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Using H2 norm to bound H∞ norm from above on Real Rational Modules
Tzvetan Ivanov, Brian D.O. Anderson, P.-A. Absil, Michel Gevers

Abstract— Various optimal control strategies exist in the
literature. Prominent approaches are Robust Control and
Linear Quadratic Regulators, the first one being related to the
H∞ norm of a system, the second one to the H2 norm. In 1994,
F. De Bruyne et al [1] showed that assuming knowledge of
the poles of a transfer function one can derive upper bounds
on the H∞ norm as a constant multiple of its H2 norm. We
strengthen these results by providing tight upper bounds also
for the case where the transfer functions are restricted to
those having a real valued impulse response. Moreover the
results are extended by studying spaces consisting of transfer
functions with a common denominator polynomial. These
spaces, called rational modules, have the feature that their
analytic properties, captured in the integral kernel reproducing
them, are accessible by means of purely algebraic techniques.

Keywords: Robust Control, LQR, H2 norm, H∞ norm, Tight
Bound, Rational Module, Christoffel-Darboux, Reproducing Kernel

I. INTRODUCTION

It is well known that norms induced by inner products,
such as the H2 norm, are important because they lend them-
selves to computations and geometric interpretations. How-
ever in many applications, e.g., robust control, one is more
interested in other norms like the supremum or H∞ norm.
Thus, linking these two norms can lead to valuable insights
for these applications. This problem has been first addressed
in the engineering context in [1] where one derived results
such as

|M(s)|2 ≤ κ(s) · ‖M‖2
2, κ(s) =

n∑
i=1

2 · Re ai

|s + ai|2
, (1)

where M is the strictly proper transfer function of a stable
continuous-time system (s =  ω, 2 = −1) of the form

M(s) =
b1

s + a1
+ · · ·+ bn

s + an
, (2)

where the bi’s are arbitrary complex numbers and the ai’s
with Re(ai) > 0 are distinct pole locations in the left half
plane. Analogous results have been derived in the discrete-
time setting with M(z) and z = eω. Moreover ‖ · ‖2

∞ ≤
‖κ‖∞‖ · ‖2

2, with κ defined in (1), has been recognized
as the tight bound, i.e., the best upper bound which holds
for all functions satisfying (2). However in [1] it has been
noted that the bound has its limitations as it is no longer
necessarily tight in the real rational case, i.e., if one restricts
the coefficients of the linear combination (2), i.e., the bi’s,
to be such that M(s) is a transfer function of a system
with real-valued impulse response. Complex coefficients then
correspond to complex poles and, like the poles, come in
complex conjugate pairs.

This paper provides a tight bound ρ(ω0)‖M‖2
2, for the

value of |M(ω0)|2 for any fixed frequency ω0, as well as a
tight bound ‖ρ‖∞‖M‖2

2 for ‖M‖2
∞, in the real rational case.

In the continuous-time case it is given by

ρ(s) =
k(s, s)

2
+
|k(s,−s)|

2
, (3)

where k(s, w) is the integral kernel reproducing the space
of functions defined by (2). We provide an analogous result
for discrete-time with s replaced by z and −s replaced by
z−1. From this point of view the older bound κ for complex
rational functions is given by κ(s) = k(s, s).

The link to reproducing kernels is of interest because these
objects have been studied extensively in the mathematical
literature, see e.g., [2] for an overview. Specifically for the
space of all strictly proper rational functions with common
denominator q, which we refer to as a rational module
and denote it by Xq, the reproducing kernel (RK) takes a
particularly simple form since Xq is a coinvariant subspace
of H2, see e.g. [3], [4]. With this background, the bounds κ
and ρ defined in (1) and (3), respectively, can be expressed
in terms of the coefficients of the constant denominator term
q given by, e.g., q(s) =

∏n
i=1(s + ai) for the space defined

by (2), via

κ(s) =
q(s)′

q(s)
− q(−s)′

q(−s)
, (4a)

ρ(s) =
∣∣∣∣ q(−s)2

s · q(s)2
− 1

s

∣∣∣∣ +
κ(s)
2

(4b)

with similar results for discrete-time. The ideas derived with
this machinery generalize seamlessly to the case of Cn or
Cn×m instead of C-valued functions. In the context of norm
bounds a special vector-valued case has been studied in [5].

