
formula allows for an interesting qualitative discussion of the 
factors affecting bias, but it does not provide an explicit 
expression of the bias errors or a bound on it. 
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To summarize our discussion so far, the estimation of the 
error (or of an error bound) on an identified model is only 
difficult, and indeed unsolved, in the case where both the 
model structure is of lower complexity than the true system, 
and where the data record is finite and noisy 1321. 

Error Quantification: Review of Existing Methodologies 
The mainstream of thought to date has been to derive hard 

bounds on the transfer function error on the basis of assumed 
prior knowledge on the noise (a known distribution or a 
known hard bound) and of assumed prior magnitude and 
smoothness bounds on the unmodeled dynamics. For exam- 
ple, in [l] ,  a nominal parametric model is fitted to the 
empirical transfer function estimate (ETFE), for which hard- 
error bounds are derived on assumptions of smoothness of 
the true frequency response and bounds on the Gibbs effect 
due to the finite data windowing used in calculating the 
ETFE. In [24] and [25], a similar approach is taken save that 
a Kalman filter is used to calculate the ETFE, and FIR 
models are then fitted to this in the frequency domain using 
the interpolation theory of Lagrange. In [14]-[16], [30], and 
[3] bounds are calculated in the parameter space, again based 
on assumptions on the smoothness of the true transfer func- 
tion of the unmodeled dynamics. Compact supports for the 
distributions of stochastic components are also assumed and 
the resultant parameter space bounds are transformed to the 
frequency domain. Finally, in [29], the ideas of set member- 
ship estimation developed in 151, [6], and [23] are used to 
provide hard bounds in the parameter space, which are then 
transformed to the frequency domain. 

The hard bounding approaches to quantifying errors on 
estimated transfer functions suffer from several drawbacks, 
leading to overly conservative error bounds. We shall ad- 
dress these limitations at the end of this Introduction. 

This conservatism can be avoided by assuming a stochastic 
prior model for the distribution of the unmodeled dynamics 
with a distribution of noncompact support, as opposed to the 
uniform compact support distribution imposed by hard-bound 
models. Such stochastic description of the unmodeled dynam- 
ics is consistent with the stochastic prior model that is 
typically assumed for the noise. The idea of stochastic em- 
bedding was introduced in [ 121 and subsequently developed 
in [ l l ] ,  [21], 1221, and [8]. In similar spirit to the hard- 
bounding work, it required prior specification of likely 
smoothness and magnitude parameters of the true-system 
frequency response, via a parameterized prior distribution 
with known parameters. This prior distribution was updated 
to a posterior one using the data and the prior noise distribu- 
tion, and this gave confidence regions for the estimated 
frequency response. 

Our New Contribution 

unmodeled dynamics transfer function is that the magnitude 
of its impulse response is bounded by a first-order exponen- 
tial ahk, while a typical stochastic prior assumption is that 
the variance of the unmodeled dynamics is bounded by ahk. 
In both cases, CY and h had to be fully known. Our major 
new contribution in this paper is to show that, provided a 
parameterized structure is chosen for the prior assumption 
(e.g., a first-order decaying exponential for the variance of 
the unmodeled dynamics), then the parameters that specify 
this prior ( a  and h in the above examples) can be estimated 
from the data using maximum likelihood. We believe this to 
be a significant step forward, since the required prior infor- 
mation now reduces to specifying the structure of some 
parameterized probability density function for the undermod- 
eling and for the noise, while the parameters are left free to 
be estimated. As our simulations will show, the precise form 
of the structural assumption on the undermodeling does not 
appear to be essential, the only requirement being that the 
undermodeling transfer function be stable; a reasonable 
stance. The requirement on prior information is thus 
reduced from a quantitative one to a qualitative one. We 
believe this to be a major advantage. Simulation studies show 
the resultant confidence regions to be highly realistic and 
discriminatory. 

We conclude the paper by showing how the error bounds 
obtained may be applied to the problem of model order 
selection with finite data. The optimal order is obtained by 
minimizing some suitable criterion of the total mean square 
error between the true trapsfer function G,(e-j") and the 
estimated model G(e-jw, 0,) based on N data. Depending 
on the application, the criterion could be, for example, the 
weighted integral of this error over all frequencies, or the 
supremum of this error weighted over frequency, or any 
other suitable criterion. We introduce a new criterion, called 
the generalized information criterion (GIC), which is based 
on minimizing the mean square output prediction error. We 
show that, in the presence of undermodeling and with finite 
data, this new criterion performs better than the classical final 
prediction error (FPE) and AIC criteria. 

The mean square error between GT( e-j") and G( e-jw, e,,,,) 
is shown to be the sum of two terms; a bias term that 
decreases with model order and a variance term that in- 
creases with this order. The minimum overall model orders 
will therefore be well defined. It is important to understand 
that this optimal model order is also an increasing function of 
the number of data N ,  since the variance error contribution 
decreases with N.  We should like to make it very clear that, 
contrary to popular belief, with finite noisy data the optimal 
model order is typically smaller than the exact model order if 
such an exact order exists, and that the traditional quest for a 
true model order on the basis of finite data is a misguided 
pursuit. 

The major criticism one could level at the methods we 

assumed on the noise bound and on the magnitude and 
have briefly reviewed is that complete prior knowledge was Stochastic or the soft- versus-Hard- 

Bound Debate 
smoothness bound for the unmodeled dynamics in the hard- 
bound approach, or alternatively on the distribution of the 
noise and dynamics in the stochastic embedding approach. 
For example, a typical hard-bound prior assumption on the 

We conclude this Introduction with a thorough motivation 
for our stochastic embedding approach. We believe the hard 
bounding approach to error quantification suffers from two 
key limitations. First, it is philosophically objectionable to 

~- 
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abruptly abandon a stochastic paradigm in favor of hard-bound 
models on the noise as soon as undermodeling becomes 
present. A hard-bound noise model is a very coarse (worst 
case) model for physical reality since every value within a 
compact domain is considered as likely as any other. A 
distribution, with noncompact support, is a model of reality 
in which the noise values are assumed to be on average 
centered around some mean value without precluding the 
possibility of the occasional outlier. This appears to be a 
much more reasonable model than the worst case assumption 
that the noise can be at the outlier value at every time. 

Second, and precisely because the compact support as- 
sumptions on the distribution of the stochastic components 
have to include the occasional but unlikely outlier, the prior 
bounds will of necessity be very large. This in turn, implies 
that the resultant hard-error bounds on the transfer function 
will also be overly conservative. In addition, for the parame- 
ter space bounding methods, the membership sets are only 
overbounding approximations to the true sets, while the 
transformations from parameter space to transfer function 
domain are again overbounds and conservative. This conser- 
vatism is illustrated in the diagrams of [29]. 

By embedding the description of the undermodeling, and 
of course also that of the noise, in stochastic distributions 
having noncompact support, we avoid this conservatism. Of 
course, the resulting frequency -domain bounds then become 
confidence regions rather than hard bounds. However, we 
argue that this is appropriate since prior assumptions can 
never be specified with absolute certainty. Indeed, we also 
suggest that real world control problems are nearly always 
solved by aiming for high performance in the belief that the 
set of pathological conditions associated with extreme bounds 
will rarely, if ever occur. Therefore, control engineers al- 
ways work with a tradeoff of uncertainty versus performance. 
Consequently, while the estimation community has a mandate 
to provide transfer function estimates together with error 
bounds, the robust control community has a responsibility to 
accept this information in a realistic format which almost 
certainly precludes bounds which are absolute. 

