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Abstract. This chapter considers linearly parametrized plants whose parameters
are normally distributed and addresses the problem of analyzing the image in the
Nyquist plane of a set of these plants defined by a confidence ellipsoid in the pa-
rameter space. The image in the Nyquist plane of such set of plants is made up of
ellipses at each frequency. However, the connection between different frequencies
makes the mapping nontrivial. We show that the probability level linked to this
image in the Nyquist plane is larger than that of the confidence region in the pa-
rameter space. This is due to the fact that the mapping between the parametric
and frequency domain spaces is not bijective,

1 Introduction

In many recent works [3,8,12,2], robustness analysis and robust control de-
sign have been achieved on frequency domain uncertainty regions containing
the true system at a prescribed probability level. This frequency domain un-
certainty region represents the frequency responses of parametrized transfer
functions [10,9,7]. The parameters of these transfer functions have a Gaussian
probability density function that is the result of a prediction error identifica-
tion experiment. It is therefore important to understand the properties of the
mapping from parameter space to Nyquist plane. In this paper, we analyze
the particular case of linearly parametrized model structures, which is the
case treated e.g. in [8,12,2,7]. For that particular case, we deduce the link
between the frequency domain and parametric representations, their differ-
ences and the consequences of these differences on the probability level.
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Technology and Culture. The scientific responsibility rests with its authors. The
research reported here has been performed jointly by the three authors. However,
the writing has been done by X. Bombois and M. Gevers as a surprise gift to
B.D.O. Anderson. Let him share the credit for the ideas, and not be blamed for
the text.
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For model structures that are linear in the parameter vector 8, the image
in the Nyquist plane of a parametric confidence region defined by an ellip-
soid Uy in the parameter space is an uncertainty region made up of ellipses
at each frequency in the Nyquist plane. However, the mapping between the
parametric and frequency domains is not bijective. We prove that the cor-
responding uncertainty region in the frequency domain is the image of more
parameters @ than those in Uy and that the probability level linked to the
frequency domain confidence region is larger than the one linked to Up. We
also consider the inverse mapping. We show that, if we consider the ellipses
in the Nyquist plane frequency by frequency, they are the image of sets of
parameters 8 that are different at each frequency.

Chapter outline. In Section 2, we define the set D that contains the linearly
parametrized systems whose parameter vector is constrained to lie in an
ellipsoid. In Section 3, we present two theorems that describe the image of an
ellipsoid by a nonbijective mapping, as well as the inverse image defined by
such mapping. In Section 4, we present the frequency domain set £, image
of the set D in the Nyquist plane. In Section 5, we analyze the inverse image
of the set £. In Section 6, we define the probability level linked to £ and
give the value of this probability level. In Section 7, we give some comments
about the case of model structures that are not linearly parametrized and we
finish by an illustration and some conclusions.

2 Problem statement

As stated in the introduction, we consider linearly parametrized transfer func-
tions. The case of nonlinearly parametrized transfer functions will be briefly
discussed in Section 7. Let us thus consider the following system description:

G(2,60) = G(2) + A(2)8 : (1)
with 8 € R**! the parameter vector, G(z) a known transfer function and
A(z) a known row vector of transfer functions. Let us further assume that ¢
has a Gaussian probability density function with zero mean! and covariance
Py € RF*F je.

6 ~ N(0, Pp) (2)
We have therefore:

607 P10 ~ X (k) ®)

! In the case where § ~ A{(é, Py), one can always write G(2,8) = G + Af + A =
Glis + A0 with § =0 — 0 ~ N(0, Py)
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where x2(k) is the chi-square probability density function with & degrees of
freedom.

Let us now write the frequency response g(e™,8) of G(z,8) at the fre-
quency w in the following form:

o o 4 [ Re(G(e7,0
g(e ’9)‘{1‘ (Im((GEsz,g)))))

5 ()
_{ Re(G(e) Y , [ Re(A(e™))\
= (Im(G(efw))> + (Im(/l(e"“))) 8 (4)

'The frequency response vector g{e’*, #) has thus a Gaussian probability
density function with mean §(e’) and covariance P, (wz = cov((g(e’”,0) —
g(e7))(g(e7, 8) — §(e))T) = T(e7) PyT(e’)T € R***. We have thus

Q(ejw’ 0) ~ N(g(ejfu)s Py(w)) : . (5)
9(e,8)T Py(w)~1g(e, 0) ~ x*(2)