The paper is structured as follows. In Section II we
study the bound for general linear subspaces over the reals
whose elements are complex valued functions. In Section III
we turn to real rational complex valued functions whose
domain is the imaginary axis for continuous-time systems
and the unit circle for discrete-time systems. In Section IV
we specialize to real rational modules. We give conditions
for the complex and real bound to coincide in Section V, and
several examples illustrating this in Section VI. After some
remarks on the general vector-valued case in Section VII, we
conclude in Section VIII.

II. REAL LINEAR SUBSPACES OF C-VALUED FUNCTIONS

Let Ω denote an abstract set such as, e.g., the unit circle or
the imaginary axis in the complex plane. Consider a finitely
generated linear space X over the reals consisting of bounded
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complex valued functions f : Ω → C equipped with an inner
product (·, ·) which is R-linear in both arguments.

In the following we will embed the linear space X over R
in the smallest linear space X over C containing it. Assume
that X ∩ X = {0} and let

X = cX, where cX = X + X (5)

denotes the complexification of X. Any f ∈ X then has a
unique representation as f = f1 + f with f1, f ∈ X.

The evaluation of f at w ∈ Ω, i.e., the map evw given by
X → C, f 7→ evw(f) = f(w), is then a linear functional
which makes it easy to study as opposed to the evaluation
restricted to X. In order to represent this linear functional
by an element in X we introduce a complex valued inner
product 〈·, ·〉 on X via

〈f, g〉 = (f, g) + (f,−g), (6)

where we have extended the real valued (·, ·) to X by

(f, g) = (f1, g1) + (f, g), (7)

for all f, g ∈ X.
On X there exist now two natural norms 2-norm ‖ · ‖2

induced by 〈·, ·〉 and the supremum norm ‖ · ‖∞ defined by

‖f‖∞ = sup{|f(w)| |w ∈ Ω}. (8)

In order to link these two norms on X we need the notion
of a reproducing kernel k for X. For this let {bi}n

i=1 denote
an orthonormal basis (ONB) of X w.r.t. the complex inner
product 〈·, ·〉 and define k : Ω× Ω → C via

k(z, w) =
n∑

i=1

bi(z)b∗i (w). (9)

Let kw(z) = k(z, w), and think of kw ∈ X as a function
of z, then by the Riesz-Representation theorem for Hilbert
spaces k is uniquely determined by its properties 1) kw ∈ X
and 2) f(w) = 〈f, kw〉 which hold for all f ∈ X and w ∈ Ω.
In other words k is independent of the particular choice of
ONB [2]. Note that k(w, z) = k(z, w)∗.

The statement of Theorem 1 is the abstract version of
concrete inequalities such as (1) found in [1].

Theorem 1 Let κ(w) = k(w,w). For all w ∈ Ω, f ∈ X,
there holds |f(w)|2 ≤ κ(w)‖f‖2

2 and this bound is tight. In
particular

‖ · ‖2
∞ ≤ ‖κ‖∞ · ‖ · ‖2

2, (10)

is a tight bound on X.

Proof: The Cauchy-Bunyakovsky-Schwarz inequality

|f(w)|2 ≤ ‖kw‖2
2 ‖f‖2

2, (11)

is tight since it becomes an equality for f = kw ∈ X.
Utilizing 〈kw, kw〉 = k(w,w) we obtain

‖f‖2
∞ ≤ ‖κ‖∞ ‖f‖2

2, (12)

which is obviously tight on X because (11) was tight.

The inequality (11) fails to be tight on X ⊆ X since kw

being an element in X does not suffice for kw ∈ X. Actually

it is easy to check that kw = kw,1 + kw, with kw, 6= 0 in
general. We expand kw into kw,1 + kw, and note that

|f(w)|2 = | 〈f, kw〉 |2

= |(f, kw) + (f,−kw)|2

= (f, kw,1)2 + (f, kw,)2,

(13)

where the last equality holds if and only if f ∈ X.
We maximize (13) over the unit ball in X to obtain a new

tight bound on X given by ρ(w) as defined in Theorem 2
which is the abstract version of our main result presented as
Theorem 9 below.