Furthermore, we contend that the stochastic embedding 
approach is a very appropriate one to choose because of the 
nature of undermodeling. That is, undermodeling typically 
arises because of physical manifestations that are too compli- 
cated to exactly describe. The best that can be hoped for is to 
capture the on-average properties of the undermodeling so 
that its most likely manifestation can be predicted. In this 
case, a probability density function is an appropriate choice 
for describing the undermodeling. Indeed, we would argue 
that the common assumption of measurement noise existing 
and being modeled by a stochastic process is an equivalent 
injection of a probabilistic framework on an essentially deter- 
ministic underlying problem. Our approach thus has an obvi- 
ous antecedent in the whole paradigm of stochastic estimation 
theory. 

11. PROBLEM DESCRIPTION 
We consider the problem of estimating a model for a 

dynamic system on the basis of the observation of an N point 
input-output data sequence zN = [{ U,}, { U,}] where we 

assume that the observed data 2" is generated by the system 
Y according to 

9: y, = G,(q- ' )u ,  + H ( q - ' ) e , .  (1) 

Here GT( q- ') and H( q- I )  are rational transfer functions in 
the backward shift operator q- ' .  We assume that both are 
strictly stable and have no poles in 1 q 1 2 1 .  The distur- 
bance sequence { e k }  is assumed to be an i.i.d. stochastic 
process defined on some probability space { Q, 9, P} with 
8{ ek}  = 0 where &{ * } denotes expectation with respect to 
the measure P on Q. Finally, we assume that {uk} is a 
quasi-stationary sequence in the sense of [17] and that { e k }  is 
independent of { U,} so that closed-loop collection of the data 
is ruled out. Consider a predictor for { y k }  parameterized by 
a vector 8 € R P  

j k ( 8 )  G ( q - ' , e ) u , +  (2) 

where the prediction model G(q- ' ,  e )  is a member of the 
model set A; 

d; = { G ( q - ' , e ) :  8ED,C R P }  (3) 

and there exists a smooth mapping d between 8 E DA C R 
and A; 

A: 8 -, { G ( q - ' , B )  ~d:}. (4) 

Suppose, for ease of presentation, that we estimate 8 from 
the data Z ,  via the classical least-squares estimate 

( 5 )  

(6) 

eN --f e* (7) 

(8) 

1 N  iN = argmin - C € ; ( e )  

€,(e) = Y ,  - M e ) .  
e N k = 1  

In [18], Ljung showed that under reasonable conditions 

where 

I N  

e N k = l  
e* = argmin- & { & ( e ) ) .  

With this definition of e* we can now examine the total 
error between the true transfer function GT(q- ' ) ,  and the 
estimated one G( q- ' , e,), at any single-frequency point, 
and decompose it as follows: 

G,(e-'") - G(e-'",$,) = G,(e-j'") - G(e-"",B*) 

+ G(  e-'", 8*) - G( e-j", 8,). (9) 

The first contribution, G,(e-'") - G(e-'", e*), is called the 
bias error. In classical identification theory, it is a determin- 
istic quantity. This bias error will be present, at least at some 
frequencies, as long as the model set d; has lower com- 
plexity than the true system [i.e., when there is no value of 8 
for which G T ( q - ' )  = G(q- ' ,  e)]. The second contribution 
G(e-'",e*) - G(e--'",eN), is called the noise error or 
variance error. It is a random variable with respect to the 
probability space of the noise distribution. it vanishes when 
there is no noise or when the number of data tends to infinity. 
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111. SOLUTION VIA STOCHASTIC EMBEDDING 
As stated in the Introduction, our ambition in this paper is 

to obtain an estimate for the on-average characteristics of the 
total error. The technical tool for doing so is to also make 
the bias error a random variable by ascribing a prior 
distribution to it. We therefore assume, following [26], [21], 
[ l l ] ,  [12], [22], and [8], that the true transfer function 
G,(e-'") is a stochastic process indexed by the variable w .  
We further assume that, for the given choice of model set 
A;, and for some value e,, it can be decomposed as 

G,(e-'") = G(e-'", e,) + GA(e-'") 

with &(G,(e-j")} = G(e- jw ,eo ) .  (10) 

It follows that GA(e-jw) is a zero mean stochastic process 

&(GA(e- jw)}  = 0.  (11) 

Note that &{ * } means averaging over different realizations 
of the undermodeling. Of course, for any given system we 
will have just one realization. This is analogous to the 
embedding of the single noise realization in a stochastic 
process for the purpose of analysis. 

We assume that { v k }  and CA are independent. The rest of 
the assumptions in CA are contained in the probability density 
function (pdf) that we choose to associate with it. Call this 
pdf fA(GA, p), where 0 is a real vector parameterizing 
f,( - , ). This pdf and /3 are chosen to describe the likelihood 
of various realizations of CA being observed. One thrust of 
this paper will be to show that, once such a parameterized 
structure has been chosen for f A ( G A ,  p), then the parameter 
vector /3 can be estimated from the data. There need be no 
conjecture about the undermodeling being random, when we 
know it to be deterministic since, to quote [4], "A random 
variable is like the Holy Roman Empire; it wasn't holy, it 
wasn't Roman, and it wasn't an Empire. A random variable 
is neither random nor variable, it is simply a function." In 
fact, it is a function that maps how the state of nature 
manifests itself in observations. A probability density func- 
tion is then associated with the random variable to center 
attention on a particular class of manifestations. 

Note that within our stochastic embedding paradigm lies 
the class of hard bounding solutions proposed in the litera- 
ture. All that is required is to specify fA( CA, 0) with compact 
support. However, we have added an extra degree of free- 
dom in our formulation by not constraining fA(GA, 0) to be a 
uniform pdf. This allows a finer structure to be injected into 
the description of the class of undermodelings considered 
likely. As will be shown by simulation, the result is that a 
finer structure can be obtained in the uncertainty quantifica- 
tion. We also assume that the form of the pdf f v ( v k ,  y) 
which is parameterized by the real vector y can be specified, 
for example, v, - M(o, U,,!). 

and hence 
we can use an IIR expression for GA(q- ' )  

= [ a ,  A]. Now, without the loss of generality, 

m 

Since { GA(e-J")} is a zero mean Gaussian and covariance 
stationary process, the impulse response sequence { o k }  is a 
Gaussian and independent process with [26] 

a($} = axk (14) 

so, the prior assumption on the undermodeling is equivalent 
to the fact that its impulse response dies at a rate faster than 
ahk. 

Furthermore, from (12) 

&[I  GA( e-jwl) - CA( e-""z) 1') 
2 4 1  + A ) ( l  - cos w )  

(1 - A)(1 + A2 - 2Acos w )  
(15) - - 

aA(1 + A) [ (1 - A)' ] U 2  

A where w = ( U ,  - U,). The prior assumption is thus also 
equivalent to the fact that its frequency response satisfies the 
Lipschitz smoothness condition (16) as well as a magnitude 

This example illustrates that we can impose the stochastic 
embedding of GA by specifying a prior probability distribu- 
tion for GA(e-j") or for the impulse response sequence { q k }  
of GA(q-') .  In the rest of this paper, we will choose to 
specify the distribution on 7. However, in order to usethe 
stochastic embedding model CA( q- ')* to calculate cov {e,} 
and hence, cov { G,(q- ') - G( q- ', e,)}, it is necessary to 
add the final assumption that G,(q-') can be approximated 
sufficiently closely by an FIR model of order L 5 N. 

condition &{ 1 Ga(ej") 1 '} = ( a / 1  - A). 