The results presented in (5) are very common and can e.g. be found in [7].
However, these results do not give a response to some important questions.
If we design a confidence ellipsoid in the parameter space using (3), is the
image of such confidence ellipsoid in the Nyquist plane a confidence region
with the same probability level? How can we relate this image with the known
probability density function of the frequency response (5)? If we design a
confidence ellipse at each frequency using (5) and define a set by connecting
all these ellipses, what is the inverse image of that set in parameter space?
In order to answer these questions, we will consider throughout this paper
the following confidence ellipsoid in parameter space and the corresponding
region in transfer function space. We will choose a probability level of 0.95
for these confidence regions.

Definition 1. Let us consider the parametrized model structure given in (1)
and the probability density function of the parameter vector ¢ given in (2).
The ellipsoid Uy of size x:

Up= (0] 67270 < x}, (6)

with x such that Pr(x*(k) < x) = 0.95, is a confidence ellipsoid of probability
0.95 in the parameter space. We define the set D of transfer functions that
correspond to the parameters 8 € Up:

D = {G(2,0) | § € Up} )

The probability level a(D) linked to D is thus given by (D) = Pr(G(z,0) €
D) = 0.95. . - n
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In the next sections, we describe the image in the Nyquist plane of the
uncertainty region D and we analyze the properties of such image, as well as
its inverse image, with respect to the probability level.

3 Linear algebra preliminaries

We first present two theorems that describe properties of a mapping T be-
tween a real vector y and another real vector z of lower dimension. This
mapping has the following expression

z="Ty (8)
where y € R**", z € R™! (n < k) are real vectors, and T' € R™*F is a real
matrix of rank n.

Let us first recall a well-known lemma that will be useful to prove the

first theorem.

Lemn}ca kl Let us consider the partitioned symmeltric positive definite matriz
P c RF*%,

Pll P12
P=
(72 7)
with P;; € R™®, P, € R™% ) gnd P,y ¢ REMIXE) 1ot us also

consider two real vectors x € R™! and € R®™*1 and an ellipsoid Uyz
defined as:

= {(2)1(5) 7 () <o)

Then the set Uy
0.2l () e ves) ' ©)
is also an ellipsoid given by

Uy ={z | 2T P7'z < 1} (10)

Proof. The inverse of the block matrix P can be written (see e.g. [13, page
22])

p1_ (K Ky
K%, Ko

where K11 = Pt + P ' PoA~'PLPY, Kig = —P;'PA™Y, Kpy = A™Y
and A = Py — PiIz‘Pﬁ Pys. '
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Using these notations and introducing the vector z = K5, Kz + 7, we
have the following equivalences:

T
(;) p-1 ( ) <1¢= ol (K ~ KK Kh)a + 2T Kogz < 1

& 3t Ple + 2T Koz < 1 (11)
Using this last expression, we can now write that

1. if (&7 #7)T € Uyg, then 2T P 'z < 1. Indeed

T
(;) P! (;) <1=2"P 'z < (1 - 2TKgpz) < 1

2. if 2T Pz < 1 then there exists Z such that (T 3T)T € U,z. Indeed,

take as Z, the vector Z such that z = 0 (i.e. Z = —K3;' KL z). Then,
( K221K12m) € Usa-
This completes the proof. |

Note that U, is not the intersection of U,z with the subspace Z = 0; it is a
larger set. Let us now present our two theorems about the mapping 7" defined
in (8).

Theorem 1. Let us consider the mapping T defined in (8) and the ellipsoid
Uy of size x in the y-space:

Uy ={y | y" P 'y <x}, (12)
with Py € R*** g positive definite matriz. The zmage U, of Uy by the map-

ping T i.e. U, £ {z | z =Ty with y € Uy} is an “ellipsoid in the - -space
given by

Uy = {x |7 P 'z < x}, (13)
with Py = TP,TT € R™",

Proof. Let us first complete the mapping T by generating a nonsingular
mapping T .