Theorem 2 Let kw = kw,1 + kw, with kw,1, kw, ∈ X for
all w ∈ Ω. Moreover define

ρ(w) =
k(w,w)+|‖kw,1‖22−‖kw,‖22− 2(kw,1,kw,)|

2 . (14)

Then for all w ∈ Ω, f ∈ X there holds |f(w)|2 ≤ ρ(w)‖f‖2
2

and this bound is tight. In particular

‖ · ‖2
∞ ≤ ‖ρ‖∞ · ‖ · ‖2

2, (15)

is a tight bound on X.

Proof: Let G ∈ R2×2 be the Gramian defined via

G =
[
(kw,1, kw,1) (kw,1, kw,)
(kw,, kw,1) (kw,, kw,)

]
.

The maximum eigenvalue of G is given by ρ(w) which
follows by a simple calculation. So it remains to check

λmax(G) = sup
f∈X

{(f, kw,1)2 + (f, kw,)2 | ‖f‖2
2 = 1} =: σ.

Supremizing over X and supremizing over Xw yields to the
same value σ where Xw denotes the 2-dimensional subspace
generated by kw,1, kw, ∈ X. Let

xT = [(f, kw,1), (f, kw,)] ∈ R1×2 with f ∈ Xw,

denote the coordinates of f in the {kw,1, kw,} basis. Then

σ = sup{xTx |x ∈ R2, xTG−1x = 1}
= sup{yTGy | y ∈ R2, yTy = 1} = λmax(G).

The second part of the theorem, i.e., (15), follows by
supremizing |f(w)|2 ≤ ρ(w)‖f‖2

2 over w ∈ Ω.

Remark 3 The proof of Theorem 2 together with

λ1(G) + λ2(G) = ‖kw,1‖2
2 + ‖kw,‖2

2 = 〈kw, kw〉 , (16)

and λmax > (λ1 + λ2)/2 reveals that

κ(w)/2 ≤ ρ(w) ≤ κ(w). (17)

In other words the bound in the real case is at most two
times smaller than the bound for the complexification.
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III. REAL RATIONAL TRANSFER FUNCTIONS OF LINEAR
TIME INVARIANT SYSTEMS

In this section we first introduce the real rational subspace
RL2

• of L2
• denoted by RL2

d for discrete-time and RL2
c

for continuous-time. Since every single-input single-output
linear time invariant (LTI) system admits an input-output
decomposition, its controllable part is represented by its
transfer function which is a real rational function [6]. In
the following we establish the fact that the second summand
in (14) is given by the absolute value of k(w,w−1)/2 for
discrete-time and k(w,−w)/2 for continuous-time: see (21)
and (24) below.

A. Discrete Time
Let L2

d = L2(D, C) be the space of all complex valued
functions on the unit circle D = {z ∈ C | |z| = 1} with

‖f‖2
2 =

1
2π

∫ π

−π

|f (eω)|2 dω < ∞. (18)

The starting point for an algebraic theory is the real rational
subspace and its complexificaton RL2

d ⊆ cRL2
d ⊆ L2

d

RL2
d = {f ∈ R(z) | f has no pole in D } (19a)

cRL2
d = {f ∈ C(z) | f has no pole in D }, (19b)

The following fact is elementary; so we skip its proof.

Lemma 4 Let f ∈ cRL2
d and

f1(z) =
f(z) + f∗(z−1)

2
, f(z) =

f(z)− f∗(z−1)
2

, (20)

then f = f1 + f with f1, f ∈ RL2
d. In particular the

following three statements are equivalent: 1) f ∈ RL2
d ,

2) f∗ ∈ RL2
d and 3) f∗(z−1) = f(z).

Theorem 5 Let k : D× D → C be the kernel which repro-
duces the complexification of a finitely generated subspace
X ⊆ RL2

d. Then

k(w,w−1)/2 = ‖kw,1‖2
2 − ‖kw,‖2

2 −  2(kw,1, kw,) (21)

and k(z, w) possesses the properties:
1) k(z, w) = k(w−1, z−1),
2) k(w,w) = k(w−1, w−1),
3) |k(w,w−1)| ≤ k(w,w),

with equality in 3) if and only if kw = kw−1 .