CA( e-j") = TI( e-jw)o (17) 

(18) 

(19) 

where 
r ~ ( ~ - j w )  [ e - j w  7 ,  . . . e - j L ~ ]  

9, [ 7, 9 * * . f V L ]  . 
In order to obpin tractable expressions for the second-order 
properties of O N ,  we introduce our final assumption that the 
model structure A is a mapping to rational transfer func- 
tions G(q-  ', 0) with a fixed denominator; that is, only the 
numerator is parameterized by 19. FIR models and the La- 
guerre models studied in 1191, [20], [31], and [27] are 
examples of such model structures.' With this assumption, 
the nominal model can be written as 

Example 1;. An example of a possible assumption on 
f A ( G A ,  0) would be that GA(e-jw) is a zero mean Gaussian 
distributed stochastic process in the frequency domain with 

where 

A(e-j") k [A,(e-j"); , . ,A,(e-iw>]. (21) 

With these assumptions on the nominal model and on the 
unmodeled dynamics, the system equation (1) can now be a Ae-j" 

&{GA(e-")GA(ej"2)} = - Ae- j" ;  (J 6 W 1  - O2 

' More general ARMA models are discussed in 191. (12) 
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rewritten in signal form as follows: 

Yk  = 4le0 + $Fq + v k  (22) 

v k  4 H ( q - ' ) e ,  (23) 

$: [ Uk-1,' * - 9 U k - J  (24) 

with 

where 0, has been defined in (10) and where $k is a vector 
containing filtered versions of the input signal. 

If we employ the notation 

@= 4 [ 4I,d2,'  * > d,] 
Y 7- g [ Y ,  > Y2 9 * * 9 Y ,  ] 
V T  g [ V I ,  v2; * * ,  v,] 

(25) 

(26) 

(27) 

then in satisfying (5) is given by 

= (n  - A Q ~ ) C , , ( I I  - A Q ~ ) *  + AQC,Q%* (42) 

where * denotes conjugate transpose. The expression (37) is 
a key result of the stochastic embedding approach [26], [21], 
U11,  WI, WI, and PI. 

Proof: Using the expressions (10) and (17), we have 

to give 

However, from (22) and (28) and the definition of Q we 
have 

Re { GT( e-'") - G (  e-'", i,)} 
Im { GT(  e-j") - G(  e-'", 8,) ] 

Q g  ( @ r + ) - l @ T  (34) 

g p )  & 

c, L2 E {  W T }  (30) 

c, 4 a{ V V T )  (31) 

q T g  [ $ I , * . . , $ , ]  (32) 

and so the second-order properties of the parameter estimates 
can be quantified to give a guide to uncertainty. 

Prior assumptions on the likely nature of the undermodel- 
ing can thus be translated into probable influences on 8, via 
(29). The quantification of probable influences on 
G(e-'", e,) may be obtained by the following theorem. 

Theorem I :  Define 

Using (46), and remembering that V and q are independent 
then gives cov{p, - j 3 N )  = 7'. This, combined with (47), 
then gives (40). The result (42) follows from the expression 

ono 
If the prior distributions f, and f, are chosen to be 

e, - J1/(8,, Po) g"(e-'") - N ( 0 ,  Pi)  (50) 

of Pi,  or more simply, from (37). 

Gaussian, then 0, and g"(e-Iw) are Gaussian distributed 

and hence quadratic functions of g have x2 distributions. In 
particular 

g( e-'") ' g (  e-'") - xk). (51) 

We can use this to give confidence ellipses in the-complex 
plane for the frequency response estimate G(e-'", e,). 

Comment: The expression (37) is a key result of the 
stochastic embedding approach [26], [21], [lll, [12], 1221, 
and [8]. On the right-hand side, the quantities I1 and A are 
known functions of the frequency w ,  while Q and q are 
known functions of the signals. Hence, (37) expresses the 
total error as a known linear combination of two independent 
random vectors q and V.  The expression clearly separates 
out the undermodeling error (II - AQ'k)q and the noise 
induced error AQV. The term nn is the prior estimate of 
the undermodeling [see (17)] while the term A Q q q  is a 
data-induced correction to this prior due to the shift from Bo 
to 6,. As for the mean square error expression, we note that 
all the quantities on the right-hand side of (42) are known 
except for the covariances C, and C,, which are known 
functions of the unknown parameter vectors L3 and y, respec- 
tively. In the next section, we will show that these parameter 
vectors can be estimated from the data. By replacing /3 and y 
by their estimates in (42), we will then have obtained com- 
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putable estimates of the mean square error on the estimated 
transfer functions. The same comment applies, of course, to 
the expression of PE. 

IV . ESTIMATION OF THE PARAMETERIZATION OF THE 

NOISE AND UNDERMODELING 

In order to use Theorem 1 to quantify errors, it is neces- 
sary to specify the form of the distribution f, and also its 
parameterization 0. In [21], [ l l] ,  [12], and [22], a Bayesian 
stance was adopted, whereby 0 was specified prior to the 
identification experiment. It was proposed that this could be 
done by consideration of the magnitude and smoothness 
constraints given in Example 1 in (12) and (16). 

In this paper our new contribution is to abandon the 
Bayesian framework and propose that the parameters fi be 
estimated after the experiment from the data. In this case 
only the form of the pdf f, need be specified apriori. Note 
that since we have constrained G,(q-')  to have zero mean 
value, the parameterization 0 of f A  affects only the second 
and higher order properties of G,. Therefore, estimating 0 
from the data does not amount to estimating G,(q-'). It 
amounts to estimating the likely class of CA( q- ')'s, of which 
we observe a realization. This idea has its obvious analog in 
estimating the variance of { vk} from the prediction residuals 
-a well-known technique. Indeed, we follow this paradigm 
and propose that and y, the parameters characterizing f, 
and f,, be estimated form the residuals. Therefore, we define 
the N-vector of residuals 

E g Y - a e  (52) 

(53) = [ I  - a(+Ta)-'aT] Y 42 P Y .  

The matrix in (53) has rank N - p .  Therefore, E has a 
singular distribution of rank N - p .  To obtain a new full 
rank data vector, we represent E in a new coordinate system 
that forms a basis for the space orthogonal to the columns of 
a. Let R be any matrix whose columns span the subspace 
orthogonal to the columns of a. One way of constructing 
such R is to take any N - p independent linear combina- 
tions of the columns of P .  Now define W E  RN-" as follows 

W 42 RTe. (54) 
Now W has a nonsingular distribution and, by the construc- 
tion of R ,  

W = R T Y  = R T q 9  + R T V .  ( 5 5 )  

on the observed input data vector U, and on f (0 T ,  y T ) .  
We denote the corresponding likelihood function by 
Y ( W  I U, f ) .  Maximizing this likelihood function yields 
the desired estimate for the unknown parameters 

We investigate the properties of $' for Gaussian assumptions 
on f, and f, in the following example. 

Example 2: Consider the special case of the stochastic 
embedding assumptions being the same as in Example 1 .  
That is 

9 - JV(0, C,(P)) (57) 

In addition, assume that the noise { vk} is iid, independent of 
17 and with vk - N(0, U,'). In this case P T  = [ a ,  A] and 
f = [ a ,  A, U,']. The Gaussian assumptions on the distribu- 
tions f, and f, give the log likelihood function I (  W I U ,  f )  
for the observed data as 

1 1 
l (W 1 U , { )  = --1ndetC 2 - -WTC-'W+constant 2 

( 5 9 )  
where 

C = R T q C , ( a ,  A)qTR + u,'RTR (60) 

C,(a,X) = diag{aX,aA';..,aXL}. (61) 

It is well known [lo] that the covariance of an unbiased 
estimate of f is bounded below by the Cram&-Rao lower 
bound. 

That is, cov (F) = M; is a lower bound on the covariance 
of 4- where M; ' is the Fisher information matrix 

Experience shows that cov is often a good guide to the 
covariance of estimators which are not actually unbiased. For 
the case of Gaussian assumptions in this example, we can 
compute an explicit expression for the information matrix. 