T

x

(2)-(z)» a9
such that 7' € R*¥** has rank k. Using T', we have that

-1
z T et . g xT
YRl <ae= (ﬁ> T-Tport (i) <x (15)

=]
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Proving Theorem 1 is thus equivalent to proving that (13) is the domain
where z is constrained to lie when (15) holds. This follows immediately from

Lemma 1, noting that if P = TP,,TT, then P, = Py = TP,T7. ~

Theorem 2. Let us consider the mapping T and the ellipsoids Uy and U,
defined in (8), (12) and (13), respectively. Define the inverse image Cyy of U
using the mapping T as

Cye{yle=Tyel,, (16)
Then Cy is a volume given by
Cy = {y | y"Roy < x}, (17)

with Rg = TTP7T, a singular matriz € RF¥E, Moreover, the volume G,
has the following properties:

o The matriz Ro defining Cy has rank n i.e. it has k —n zero eigenvalues.
The volume Cy has therefore k —n infinite main azves. The directions y;
(i = 1...k—n) of these infinite main azes are the eigenvectors correspond-
ing to the null eigenvalues of R¢. Moreover, these eigenvectors y; belong
to the null space of T' i.e. Ty; = 0.

o The ellipsoid Uy is included in C,.

Proof. We first prove that the inverse image of U, by the mapping (8) is
given by (17). This follows directly from:

:BTP:;;IIE < x = yTTTPngy <x N (18)

The volume Cy is thus the inverse image of U, since y has to satisfy the
right-hand side of (18) in order to have z in U,.

It follows from Rg = TTP:;“ 17 ¢ R¥** with T' of rank n < k that Re
has k& — n null eigenvalues and that the corresponding eigenvectors are in the
null-space of the mapping 7.

Theorem 1 and the definition (16) of C, show that Uy, is included in Cy.
Indeed, we know by Theorem 1 that each y in U, has an image (i.e. T) in
Uy. Therefore, each y in Uy lies in C,, defined by (16). |

Comments.

o Since the matrix T has rank n < k, the mapping (8) is not bijective. This
explains the fact that the image of U, by the mapping (8) is exactly U,
and that the inverse image of U, is a larger volume Cy containing Uy,

¢ In the particular case where £ = 3 and n = 2, U, is then an ellipse
(Theorem 1) and Cy is a cylinder with infinite axis. The axis of the
cylinder is in the direction of the eigenvector corresponding to the single
null eigenvalue (Theorem 2).
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4 Image of D in the Nyquist plane

Theorem 1 tells us that the image of an ellipsoid by a linear mapping into a
smaller dimensional space is also an ellipsoid. This theorem will now be used
in order to find the frequency domain region (or dynamic region) that is the
image of D in the Nyquist plane. This frequency domain region is defined via
a constraint on the frequency response of the plants in this region at every
frequency. The general expression of a frequency domain region can e.g. be
written as follows:

L={G(2) | 9(e) € U(w) Vw}, . (19)

where g(e?) = (Re(G(e?*)) Im(G(e?)) )T and U(w) is the particular do-
main where the frequency response vector of the plants G(z) € £ is con-
strained to lie at the frequency w.

We are thus looking for the frequency domain region £ that corresponds
to the image of the set D in the Nyquist plane. Let us first define this notion

properly.

Definition 2. Consider the set D of transfer functions defined in (7) and the
general expression of a frequency domain region £ given in (19). The image
of D in the Nyquist plane is the frequency domain region £ defined by (19)
with U(w) defined as follows, at each frequency w:

U(w) = {g(e™) | g(e’) = g(¢’*,0) for some § € Up} (20)

with g(e?¥, 8) defined in (4). ]

Important comments. Definition 2 tells us

o that the image £ of D in the Nyquist plane is a set containing the image
of all plants in D;

e that all “points g(e?) € U(w)” at a frequency w are the image of some
plant in D.

However, if we randomly select frequency functions f(e/*) € £, for w € [0 =],
then most of such functions will not be in D, i.e. for most of such functions
f(e?) € L, there will not exist a # such that f(e?) = g(e’,0) Yw with
g(e, ) defined by (4).

Using the mapping (4) between the space of parametrized transfer func-
tions G(z,8) (or parameter space) and the frequency domain space, and the
results of Theorem 1, we can construct an explicit expression of the image £
of D in the Nyquist plane.
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Theorem 3. Consider the set D of transfer functions G(z,0) = G(z) +
A(z)8 presented in Definition 1, and the mapping (4) between parameter
space and frequency domain space. The image of D in the Nyquist plane (see
Definition 2) is a frequency domain region L having the following ezpression.