Proof: Let {bi}n
i=1 denote a basis of X. Then, due to

the equivalence of 2) and 3) in Lemma 4, we have b∗i ∈ RL2
d.

This implies, again by Lemma 4, that

k(w−1, z−1) =
∑

bi(w−1) b∗i (z
−1)

=
∑

b∗i (z
−1) b∗∗i (w−1)

=
∑

bi(z) b∗i (w) = k(z, w),

which proves 1) and 2).

From the Cauchy-Bunyakovsky-Schwarz inequality we
have that |k(w,w−1)|2 is bounded from above by

| 〈kw−1 , kw〉 |2 ≤ 〈kw−1 , kw−1〉 〈kw, kw〉
= k(w−1, w−1)k(w,w) = k(w,w)2,

with equality if and only if kw = kw−1 . Thus we have
checked 3).

Let u = kw,1 and v = kw, then kw−1 = u− v since

2 (kw−1,1)(z) = k(z, w−1) + k∗(z−1, w−1)

= k∗(w−1, z) + k(w−1, z−1)

= k∗(z−1, w) + k(z, w) = 2 u(z),

and similarly kw−1, = −v. From this it follows that

k(w,w−1) = 〈u− v, u + v〉
= (u, u)− (v, v)− (v, u)− (u, v)

= ‖u‖2
2 − ‖v‖2

2 −  2(u, v).

which proves (21).

B. Continuous Time

Let L2
c = L2(R, C) be the space of all complex valued

functions on the imaginary axis with

‖f‖2
2 =

1
2π

∫ ∞

−∞
|f (ω)|2 dω < ∞. (22)

We define the real rational subspace RL2
c and its complexi-

ficaton cRL2
c ⊆ L2

c :

RL2
c = {f ∈ R(z) | f s.p., no pole in R } (23a)

cRL2
c = {f ∈ C(z) | f s.p., no pole in R }, (23b)

with s.p. meaning strictly proper.
Theorem 6 is the continuous-time version of Theorem 5.

The proof is completely analogous and therefore skipped.

Theorem 6 Let k : R×R → C be the kernel which repro-
duces the complexification of a finitely generated subspace
X ⊆ RL2

c . Then

k(w,−w)/2 = ‖kw,1‖2
2 − ‖kw,‖2

2 −  2(kw,1, kw,) (24)

and k(s, w) possesses the properties:
1) k(s, w) = k(−w,−s),
2) k(w,w) = k(−w,−w),
3) |k(w,−w)| ≤ k(w,w),

with equality in 3) if and only if kw = k−w.

So we have established the fact that ρ, defined in (14), is
given by ρ(z) = k(z, z)/2+ |k(z, z−1)|/2 discrete-time and
ρ(s) = k(s, s)/2 + |k(s,−s)|/2 for continous-time.

IV. THE CHRISTOFFEL-DARBOUX KERNEL OF A REAL
RATIONAL MODULE

In this section we specialize the subspace X ⊆ RL2
• to

be a real rational module. This will allow us to compute
the reproducing kernel of its complexification and thus turn
the previously derived abstract formulas into concrete closed
form expressions. In the following we treat the continuous
and discrete-time case in parallel in order to emphasize
that they possess the same structural properties. We call a
polynomial q ∈ R[s] c-stable (resp. q ∈ R[z] d-stable) if
q(a) = 0 implies Re a < 0 (resp. |a| < 1). We define the
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real rational Hardy spaces as subspaces of RL2
c and RL2

d

respectively

RH2
c = {f | f = p/q strictly proper, q is c-stable}, (25a)

RH2
d = {f | f = p/q strictly proper, q is d-stable}. (25b)

For q ∈ R[x] define its polynomial module Xq = {p ∈
R[x], deg(p) < deg(q)} and its rational module