Result: The information matrix ME has the following 
form: 

tr [ (C-IT)']  tr [ C-'TC- 'K] tr [ C- 'TC- 'A]  

tr [ 2:-'TC;-'K] tr [ ( C ' K ) ' ]  tr [ C-'KC-'A] 

tr[C-'TC-'A] tr[C-'KC-'A] tr[(X-'A)*] 

ax 
a a  
az 
ah 

Since RT and \E depend on the input signal only, we observe 
that W is the sum of two independent random vectors whose 

where 

T A  R T ~ T ~ T R  = - 

K 42 R T ~ E ~ T R  = - 

probability density functions are computable functions of the 
unknown parameter vectors /3 and y. We can therefore 
compute the probability density function of W, conditioned 
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," d i a g ( a , 2 ~ ~ X ; . * ,  LCYX L - 1  ) - - -. acq (69) 
ax  

Proof: Using (59) we have, on applying Lemmas 1 and 
2 of the Appendix 

(70) 
Then, using Lemma 3 from the Appendix 

Replacing in (63) yields the desired result. 000 
H 

The availability of h4[ and the simple form of I (  W -VU, 
t )  in the case of Gaussian embedding motivates us to use the 
Gaussian assumption in practice. This leads to an algorithm 
which can, of course, also be applied in the non-Gaussian 
case as we shall do in the examples later. We examine more 
closely the properties of EN based on the Gaussian embed- 
ding. 

Example 3: Under the stochastic embedding assumptions 
of Example 2, we can use theAprevious results to examine the 
properties of the estimate E for the case where nominal 
models are finite impulse response models, FIR(p) ,  and 
where the input sequence is deterministic and has the follow- 
ing orthogonality property: 

1 
- N ( \ k T \ k )  = U,'Z (72) 

where U,' is the input power. In this case we have 

... 

Without loss of generality, we have taken L = N. In line 
with the requirement that R be orthogonal to @, we let R be 
the last N - p columns of 9 

... U1 - p -  1 ":"I. (74) 
U 0  

. . .  
' N - p -  I 

By (72), RT@ = 0. The new data vector W ,  defined by (54) 
or ( 5 3 ,  is now 

W =  R T q q  + RTV 

= [0 N u : Z ~ - ~ ]  17 + RT V .  (75) 

Notice that W E R ~ - ~  depends only on q p + l , * * * , q N ,  i.e., 
that part of the infinite impulse response that is included in 
the nominal model is eliminated from the W data. For this 
simple undermodeling case, Lemma A.4 uses the result in 
Example 2 to give the following. 

An unbiased estimate 5,' of q,? is asymptotically decou- 
pled from unbiased estimates (11 of CY and X of X. 

These equations are significant since they show that the 
variance of the estimates decays with increasing data length 
and therefore we can expect the estimates to converge quickly 
to their true values. 

These asymptotic properties of the maximum likelihood 
estimation of 5 were examined via Monte-Carlo simulation. 
In this case, 800 trials were conducted. In each trial, the true 
impulse response sequences { v k  ] were randomly generated 
with distribution 

qk - N ( 0 ,  O . g k ) .  

These random impulse responses were then convolved with 
1000 samples of a zero mean, unit variance, Gaussian dis- 
tributed white noise sequence { u k }  . Finally, these convolved 
signals were corrupted by white noise sequences { Uk) dis- 
tributed as 

U,,, - N(O,50). 

The model for the data generation was, therefore, 

where L = 30 was used. Following the previous result show- 
ing that the estimation of U,' is asymptotically decoupled 
from the estimates of CY and X for each trial, we estimated 3: 
by fitting an FIR (30) model to the data and computing 3: as 
( l / N  - 30)( Y - * 7 j ) (  Y - \kc), where q is the least-squares 
estimate of the FIR(30) model. The parameters CY and X 
were then estimated from the full data vector Y = \kq + V 
using (59). The results for all 800 trials are shown in Fig. 1. 
The sample means, sample standard deviations, and the 
theoretical Cram&-Rao lower bounds from M; '(800) cal- 
culated using the result in Example 2 are given in Table I. As 
can be seen, the sample standard deviations are approaching 
the CramCr-Rao lower bounds, indicating that the estimator 
proposed in this paper is in practice an efficient estimator for 
the characteristics of the undermodeling. 

V. ERROR BOUNDING SIMULATIONS 
A simulation study was conducted to examine the use of 

the stochastic embedding paradigm in quantifying the estima- 

II 1 
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Fig. 1. Monte-Carlo testing of estimates of a, A, and U ' .  

TABLE I 
SAMPLE MEANS AND STANDARD DEVIATIONS FROM MONTE-CARLO 

SIMULATION COMPARED TO CRAMER-RAO LDWER BOUNDS 

True Sample Means Sample S.D.'s C.R. 
Values of Estimates of Estimates Bounds 

~ 

CY 1 .o 1.14 0.83 0.62 
h 0.9 0.83 0.064 0.046 

a* 50.0 50.02 2.38 1.68 

tion errors when rational, fixed denominator models were 
fitted to the data. In this case, the following continuous-time 
system, sampled with period 1 s, was simulated: 

1 
G ( s )  = 

(10s + l)(s + 1) 

The test input sequence {uk} was a 0.02 Hz fundamental 
square wave. The output of this system was corrupted with a 
noise sequence { v k }  distributed as v k  - J(0 ,0 .005) .  One 
hundred and fifty samples of data were collected. The first 
one hundred were used to get rid of initial condition effects in 
the simulated plant and regressor filters, and the last fifty 
were used for least-squares model fitting. A second-order 
model of the form 

i u k  e,$ - ( 2  + 0 q - l )  

( 1  + Eq-1)2 
+ 0 , q - I  

y k  = ( ( 1  + E q P )  

was fitted to the data using least squares. Here E = -0.8 
was chosen (between the true-system poles). Note that the 
unusual regressors are motivated by Laguerre polynomials 
[ 191. The resulting least-squares estimates were 

e, = -0.0715. e^, = 0.1245 

The response of the estimated model G ( q - ' ,  e ^ N )  to the 
observed input is shown dashed against the noise corrupted 
true response in the upper left of Fig. 2. The true (full line) 
and estimated (dashed line) frequency responses are shown in 
the upper right corner of Fig. 2. 

Next, the parameters of the distributions of the measure- 
ment noise and undermodeling were estimated from the data. 
The stochastic embedding chosen for the undermodeling and 

-0.5 0 0.5 1 

Enplmcy (rdd 
Fig. 2. Results of fitting a second-order, rational Laguerre model to the 

data. No time delay in system. 

noise was that given in Example 2. That is 

v k  - J ( O ,  ay') 

7 - Jt/(o,c,) 
C,, = diag { ahk} 

l S k S L  

dim (q} = L = 40 was chosen for the FIR 
cause of the Gaussian assumptions for the 
and the Gaussian distribution for the measurement noise, the 
log likelihood function for the observed data is as given in 
(59). This was maximized to find the estimates 

ci = 0.187 = 0.4064 8: = 0.0052 

Substituting these estimates in (80) and (82) then gives 
estimates of C, and C, = u;I, These were then used to 
derive error bounds for the frequency response estimation 
error. Error bounds on magnitude estimation were calculated 
via (41) of Theorem 1, replacing C, and C, by their 
estimates and are shown in the lower left of Fig. 2. Uncer- 
tainty ellipsoids in the complex plane were calculated simi- 
larly via Theorem 1 and (51) and are shown superimposed on 
the true and estimated Nyquist diagrams in the lower right of 
Fig. 2. The uncertainty ellipsoids are one standard deviation 
ellipses; that is, the locus of points satisfying 

As can be seen, the error bounds give a very good indication 
of the true modeling errors in the frequency domain. Note in 
particular from the lower left diagram in Fig. 2 that the 
estimated error in the estimation of the system magnitude 
response is small at the fundamental frequency (0.02 x 27r 
rad/s) of the input signal square wave and at the odd 
harmonics. This concurs with the analysis of [28]. 