L={G(2) | g(e™) € U(w) Yw} ‘ (21)
Uw) = {g e R*! [ (g - 3(e"))"P(w) " (9 — 5(e™)) < x} (22)

with P(w) = T(e?)PyT(e¥)T,

o= () e - (4453

The image L of D in the Nyquist plane is thus made up of ellipses U(w) at
each frequency around the frequency response of the known transfer function
G(z). The ellipse Uw) at a particular frequency can therefore be considered
as the image of D in the Nyguist plane at this frequency.

Proof. In order to establish the proof of Theorem 3, we need to prove that the
expression (22) of U(w) is equivalent with (20). The results follows directly
from Theorem 1 by considering the mapping (4) (i.e. g(e/,8) — §(e/) =
T'(e?*)) at a particular frequency w. n

Remarks. It is to be noted that the matrix P(w) defining U(w) is equal to
the covariance matrix Py(w) of g(e™,8) (see (5)). It is also to be noted that,
at the frequencies w = 0 and w = =, the ellipse U{w) degenerates into a line
segment,

5 Inverse image of £

In the previous section, we have determined the frequency.domain region £,
image of the set D of parametrized transfer functions G(z,8). This set £,
made up of ellipses U(w) at each frequency, is defined by the property (20).
In particular, £ contains all plants in D. The set £ is nevertheless not equiv-
alent to D. Indeed, we prove that there are more plants in £ than those in D.
These additional plants are plants having a structure different from G(z,8)
(i.e. they cannot be described as G(z,6) for any 8 (see (1))), but also plants
having the structure G(z,8) but for 8 & Up.

In this chapter, we will focus on the additional plants in £ having the
structure G(z,6) given in (1) but for § ¢ Up. The fact that such additional
plants exist in £ is a consequence of the fact that the mapping (4) is not
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bijective? since (4) maps a k-dimensional space into the 2-dimensional fre-
quency domain space. In order to establish that additional plants G(z,8) lie
in £, the inverse image of £ in the space of parametrized transfer functions
G(z,6) has to be determined. For this purpose, it is useful to first analyze
the inverse image D(U(w)), via the mapping (4), of one ellipse U{w) of £ in
the space of parametrized transfer functions G(z, ).

Proposition 1. Consider a particular frequency w and the ellipse U(w) de-
fined in (22) which is the image of the set D in the Nyquist plane at the
frequency w. Using the mapping (4) from 8 to g(e’“,8), define the inverse
image of U(w) in the parameter space as

Co(UW)) = {0 | g(¢™,0) € Uw)}. : (23)

Correspondingly, define the inverse image of U(w) in the space of parametrized
transfer functions G(z,0) as

DUW)) = {G(=,0) | g(e™,6) € Uw)}. (24)

Then the set Co(U{w)) is a volume in the 8-space with k — 2 infinite axes
defined as:

Co(U(w)) = {6 € R¥* | 67T ()T P(w) 2T (e7)0 < x}. (25)
Moreover, Uy C Cy(U(w)) and D C D(U(w)).

Proof. The expression (25) of Cy(U(w)) follows directly from Theorem 2

by substituting U(w) for Uy, Up for U, and Cg(U(w)) for Cy. It then follows

from the last part of Theorem 2 that Uy is a subset of Cp(U(w)). Now observe
from (23} and (24) that D(U(w)) can equivalently be described as

DUW))={G(#,0) | 0 € Co(U(w))} (26)
It then follows from Us C Ca(U(w)) and the definitions (7) and (26) that
D C DU(w)). : |

Proposition 1 tells us that the ellipse U(w) is the image of more plants
G(z,6) than those in D. These additional plants G(z,00u:) With O,y €
Co(U(w)) \ Us, have the property that 3 8;,, € Uy such that, at frequency w,

9(7, 6our) = 9(€7, in),
since U(w) is defined by (20).

It is also important to note that the inverse image D(U(w)) of U(w) in
the space of parametrized transfer functions G(z, 8) is different at each fre-
quency, because the inverse image Co(U(w)) in parameter space is different

2 The mapping T'(e’*) is only bijective if the size k of the vector @ is equal to two.
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at each frequency. In other words, U(w) is the image of a set D(U(w)) of
plants G(z, §) that are different at each frequency.

In Proposition 1, we have computed the inverse image Cyp(U(w)) in pa-
rameter space of one ellipse U(w), via the inverse of mapping (4). We now
determine the inverse image Up(L) in parameter space of the whole set £
defined by (21) and (22).