Xq =
{

p

q
∈ R(x) : p ∈ Xq

}
, (26)

together with the corresponding complexifications Xq =
Xq+Xq, Xq = Xq+Xq. Then Xq ⊆ RH2

c and Xq ⊆ RH2
d

if q ∈ R[s] is c-stable and q ∈ R[z] is d-stable, respectively.
Then Beurling’s theorem on invariant subspaces (cf. [3], [4])
states that Xq is coinvariant, i.e.,

cRH2
c 	Xq =

q?

q
cRH2

c , cRH2
d 	Xq =

q?

q
cRH2

d , (27)

respectively, where the para-adjoint q? is given by

q?(s) = q(−s), and q?(z) = znq(z−1), (28)

if q is c-stable and d-stable, respectively, and n = deg(q).
The importance of (27) is the corollary

Xpq 	Xq =
q?

q
Xp, (29)

whenever p, q are two c-stable or d-stable polynomials
(cf. Corollary 5 in [7]). It is (29) that enables us to derive an
explicit form for the reproducing kernel of Xq in discrete-
time in Theorem 7 and continuous-time in Theorem 8. Due
to the recursive structure of their computation these kernels
are called Christoffel-Darboux kernels [8].

Theorem 7 Let q =
∏n

i=1(z − ai) ∈ R[z], d-stable, and
k : D× D → C be defined via

k(z, w) =
1

q(z)q?(w)
· q?(z)q(w)− q(z)q?(w)

1− zw̄
, (30)

for z 6= w and

k(z, z) = z

(
q′(z)
q(z)

− q?′(z)
q?(z)

)
=

n∑
i=1

1− |ai|2

|z − ai|2
, (31)

for z = w. Then k is the reproducing kernel of Xq.

Proof: Let q = q3 with q3 = q1 · q2 and q1, q2 ∈ R[z].
Moreover let

mi(z, w) =
q?
i (z)

qi(z)
q?
i (w)

qi(w)
,

for i = 1, 2, 3. Let ki be the reproducing kernel of Xqi . Then

k3(z, w) =
m1(z, w)− 1

1− zw̄
+

m3(z, w)−m1(z, w)
1− zw̄

=
m3(z, w)− 1

1− zw̄
=

q?(z)q(w)
q(z)q?(w) −

q(z)q?(w)
q(z)q?(w)

1− zw̄

by induction hypotheses. Here we used the facts that
k3(z, w) = k1(z, w) + m1(z, w)k2(z, w), due to (29). More
precisely: due to the orthogonal decomposition (29) k3 is the
sum of k1 and the RK, say k̃2, of n1Xq2 with n1 = q?

1/q1.

Since n1 is all-pass, i.e., n∗1n1 = 1, it follows by (9) that
k̃2(z, w) = n1(z)k2(z, w)n∗1(w) which equals m1k2.

It is easy to check that (30) holds for q = (z−a1). Thus, by
induction, we have proven (30). The diagonal readily follows
from the fact that k(z, w) is continuous; apply l’Hospital’s
rule to calculate k(w,w) via limz→w k(z, w).

Theorem 8 Let q =
∏n

i=1(s − ai) ∈ R[s], c-stable, and
k : R× R → C be defined via

k(s, w) =
1

q(s)q?(s)
· q?(s)q(w)− q(s)q?(w)

w − s
, (32)

for s 6= w and

k(s, s) =
q′(s)
q(s)

− q?′(s)
q?(s)

= −
n∑

i=1

2 Re ai

|s− ai|2
, (33)

for s = w. Then k is the reproducing kernel of Xq.

Proof: We obtain (32) by the same reasoning as we
obtained (30) in the proof of Theorem 7. Since k(s, w) is
continuous we can calculate k(w,w) via lims→w k(s, w) and
l’Hospital’s rule, i.e., k(w,w) equals

−q?′(w)
q?(w)

+
q′(w)
q(w)

=
∑ −1

−w − āi
+

1
w − ai

=
∑ w − ai − w − āi

(−w − āi)(w − ai)
,

which, replacing w in k(w,w) by s, concludes the proof.
We summarize the results in Theorem 9, which is Theo-

rem 2 specialized to rational modules, using Theorem 6, 8
for continuous-time and Theorem 5, 7 for discrete-time.1