An experiment in which the undermodeling was more 
severe was conducted. In this case, the setup was the same as 
for the results shown in Fig. 2, but a time delay of 2 s was 

II I 
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Fig. 3 .  Results of fitting a second-order, rational Laguerre model to the 

data. Time delay of 2 seconds in system. 

also added to the plant. The estimates were 

e^, = 0.0653 ê , = -0.1013 

I-5 = 0.217 i = 0.488 6: = 0.0061. 

The results are displayed in Fig. 3. Note that once again the 
error bounds are highly informative. 

Finally, although the theory developed in this paper does 
not pertain to ARMAX modeling, an ARMAX simulation to 
test the robustness of the maximum likelihood estimator to 
the assumptions was conducted. A first-order ARMAX model 
was fitted to the system with no time delay and measurement 
noise variance reduced to U,' = 0.001. The resulting esti- 
mated model was 

1.1347q-' 

G(6) = 12.049 - 11.049q-' ' (84) 

The estimates for the parameterization of the undermodeling 
using the same stochastic embedding as in the previous 
simulations were 

I-5 = 0.0251 i = 0.8017 6: = 0.0015. 

Note that for the ARMAX case G(e-j", 0)  is not linear in 0 .  
However, we can form an approximately linear expression 
by using Taylor's Theorem. Specifically, we note that CA is 
parameterized by the impulse response vector 7 .  Therefore 
GT(e-j") is parameterized not only by 0 for the nominal 
model component but also by 7 or the undermodeling compo- 
nent to give 

GT(e - jw)  = G(e-jw,O0) + II(e-j")q ( 8 5 )  

Hence, in Theorem 1 we have 

with po and in defined in (48) and (49) and with 

Substituting F(e-j") for I'(e-'") in Theorem 1 allows it to 
hold approximately due to the approximate linearization in 
(86). Hence, for the ARMAX case, approximate bounds may 
be derived and are given in Fig. 4 to illustrate that the 
method may be successfully applied to the ARMAX model- 
ing case even though the case does not fit the assumptions. 
The theoretical basis for the ARMAX modeling case is 
treated in [9]. 

VI. MODEL STRUCTURE SELECTION 

In this section, we show how the quantified error bounds in 
the form of_the ensemble mean square error 8{ 1 G,(e-J") 
- G(e-j", 0,) 1 '} of the transfer function estimate can be 
used for the selection of an optimal model structure for the 
nominal model. A variety of possible model structure selec- 
tion criteria will be examined, all of them functions of this 
ensemble mean square error. In particular, if the family of 
candidate nominal models is a sequence of models of increas- 
ing order, then this yields an optimal model order selection 
criterion. We shall theoretically, and in simulation compare 
this criterion to Akaike's final prediction error (FPE) crite- 
rion. 

Consider first that an optimal model is to be selected 
among a finite family of r candidate nominal models, all of 
them linear in the parameters. Denote the model structures 
A,(0,);.., A,(0,). Note that O I , O 2 ; . . , 0 ,  may or may 
not have different dimensions. For each model structure 
Ji(Oi), one can estimate di  by least squares. With the 
assumed prior distribution for CA( q-  ') and for { vk} , we can 
then compute, for each estimated nominal model, the corre- 
sponding maximum likelihood estimates of p and y. We 
shall_denote by pi and +i the estimates corresponding to 
Ji(Oi), and by V , ( w )  the cstimate of the mean square error 
&{ 1 G,(e-'") - G(e-j", 0,) l A 2 }  in (41) in which C (0) 
and C,(y) are replaced by C,( pi) and C,( 6:) = 6:) = U, I .  

To select among the r candidate models, we shall now 
consider any one of the following three criteria: 

z 2  

J; = sup c ( w ) ,  i = I , . . .  , r  (89) 
i 

J ? =  -Ir 1 A 

V , ( o ) S , ( w )  dw, i = l ; . . ,  r .  (91) 

Here SJw) denotes the power spectral density of a possibly 
new input sequence to which the model will be applied. The 
three criteria obviously cover three different applications in 
which the model may be used. Other criteria can easily be 
formulated. Depending on the application, the optimal struc- 

27r --?r 

II 1 
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Fig. 4. Results of fitting a first-order ARMAX model to the data. No time 
delay in system. 

ture will be obtained as Ai. where 

i* = argmin 1: k = 1 ,  2,  or 3 .  (92) 

In the rest of this section, we shall restrict discussion to one 
of the criterion (89) to (91). Namely, a modification of (91) 
that we call the generalized information criterion (GIC). In 
the presentation of GIC we shall also restrict ourselves to the 
case where { v k }  is a white noise sequence of variance a,,? 
and the model structures J Z k  correspond to the choice of 
fixed denominator models so that their indexing k can be 
taken to be the dimension p of the vector 8 parameterizing 
them. In this case, GIC is defined as 

... i = l ,  , r  

GIC ( p )  6: + - V p ( w ) S u ( w )  dw (93) 
271. r:- - 

where we take (see Theorem 1 )  

Pa( w )  = tr { P ~ }  (94) 

+ AQC,(~ , ,?)Q~A*.  (95) 

= (n - A Q Q ) c , ( ~ , ) ( ~  - AQ*)* 

It is important to observe that in our definition of GIC ( p ) ,  
6: is obtained independently of the nominal model under 
consideration (see below), while 0, is the maximum likeli- 
hood estimate of 0 for the model with p parameters, hence 
the index p .  By adding an input power into the criterion J 2  
and an additional component S,,?, we have converted a fre- 
quency averaged mean square error criterion on the transfer 
function estimate J 2  into a mean square output prediction 
error criterion for a new set of data with the same inputs but 
a new noise realization. 

Lemma 6. I :  An alternative frequency domain expression 
for GIC ( p )  is 

1" P 
N 2n -" 

GIC ( p )  = 6; + -6; + - (n - AQ*)c,(&) 

(n - RQ*)*S,( U )  do. (96) 

Proof: Substituting (95) in (93) we obtain by 
C,(6,,?) = 

1 "  
GIC ( p )  = 6,,? + - 

271. 

*[(I1 - AQ*)C,(b , ) (n  - AQ*)* 

+6: Trace ( (+T+)-lA*A}]Su(w) do. 

using 

(97) 

Furthermore, by Parseval's Theorem 
1 "  1 1 

(A*A)S,(w) dw = lim - (aT@) = - ( a T @ )  z J_, N+W N N 

for large N .  (98) 
000 

The three terms in (96) are, respectively, an estimate of 
the effect on the prediction error of the variance of the new 
noise realization, an estimate of the effect on the prediction 
error of the parameter errors due to noise in the identification 
data, and an estimate of the effect on the prediction error of 
the undermodeling. Akaike considers a similar criterion in 
his final prediction error (FPE) and Akaike information 
criterion (AIC) tests for model order selection [17]. In these 
criteria, Akaike seeks a model order that will perform well 
on average for data other than was used for estimation. The 
criteria for performance use a quadratic prediction error one 
for FPE, and a log-likelihood error one for AIC. In both 
cases, however, the Akaike criterion development does not 
explicitly acknowledge the presence of undermodeling and 
only averages over stochastic components in the data assum- 
ing the same inputs to the system. 

In contrast, through the inclusion of the input spectral 
density term S,(o), our GIC criterion can be used to esti- 
mate a cross validation criterion for a different input realiza- 
tion. The spectral density of the desired cross validation input 
is simply included in (96). Furthermore, in our GIC crite- 
rion, the value used for &,,? is obtained independently of the 
particular nominal model under consideration. It could, for 
example, be obtained as the average of the estimates of a,' 
obtained for all different model dimensions. In practice, we 
have found that an accurate estimate of a,,? is obtained as 
( 1 / N  - M ) ( Y  - @8,)T(Y - W,), where 4T8, is a 
high-dimensional regression model, i.e., dim 8, = M with 
M large. On the other hand, Akaike's criterion explicitly 
depends on obtaining a new estimate of a,', denoted 6;, for 
each model dimension using 

Substituting (98) in (97) then gives the result. 