Theorem 4. Consider the frequency domain set L defined by (21) and (22).
Define the inverse image Ug(L) of L in parameter space, via the mapping (4),
as:

Uo(L) = {6 | G(2,8) € L}. @7)
Then
U(t)= () ColUW)), _ (28)
weo )

where Cyp(U(w)) is defined in (23) and (25). Moreover,
Up C Up(L). (29)

Proof. First observe that, by the definition of £ in (21), the set Up(L) defined
in (27) is equivalent with

Up(L) = {8 | g(e™,8) € U(w) Yw}.

The result (28) then follows immediately from Definition (23). The inclu-
sion (29) then follows from the main result of Proposition 1, namely Uy C
Cop(U(w)) Vw. ' [ |

Corollary 1. Consider the frequency domain set L defined by (21) and (22).
Define the inverse image D(L) of L in the space of parametrized tronsfer
functions G(z,0), via the mapping (4), as

D(L) = {G(2,0) | G(2,0) € L}. (30)
Then D C Dg.
Proof. By (30) and (27), it follows that

D(L) = {G(2,8) | 6 € Up(L)}. ’ (31)

The result then follows from the result (29) of Theorem 4, and the defini-
tion (7) of D. ' |
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Corollary 2. With definitions as above, we have:
Up CUp(L) C Co(U(w)) Yw (32)
D CDL) C D(U(w)) Vw. (33)

Proof. The first inclusions follow from Theorem 4 and Corollary 1. The
second inclusion in (32) follows from (28), and the second inclusion of (33)
from (31), (26) and (32). u

Theorem 4 tells that the ellipsoid Uy which defines D is a subset of
Uo(£) = Nuepo ») Co(U(w)). We shall illustrate by an example in Section 8
that it may be a strictly proper subset of Up(L). As a consequence, D may
be a strictly proper subset of D(L), and the frequency domain region £ is
therefore the image in the Nyquist plane of a set D(L£) containing more plants
G(z,6) than those in D. It is to be noted that, according to the definition of
L (Definition 2), these additional plants G(z,8ous) with 0,y € Up(L) \ Uy,
must have the property that, at each frequency w, theie exists 8, in Uy such
that G(egw out) - G(CJ gm)

6 Probability level linked to the confidence region £

In the previous sections, we have shown that the image of a set D in the
Nyquist plane is a frequency domain region £ made up of ellipses U(w) at
each frequency. We have also shown that the sets U(w) and the whole region
L are (or may be) the image of more plants G(z,6) than those in D. Let us
now consider both sets (i.e. U{w) and L) as confidence regions. The ellipse
U(w) is a confidence region for the frequency response vector g(e?, §) of the
plants G(z,6) and the set £ is a confidence region for the plants G(z,6).
Since the parameter vector 6 has a probability density function (see (2)), we
can relate a probability level to both confidence regions.

Definition 3. Consider the parametrized transfer functions G(z,8) given
in (1), whose parameter vector 8 has the probability density function (2).
Consider also the sets U(w) and L defined in (21)-(22). The probability level
a(U(w)) linked to U{w) is defined as :

U (w)) = Pr(g(e’,0) € Uw)),

where g(e?,6) is defined in (4). The probability level a(£) linked to £ is
defined as:

o(L) = Pr(G(z,0) € L). n
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These probability levels a(U{w)) and a(L) will be larger than the proba-
bility level a(D) linked to D (i.e. o(D) = 0.95) since D C D(L) C D(U(w)) Vw
(see Corollary 2). Theorem 5 gives an exact computation of a(U(w)), as well
as upper and lower bounds for a(L).

Theorem 5. Consider the parametrized transfer functions G(z,0) given in (1),
whose parameter vector 8 has the probability density function (2). Consider
also the sets U(w) and L defined in (21)-(22). Then the probability level
a(U(w)) linked to U(w) (see Definition 3) is gwen by:

a(U(w)) = Pr(G(z,0) € D(U(w))) (34)
= PT(X?'(Z) <x) Yw, (35)

where D(U(w)) is defined in (24). The probability level a(L) linked to L (see
Definition 8) is bounded by:

a(D) < a(L) < a(U(w)) (36)

where a(D) is the probability level linked to the set D presented in Definition 1
and of which the set L is the image in the Nyquist plane (a(D) = 0.95).