Theorem 9 If X = X + X and X = Xq (equipped with
L2

c norm) for some c-stable q ∈ R[s], q =
∏

(s − ai), then
Theorem 1 and Theorem 2 hold with

κ(s) =
q′(s)
q(s)

− q?′(s)
q?(s)

= −
n∑

i=1

2 Re ai

|s− ai|2
, (34a)

ρ(s) =
1
2

∣∣∣∣1− (q(s)−1q(−s))2

2s

∣∣∣∣ +
κ(s)
2

(34b)

Similarly, in the discrete-time case, Theorem 1 and Theo-
rem 2 hold with

κ(z) =
zq′(z)
q(z)

− zq?′(z)
q?(z)

=
n∑

i=1

1− |ai|2

|z − ai|2
, (35a)

ρ(z) =
1
2

∣∣∣∣ (znq(z)−1q(z−1))2 − 1
1− z2

∣∣∣∣ +
κ(z)

2
(35b)

if X = X + X, and X = Xq (equipped with L2
d norm) for

some d-stable q =
∏

(z − ai) ∈ R[z].

1Our results in (34a, 35a) correspond to the results of De Bruyne at al
(2.4, 3.4) as found in [1] since βij = 〈1/(s − ai), 1/(s − aj)〉 implies

k(s, w) = [ 1
−w−a1

, · · · , 1
−w−an

]

264β11 · · · β1n

...
...

βn1 · · · βnn

375
−1

2664
1

s−a1
...
1

s−an

3775 .

To see this, note that for q =
Q

(s − ai) (ai 6= aj ) an ONB of Xq is
given by {

P
ij

gij

s−aj
, i = 1, . . . , n} with g = β−1/2 and thus k can be

computed from (9) and analogously for k(z, w).
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V. ON CONDITIONS FOR BOUNDS ON A REAL RATIONAL
MODULE AND ITS COMPLEXIFICATION TO COINCIDE

In this section we examine when the tight bound ‖ρ‖∞
on a real rational module Xq coincides with the tight bound
‖κ‖∞ of its complexification Xq. Recall that κ and ρ
are defined in (34), (35) for continuous- and discrete-time
respectively.

Lemma 10 Let q ∈ R[z] be d-stable with deg(q) > 0 and k
denote the reproducing kernel of Xq. Then {k(z, ·) | z ∈ D}
separates points in D. That is for all wi ∈ D with w1 6= w2

there exists z ∈ D with k(z, w1) 6= k(z, w2). The same holds
mutatis mutandis for q ∈ R[s] being c-stable.

Proof: Since deg(q) > 0 there exists some a ∈ C
such that q(a) = 0 and thus, by partial fraction expansion,
1/(z − a) ∈ Xq. Since 1/(w1 − a) = 1/(w2 − a) implies
w1 = w2 we can conclude that kw1 6= kw2 since they take
different values on 1/(z − a) ∈ Xq.

Using Lemma 10 and property 3) of Theorem 5 and
Theorem 6, respectively, we obtain a necessary and sufficient
condition for ‖κ‖∞ = ‖ρ‖∞ in the form of Corollary 11 and
an easy sufficient condition given by Corollary 12.2

Corollary 11 Let q ∈ R[z] be d-stable; then ‖κ‖∞ = ‖ρ‖∞
if and only if ‖κ‖∞ ∈ {κ(−1), κ(1)}. Similarly for q ∈ R[s]
being c-stable, ‖κ‖∞ = ‖ρ‖∞ iff ‖κ‖∞ = κ(0).

Corollary 12 Let q =
∏

(x−ai) ∈ R[x] be d-stable (x = z)
or c-stable (x = s). Then the condition ai = Re ai for all i
is sufficient (but not necessary) for ‖κ‖∞ = ‖ρ‖∞.