This leads to the FPE criterion 

(100) 
N + P  N - P f i 2  F P E ( ~ )  = - x ~ 

N - p  N 

and the AIC criterion 

II I 
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The estimate (99) would be an unbiased estimate of U," if 
there were no undermodeling. Our rationale for using a 
high-dimensional model for the estimation of U,' is to ensure 
that undermodeling does not affect our estimate. Our crite- 
rion explicitly and, we believe, correctly accounts for under- 
modeling through the third term in (96). Even though, as we 
have just argued, undermodeling does implicitly affect the 
estimate of 6; in Akaike's calculation, this results on aver- 
age in a quantification of the undermodeling which is not 
entirely correct, as we now show. 

Lemma 6.2: Under the stochastic embedding assumptions 
€{ FPE (p)} is given by 

~ { F P E ( ~ ) }  = U," + 
N 

-(II - AQq)C,(n - AQq)*S,(o> dw. (102) 

Proof: We first note that 

Y -  +ep = [ I -  +(07+)-1+T](q7 + V ) .  (103) 

Substituting (103) into (99) and (loo), and taking expected 
value with respect to the noise and undermodeling yields 

N + p  1 
~ { F P E  ( p ) }  = - 

N - P  

Finally then, since SJw) = U,' 

N 1 - i  

Notice that the variance contribution increases linearly with 
p while the bias term decreases with p .  The optimal model 
dimension, for this special case of FIR models, is obtained by 
the following result. 

Result: For FIR(p)  models, with an orthogonal input 
sequence and with G, and { uk} stochastically distributed as 
in Example 2, the optimal model order with respect to 
GIC ( p )  is 

Proof: Differentiating (107) with respect to p yields 

aGIC 6," (Y 

- -  u,'ip+' In i. (109) 
ap -%+(A) 

Setting this to zero yields the desired result. 000 
A rough approximation to the above result is obtained by 

replacing the derivative, (aGIC/ap) ,  by the difference as p 
. . \  is increased by one 

= a ; + -  
P N + P  
N N - p  
-U; + - 

( I  - +(+7+)-1+')T). (105) 

Applying Parseval's Theorem as in (98) then gives the result. 
000 

Comparing the first two terms in (102) and (96) shows that 
the FPE criterion on-average captures the variance effects 
correctly. However, the bias term is incorrectly scaled by a 
factor ( N  + p/N - p). To illustrate the consequence of this 
scaling, we compare GIC to FPE and AIC in a simulation 
example. Further insight into the GIC criterion is obtained by 
considering a special case previously studied in Example 3. 

Example 4 - Example 3 Continued: Consider the prob- 
lem setup in Example 3.  Consider first the criterion J 2 .  We 
have, by the FIR model structure 

D N 
= (e,  - e,12 + C 112 

k =  1 k = p +  1 

Therefore, by the orthogonality of the input sequence 

\""I - vu=, \  . 
ap N 1 - i  N vu 

Hence, we have, approximately 

This value of p *  then is precisely the point where the prior 
expected mean square value (averaged over the population of 
G,) of the pth impulse response element is equal to the 
experimental variance of the pth impulse response estimate 
due to the noise, i.e., where 4{(hp* - h,,)'} = €,{hi*},  
where hk are the impulse response elements of the system. 

w 
Finally, it is interesting to compare our GIC criterion to 

the respected cross validation procedure for model order 
selection [17]. In the latter procedure, one tests the estimated 
model on a new set of data. The GIC criterion obviates the 
need for this second experiment by computing the expected 
performance on new data with either the same spectral 
distribution, or even on data with a different spectral distribu- 
tion if that is desired. 

VII. SIMULATION STUDY OF MODEL ORDER SELECTION 

Simulation examples to study GIC, FPE, and AIC were 
conducted for single realizations of lo00 data with the inputs 
and noise generated from zero mean white Gaussian noise 
sequences with variances U,' = 1 and U,' = 50, respectively. 
The true systems were the unit period sampled versions of 
the following continuous-time systems. 
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System 1: 
1 

7s + 1 
r = 0.1. 

System 2: 
e - A s  

r = 0.1, A = 5 .  
7s + 1 

System 3: 

0, = 0.1, I =  0.1. 0: 

s2 + 2r0,s + U', 

For each of these three systems, and for a particular noise 
realization, a Gaussian prior model was assumed for CA and 
for the noise as in Example 2, and the following calculations 
were made. 

1) A range of nominal FIR (p) models was fitted to the 
data by least squares for p = 1, - e ,  30. Since the inputs are 
uncorrelated, the estimated impulse response coefficients re- ' 
main unchanged when the model order is increased. There- 
fore, a full FIR (30) model was estimated and the lower order 
estimated nominal models obtained from it by truncation. 

2) As explained before, the parameter U,' was estimated 
from-a high-order FIR model, here FIR (30), while estimates 
r i p ,  A, were obtained by maximization of the log likelihood 
function (59) for each nominal model-order p. These esti- 
mates were then used to evaluate the J 2  criterion (90) via 
(106). Note that SJo) is constant here. Note also that with 
N =  lo00 we have 1 /Nqr!P  5: u:1. That is, the input 
sequence is approximately orthogonal. 

3) The integrals of the true squared frequency errors for 
various model orders were calculated for comparison to the 
estimates in 2 using the known G,(e-'"). 

4) Akaike's AIC and FPE model-order determination cri- 
teria were calculated from the data. 
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Fig. 5.  Full-order estimation, Akaike criteria, and true square error and 
estimated mean square errors for system 1 .  

..... 

4.5 ................ ......... 

I 
10 20 30 0 10 2 o m  

L.s Model orda 

................. ................... 4.06 

............... ................ 
................. 

................ 
27 .................... 

3.98 

Typical results for these calculations for the three different 
systems 1, 2, and 3 are shown in ~ i ~ ~ .  5-7. The top left 
quadrants of each figure show the true impulse response 
together with the full 30th-order model found via least 

estimated impulse response is the dashed line. The Akaike 

in the bottom left- and right-hand comers of each figure. As 

inconclusive order determination criteria. 

Model Ordm Model O r d a  

Fig. 6. Full-order estimation, Akaike criteria, and true square error and 
estimated mean square errors for system 2. 

squares. The true impulse response is the solid line, and the 

information criterion and final prediction error tests are shown 

can be seen, considering the vertical axis scales9 they give 

frequency response error L.g Modclorder 

2.5 .; ................ ..*.. ............... ....,.......... ......... 

2 .+ ............ ....... ...&. .............. 
........................................ 

1.5 '.*.. :... .... i. 
o 

................. 
'.. 

0.5 10 20 30 The top right plot shows the integral of the squared -lo 10 20 30 

............. 
.......... ................. 

versus the model order used to obtain G as a solid line, and 3.99 

................... .............. 

10 20 30 
Iu0de.l or& 

26.6 
10 2o 30 
Model Ordm 

Notice that in all cases, the estimate of the value of the 

integral, Furthermore, notice that the integrals (true and 
estimated) give a very clear criterion for the best model order 

3.g0 

Fig. 7 .  Full-order estimation, Akaike criteria, and true square error and 

integral is a very good indication of the true value of the 

estimated mean square errors for system 3 .  
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to fit to the data using least squares. It is evident that for 
finite noisy data, the optimal model order to use for these two 
common applications is not the true model order. Finally, 

that the measurement noise variance has been tripled. Note 
that at this higher noise, the upper right diagram in Fig. 8 
indicates that lower order models should be fitted to the finite 
data samples. This is completely in accordance with the 

GIC ( p ) .  This is because here SJw) = U,' are constant so 

1 ............... .... .................................. 
............... 