Proof: Let q ∈ R[s] be c-stable. Since all ai are
assumed to be real, |s− ai|2 is minimized by s = 0. This is
sufficient for ‖κ‖∞ = ‖ρ‖∞ since ‖κ‖∞ = κ(0). To check
the claim for discrete-time, let q ∈ R[z] be d-stable. Then κ
is a convex function of Re z on {z ∈ D |Re(z) > 0} since
each of its summands

1− |ai|2

|z − ai|2
=

1− a2
i

(Re z − ai)2
,

is convex in that sense. So κ attains its maximum on {−1, 1},
i.e, ‖κ‖∞ ∈ {κ(−1), κ(1)} which implies the claim that
‖κ‖∞ = ‖ρ‖∞.

VI. NUMERICAL EXAMPLES

Let B2, Bκ, and B∞ denote the unit balls of ‖ · ‖2, ‖ · ‖κ

and ‖ · ‖∞ in the space Xq where the κ-norm is the scaled
H2 norm given by ‖f‖2

κ = ‖κ‖∞‖f‖2
2. Note that Bκ ⊆ B∞

is equivalent to the statement that ‖κ‖∞‖f‖2
2 = 1 implies

‖f‖2
∞ ≤ 1 and is thus equivalent to (10). Let ∂B∞ denote

the border of B∞ then Bκ ∩ ∂B∞ 6= ∅ is equivalent to
‖κ‖∞ = ‖ρ‖∞. We provide three examples: Example 1 and

2To see that in general ‖κ‖∞ > ‖ρ‖∞ take, e.g., a c-stable q ∈ R[s]
with q = (s + 1/2)(s + eω0 )(s + e−ω0 ). By calculation

κ(ω) =


2 + 4 cos ω0 for ω = 0,
1 + 2

cos ω0
for ω = 1.

which implies κ(0) < κ(1) ≤ ‖κ‖∞ for ω0 ∈ (π/2− ε, π/2) and ε > 0
sufficiently small. In this case κ(0) 6= ‖κ‖∞ > ‖ρ‖∞ by Corollary 11.

Example 2 are in discrete-time; Example 3 is continuous-
time and similar to the one in Section 5 of [1].

Example 1 For q = q1q2 with q1 = (z−1/3−/3) and q2 =
(z − 1/3 + /3) we have ‖κ‖∞ ≈ κ(e·0.72) ≈ 3.43382
and ‖ρ‖∞ = ρ(e·0) = 2.8; see Fig. 1 and 2.

Example 2 For q = q1q2 with q1 = (z − 1/20) and q2 =
(z+3/4) the numerical result is ‖κ‖∞ = ‖ρ‖∞ = κ(e·0) ≈
7.905; see Fig. 3.

Example 3 For q(s) = (s + a)(s + a∗) with a = 1/2 − 2
we have ‖κ‖∞ ≈ κ(2.0) ≈ 4.062 and ‖ρ‖∞ ≈
ρ(1.94) ≈ 2.13. Let gθ = θ

s+a + θ∗

s+a∗ , and normalize
fθ = gθ/‖gθ‖2 then the unit ball B2 in Xq is given by
B2 = {fθ | θ ∈ D}; see Fig. 4.

Fig. 1. Norm balls B2, B∞ and Bκ corresponding to Example 1. Due to
‖ρ‖∞ < ‖κ‖∞ we observe that ∂B∞ ∩ Bκ = ∅.

Fig. 2. Norm bounds κ(eω) and ρ(eω) corresponding to Example 1. As
predicted by Corollary 11 we observe that κ(0) < ‖κ‖∞.

Fig. 3. Norm balls B2, B∞ and Bκ corresponding to Example 2. Due to
‖ρ‖∞ = ‖κ‖∞ we observe that ∂B∞ ∩ Bκ 6= ∅.
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Fig. 4. Norm bounds κ( ω), ρ( ω) and |fθ( ω)|2 of all elements in
fθ ∈ B2 corresponding to Example 3. Note that ρ( ω) is the envelope of
the |fθ(ω)|2’s and, as predicted by Remark 3, ρ( ω) ∈ [κ( ω)/2, κ( ω)].

VII. REMARKS ON THE VECTOR VALUED CASE

In this section we provide a natural extension of the
complex bound for the vector-valued case which shows the
flexibility of the integral kernel approach. To keep the paper
reasonably short we choose not to discuss issues of loosing
tightness of the complex bound when dealing with linear
spaces over the reals.