Fig. 8 shows the same experiment as shown in Fig. 7, save 
. . .  

. . . .  

L.0 Model a& 
bias-variance tradeoff arguments presented earlier in this 
paper. Note that in the simulations we have not presented 

that 
5.06 ................. .................. ................... 

.............. . . . . . . . . . .  ................. 

.................. ................... GIC ( p )  = Jj x U,' + 6; ............... 
V 

0 
5.al IO 20 30 

Modd ads 

and hence, in these simulations GIC ( p )  is parallel to J i ,  76 
10 2o U) 

Model orda 
which compares directly to (1 12). 

VIII. CONCLUSION 

In most identification applications, the nominal model is at 
best, an approximation to the true system whose structure is 
more complex than that of the parameterized model. This 
induces an error between the true transfer function and the 
estimated nominal model which is usually called unmodeled 
dynamics. One way of treating this error is to estimate it by 
further parameterizing it as in [7], but this amounts to 
replacing the nominal model by a more complex one; it 
amounts to modeling the unmodeled dynamics. In the no 
noise case treated in [7], increasing the model order is not a 
problem if the input spectrum is rich enough. However, in 
the noise corrupted case treated in this paper, increasing the 
model order increases the error in the estimated parameters 
and this may increase the total model error. 

In this paper we have provided bounds on the undermodel- 
ing errors produced by truncating the model order fitted to 
noisy data. We have done this by assuming that the unmod- 
eled dynamics is a realization of a stochastic process de- 
scribed by a parametrized probability density function. With 
this stochastic embedding model for the data production 
mechanism, the transfer function for the unmodeled compo- 
nent is not explicitly represented. Instead, the class of func- 
tions that the unmodeled transfer function is likely to come 
from is represented in the model. The parameterization of 

Fig. 8 .  Full-order estimation, Akaike criterions, and true and estimated 
mean square errors for system 3 with high noise. 

Our expressions for the mean square error have also 
allowed us to develop a new optimal model-order estimation 
criterion, GIC. This criterion, explicitly and, we believe, 
correctly incorporates the effect of undermodeling. It com- 
pares favorably with Akaike's FPE, as is demonstrated by 
both our theoretical analysis and simulations. 

APPENDIX 

Lemma A.1: Consider an invertible square matrix C 
parameterized by a set of scalars { al, * - , an}. The deriva- 
tive of In det (E) with respect to one of the parameterizing 
constants ak can then be written 

a lndet ( C )  
= tr { C-lA}  

where 

Proof: Application of the chain rule gives 

this class can be translated into likely regions in the complex 
plane in which the frequency response of the true system may 
lie. 

a lndet ( E )  

Under the stochastic embedding model, we have shown 
how the parameters of the stochastic distribution may be 
estimated from the data. For the case of Gaussian probability 
density assumptions, simulation shows the resultant error 
bounds to be highly discriminatory and informative. 

Our procedure produces an estimate of the mean square 
error between the true and estimated nominal transfer func- 
tions. This estimate is the sum of two clearly distinguishable 
terms, one due to the undermodeling (which decreases with 
model complexity) and one due to noise in the data (which 
increases with model complexity and decreases with the 
number of data). Our motivation for generating these mean 
square errors has been to link identification with robust 
control. 

(Adj E )  j i  

= 7 j-hji) 
= tr [ E - I A ] .  ( W  

Lemma A.2: Consider an invertible square matrix C pa- 
rameterized by a set of scalars ( a l ;  * * ,  a,}. Then the 
derivative of E- '  with respect to any ak, k E [I, n] is given 
by 
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- 

Proof: estimate of t is found by the Fisher's information matrix 
Mt ( N )  for N data points which is found by Result 2 with the C C - l =  z 

ax ax - '  substitution of 
-E-' + C- = 0 T = diag {N2u:Ak} (117) Therefore: 

1 5 k s N  

Lemma A.3: Consider a random vector E distributed as 

E - N ( 0 ,  C ) .  (AI) 
Then 

as 

M E ( N )  = - 2 k = l  

&{  (€TC-lAC-l€)(€=C-lrC-'€)} 1 N  1 

= tr (C- 'A)  tr ( C - l r )  + 2tr  ( C - ' A C - ' r )  

where A and r are square matrices and &{ e }  denotes 
expectation over the probability space on which E is defined. 

Proof: 

\ 

Now, if we define E N  by 
( € ) k  = € k .  

Furthermore, if (E) j k  = ujk, then since E is distributed as in 
(All 

& { E m E n f k E j }  = amnujk + Ujmunk + ujnamk. then, if jilV is an unbiased estimate of p, the covariance in 
the estimate satisfies the Cram&-Rao lower bound P,, where 
P,, is the inverse of the limit as N + 03 of M,,( N ) ,  Fisher's 
information matrix for p. By the definitions for p and 4 we 

Therefore, 

8 { ( ETC - 1AC- I € )  (€9 - lr C - ' E ) }  

= t r (C- 'A)tr(CF) +2tR(C- 'AC- 'F) .  W s =  
Lemma A.4: For Example 3, an unbiased estimate of [ 

has the following asymptotic properties: 

1 

In N ) 3  
cov (:) = @[r) as N +  00 (115) Now - 

CY 
0 0 

m 
0: 

0 0 - 

and the estimate-;: is asymptotically decoupled from the 
estimates Cr and A. 

Proof: A lower bound on the covariance of an unbiased 

M , , ( N )  = S - ' M t ( N ) S - ' .  

1; ;; 1 1  
pointwise as N + 03. (126) 
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A proof of (126) may be found in [2]. Therefore, for an 
unbiased estimate P N  of p we have 

cov (&$} 2 P, (127) 

where 

4 - 6  0 
P , = 2 [  ;6 y ] .  ( 128) 

ACKNOWLEDGMENT 

The results presented in this paper have been obtained with 
the framework of the Interuniversity Attraction Poles initi- 
ated by the Belgian State, Prime Minister’s Office, Science 
Policy Programming. The Scientific responsibility rests with 
its authors. 

The first two authors would like to thank L. Ljung, H. 
Hjalmarsson, and B. Wahlberg for an inspirational meeting 
in the Swedish countryside that got their minds properly 
focused on questions of bias, variance, undermodeling, and 
other noisy issues. 

[71 

191 

REFERENCES 
R. 0. La Maire, L. Valavani, M. Athans, and G. Stein, “A fre- 
quency domain estimator for use in adaptive control systems,” in 
Proc. ACC,  1987, pp. 238-244. 
B. M. Ninness, “Robust estimation,” Ph.D. dissertation, Univ. 
Newcastle, New South Wales, Australia, 1992. 
B. Younce, “Identification with Nonparametric Uncertainty,” Ph.D. 
dissertation, Univ. Notre Dame, Notre Dame, IN, 1989. 
Donald E. Catlin, Estimation, Control, and the Discrete Kalman 
Filter. New York: Springer-Verlag. 1989. 
E. Fogel, “System identification via membership set constraints with 
energy constrained noise,” IEEE Trans. Automat. Contr., vol. 
AC-24, no. 5 ,  pp. 615-622, 1979. 
E. Fogel and Y. F. Huang. “On the value of information in system 
identification-bounded noise case,” Automatica, vol. 18, pp. 

E. W. Bai, “Adaptive quantification of model uncertainties by ratio- 
nal approximation,” IEEE Trans. Automat. Contr., vol. 36, no. 4, 

G. C. Goodwin, M. Gevers, and D. Q. Mayne, “Bias and variance 
distribution in transfer function estimates,” in Proc. 9th IFAC 
Symp. Identry. Syst. Parameter Estimation, Budapest, July 1991. 
G. C. Goodwin and B. M. Ninness, “Model error quantification for 
robust control based on quasi-bayesian estimation in closed loop, ” in 
Proc. CDC, 1991. 
G. C. Goodwin and R. L. Payne, Dynamic System Identification. 
New York: Academic, 1977. 
G. C. Goodwin and M. Salgado, “Quantification of uncertainty in 
estimation using an embedding principle,” in Proc. of ACC,  Pitts- 
burgh, PA, 1989. 
G. C. Goodwin and M. Salgado, “A stochastic embedding approach 
for quantifying uncertainty in the estimation of restricted complexity 
models,” Int. J .  Adaptive Contr. Signal Processing, vol. 3, no. 4,  

H. Hjalmarsson, “On estimation of model quality in system identifi- 
cation,” Licentiate Thesis LIU-TEK-LIC-1990:51, Linkoping Univ., 
Linkoping, Sweden, 1990. 
R. L. Kosut, “Adaptive control via parameter set estimation,” Int. 
J .  Adaptive Contr. Signal Processing, vol. 2, no. 4, pp. 371 -400, 
1988. 
- , “Adaptive robust control via transfer function uncertainty esti- 
mation,” in Proc. ACC,  Atlanta, GA, 1988. 
R. L. Kosut, M. Lau, and S .  Boyd, “Identification of systems with 
parametric and nonparametric uncertainty,” in Proc. Amer. Contr. 
Conf. ,  1990, pp. 2412-2417. 
L. Ljung, System Identification: Theory for  the User. Englewood 
Cliffs, NJ: Prentice-Hall, 1987. 

229-238, 1982. 

pp. 441-453, 1991. 

pp. 333-356, 1989. 

1181 -, “Asymptotic variance expressions for identified black box trans- 
fer function models,” IEEE Trans. Automat. Contr , vol. AC-31, 
no 2, pp. 134-144, 1986 

[19] P. M. Makila, “Approximation of stable systems by Laguerre filters,” 
Automatica, vol. 26, pp. 333-345, 1990. 

[20] -, “Laguerre series approximation of infinite dimensional 
systems,” Automatica, vol 26, pp 985-995, 1990 

[21] G. C. Goodwin, D. Q. Mayne, and M Salgado, “Uncertainty, 
information and estimation,” presented at the IFAC Symp Adaptive 
Contr. Signal Processing, 1989. 

1221 G. C. Goodwin, B M. Ninness, and M Salgado, “Quantification of 
uncertainty in estimation,” in Proc. Amer Contr. Conf., 1990, 

[23] J. P. Norton, “Identification of parameter bounds of armax models 
from records with bounded noises,” Int J Contr , vol 42, pp. 
375-390, 1987. 

1241 P. J. Parker, “Frequency domain descriptions of linear systems,” 
Ph.D. dissertation Australian National Univ., Canberra, 1988. 

[25] P. J. Parker and R R Bitmead, “Adaptive frequency response 
identification,” in Proc. 26th Conf. Decision Contr., 1987, pp 

M. E. Salgado, ‘‘Issues in robust identification,” Ph D. dissertation, 
Univ. Newcastle, New South Wales, Australia, 1989 
B. Wahlberg, “System identification using laguerre models,” IEEE 
Trans. Automat. Contr., vol. 36, no. 5 ,  1991 
B. Wahlberg and L Ljung, “Design variables for bias distribution in 
transfer function estimation,” IEEE Trans. Automat. Contr., vol. 

B. Wahlberg and L. Ljung, “Hard frequency-domain model error 
bounds from least squares like identification techniques, ” Dep. Elec 
Eng., Linkoping Univ , Linkoping, Sweden, Tech Rep LITH-ISY- 
1144, 1990. 

[30] R. C. Younce and C E. Rohrs, “identification with parameteric and 
nonparametric uncertamty,” in Proc Int Conf. Circ. Syst., 1990. 

[31] C C. Zervos and G A. Dumont, “Deterministic adaptive control 
based on laguerre series representation,” I n f .  J .  Contr , vol. 48, pp. 

M. Gevers, “Connecting identification and robust control: A new 
challenge,” preprint, presented at the IFAC Symp. Indent , Budapest, 
1991 

Graham C. Goodwin (M’74-SM’84-F’86) was 
born in Broken Hill, Australia, in 1945. He re- 
ceived the B.Sc degree in physics, the B.E. degree 
in electrical engineering, and the Ph.D. degree, 
from the University of New South Wales, Aus- 
tralia 

From 1970 until 1974 he was a lecturer in the 
Department of Computing and Control, Imperial 
College, London. Since 1974 he has been with the 
Department of Electrical Engineering and Com- 
puter Science, University of Newcastle, Australia. 

Dr. Goodwin is a Fellow of the Australian Academy of Technology, 
Science and Engineering. He is the recipient of several international prizes 
including a Best Paper Award by IEEE TRANSACTIONS ON AUTOMATIC 
CONTROL, and Best Engineering Textbook Award from the International 
Federation of Automatic Control. He is the coauthor of four books: Control 
Theory (Oliver and Boyd, 1970), Dynamic System Identijfcation (New 
York. Academc, 1977), Adaptive Filtering. Prediction and Control 
(Englewood Cliffs, NJ. Prentice-Hall, 1984), and Digital Control and 
Estimation (Englewood Cliffs, NJ: Prentice-Hdll, 1989). He is currently 
Professor of Electrical Engineering and Director of the Centre for Industrial 
Control Science at the University of Newcastle, New South Wales, Aus- 
tralia. 

pp. 2400-2405. 

348-353. 
[26] 

[27] 

[28] 

AC-31, pp. 134-144, 1986. 
[29] 

2333-2359, 1988. 
[32] 

Michel Gevers (S’66-S’70-M’72-SM’86-F’90) 
was born in Antwerp, Belgium, in 1945. He re- 
ceived the electrical engineering degree from Lou- 
vain University, Louvain-la-Neuve, Belgium, in 
1968, and the Ph.D. degree from Stanford Univer- 
sity, Stanford, CA, in 1972 

He is currently a Professor and Head of the 
Laboratoire d’ Automatique, Dynamique et Analyse 
des Systkmes at Louvain University, Louvain-la- 
Neuve, Belgium. He has spent long-term visits in 
several universities, including the University of 

Newcastle, New South Wales, Australia, the Technical University of Vi- 

II 1 



928 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 31, NO. I, JULY 1992 

enna, and a three-year term at the Australian National University. His 
research interests are in system identification, adaptive estimation and con- 
trol, multivariable system theory, optimal control and filtering, and the 
numerical aspects of filter and controller design. He is a coauthor with R. R. 
Bitmead and V. Wertz of Adaptive Optimal Control-The Thinking 
Man’s GPC (Englewood Cliffs, NJ: Prentice-Hall, 1990) and with G. Li of 
Parametrizations in Control, Estimation and Filtering Problems: Accu- 
racy Aspects (Communication and Control Engineering Series) (New York: 
Springer-Verlag, 1992). 

Prof. Gevers has been the Associate Editor of Automatica and the IEEE 
TRANSACTIONS ON AUTOMATIC CONTROL, and is presently the Associate 
Editor of Mathematics of Control, Signals, and Systems. 

Brett Ninness was born in Singleton, Australia, in 
1963 He completed the B.E. degree in 1986, the 
M.E. degree in 1990, and is currently pursuing the 
Ph.D. degree all in electrical engineering at the 
University of Newcastle, New South Wales, Aus- 
tralia. In the time between the B.E. and M E. 
degrees he studied medicine for a short time and 
completed the B.Math course while pursuing the 
M.E and Ph.D degrees. 

His research interests are adaptive control and 
signal processing and he is particularly interested 

in their application to the field of medicine 