Let (X, 〈·, ·〉) denote a finite dimensional complex inner
product space of A-valued functions defined on some set Ω
which are bounded in the sense that

‖f‖∞ = sup
w∈Ω

‖f(w)‖A = sup
ω∈Ω

sup
α∈A1

Jf(w), αK < ∞,

for all f ∈ X. Here (A, J·, ·K) denotes a finitely generated
complex inner product space, ‖α‖2

A = Jα, αK the induced
norm, and A1 the unit ball. For α ∈ A let α∗ denote the
functional defined by α∗(β) = Jβ, αK for all β ∈ A. In the
scalar case A = C and α∗ is the complex conjugate of α.

Mimicking the scalar case, given an ONB {bi}n
i=1 of X let

K(z, w) =
∑n

i=1 bi(z)b∗i (w) and Kw,α = K(z, w)α. Then
K is uniquely determined by its properties: 1) Kw,α ∈ X
and 2) 〈f,Kw,α〉 = α∗f(w) for all w ∈ Ω, α ∈ A, f ∈ X;
called the reproducing kernel of (X, 〈·, ·〉). In particular K :
Ω×Ω → L(A) is independent of the chosen ONB and takes
its values in the space L(A) of linear maps from A to A.

Theorem 1 is a special case of the statement found in
Theorem 13 for the vector-valued case.

Theorem 13 Let R(w) = K(w,w)1/2, i.e., R(w) ∈ L(A)
symmetric (Hermitian), such that R(w)R(w) = K(w,w)
and let ‖ · ‖L(A) denote the operator norm on L(A) induced
by the norm on A. For all w ∈ Ω, f ∈ X there holds
‖f(w)‖2

A ≤ ‖R(w)‖2
L(A)‖f‖

2
2 and this bound is tight. In

particular
‖ · ‖2

∞ ≤ ‖R‖2
∞ · ‖ · ‖2

2, (36)

is a tight bound on X.

Proof: For any α ∈ A, the Cauchy-Bunyakovsky-
Schwarz inequality in X yields

|Jα, f(w)K|2 ≤ ‖Kw,α‖2
2 · ‖f‖2

2. (37)

Utilizing 〈Kw,α,Kw,α〉 = Jα, K(w,w)αK, which equals
‖R(w)α‖2

A, and supremizing over α ∈ A1 yields

‖f(w)‖2
A ≤ ‖R(w)‖2

L(A) · ‖f‖
2
2, (38)

The rest follows by the same reasoning as in the scalar case
discussed in Theorem 1.

We conclude this section with a simple example where the
computation of R(w) = K(w,w)1/2 can be reduced to the
scalar case.

Example 4 Let (Cn×m, J·, ·K) be defined by JA,BK =
tr(BHA) for all A,B ∈ Cn×m, q ∈ R[z] d-stable and

Xq ⊗ Cn×m := {P/q |P ∈ Cn×m[z],deg(Pij) < deg(q)},

which is a subspace3 of
(
L2(D, Cn×m), 〈·, ·〉

)
, with inner

product 〈f, g〉 = 1
2π

∫ π

−π
Jf(eω), g(eω)Kdω. Let k denote

the kernel reproducing the scalar space Xq. Then 〈f, kw · α〉
equals α∗f(w) because of4∫

Jf(eω), kw(eω) · αKdω =
∫

Jf(eω), αK · k∗w(eω) dω.

In other words K(z, w) = k(z, w)·I reproduces Xq⊗Cn×m

where I denotes the identity in L(Cn×m). Using (38) this
brings us to the conclusion that ‖ · ‖2

∞ ≤ ‖κ‖∞ ‖ · ‖2
2, with

κ(w) = k(w,w) gives a tight bound on Xq ⊗ Cn×m.

VIII. CONCLUSIONS

We have solved the problem of bounding the absolute
value of a continuous-time or discrete-time system transfer
function (and thus also its H∞ norm) from above using its
H2 norm and the reproducing kernel of the function class
considered. We have shown how closed form expressions can
be obtained by restricting the class of transfer functions to
those forming real rational modules. Furthermore we have
provided the basis for future work on this topic regarding
vector and matrix-valued transfer functions.
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