Proof. That a(U(w)) is equal to Pr(G(z,8) € D(U(w))) follows from Propo-
sition 1. That a(U(w)) is also equal to (35) is a direct consequence of the
probability density function of g(e?*, #) given in (5) since the covariance ma-
trix Py(w) of g(e?*, ) is equal to the matrix P(w) defining the ellipse U(w).

Since the inverse image of £ in the space of parametrized transfer func-
tions G(z,8) is D(L), we can write the following about the probability level
a(L) linked to £L:

a(L) = Pr(G(z,6) € D(L)).

The upper bound in (36) proceeds then from the fact that D(L) C D(U(w)) Vw
and the lower bound from the fact that D C D(L) (see Theorem 4). ]

Important comments. Theorem 5 shows that the probability level (L)
linked to the image of D in the Nyquist plane is larger than the probability
level linked to D (i.e. o(D) = 0.95). This is a consequence of the fact that £
is the image of more plants than those in D because of the singularity of the

mapping (4).

It is also interesting to note that if we consider the ellipses U(w) fre-
quency by frequency, these ellipses are the image in the Nyquist plane of
a set D(U(w)), different at each frequency, and having a probability level
a(U(w}) which follows from the probability density function (5) of g(e¥, 8).
However, since the sets D(U{w)) are different at each frequency, when we
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collect together all ellipses U(w)} to make up L, the probability level a(L) is
smaller than a(U(w)). This last remark shows that the probablility density
function of g(e?*, #) given in (5) is only relevant for one particular frequency.
Theorem 5 shows therefore that, in order to design a confidence region £ with
a probability level a(L) larger than 95%, one has to first design a confidence
region D having the desired probability level (i.e. (D) = 0.95) and then take
its image £ in the Nyquist plane. '

As a consequence, in the paper [7], the probability density function of the
frequency response can be used in order to design a confidence ellipse of 95%
at a particular frequency. However, these 95%-ellipses can not be connected
in order to make up a frequency domain confidence region at 95% for the
parametrized transfer functions, as proposed in {1,11]. For this purpose, as
said above, one has to first design a confidence region D having the desired
probability level {(i.e. a(D) = 0.95) and then take its image £ in the Nyquist
plane, as proposed in [2].

Remarks. The plants having another structure than G(z,8) and that lie in
L do not modify the probability level a(L) since only the parameter vector
# has a probability density function.

7 Case of not linearly parametrized model structures

Until now, we have treated the case of systems G(z,8) that can be written
as in (1) and whose parameters have the probability density function (2).
We have shown for this type of model structure the link between a set D of
transfer functions G(z,#) and its image £ in the Nyquist plane. If the model
structure is not linearly parametrized as in (1), our conclusions do not hold
i.e. the image at a frequency w is not guaranteed to be an ellipse. In {9,6,3],
a first order approximation was used to map the parametric confidence ellip-
soid into ellipses in the Nyquist plane. However, using such an approach, no
probablity level can be guaranteed for the obtained frequency domain region.

As a consequence, it is very difficult to have a clear idea of the image in the
Nyquist plane of a set Dyen of rational transfer functions with parameters
appearing in both numerator and denominator. Some partial results have
been presented in {4,5]. In [4], the authors have presented a way to compute, at
each frequency, the largest and the smallest modulus-and phase of the plants
in a region Dgep. In {5], we have given an LMI procedure that computes at
each frequency the smallest overbounding ellipse that contains the frequency
response of the plants in such set Dyep.
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8 Simulation example

In order to illustrate the results of this chapter, we present the following
example. Let us consider the following system description:

0.082~1 + 0.10092~2 + 0.03592 3 G127  + 0272 + 0523

Ca0) = T om8a T 4 0576027 ' 1 155782 1 0576077
8
Aiz) —
_ ’ 1 1,-2 -3 (o
=Gl + T TEsTe T T 0576052 (27872 27%) 22
2

where the parameter vector 6 is assumed to have a Gaussian probability
density function with zero mean and covariance Py given by:

1.0031 0.0263 —-0.0111
Py =10"%x [ 0.0263 1.0039 0.0268
—0.0111 0.0268 1.0039

We consider the 95 % confidence ellipsoid Uy in the parameter space that
defines a corresponding region D in the space of transfer function:

Up = {6 |67 P; 10 < 7.81},
D = {G(z,0) | 8 € Uy}

Using Theorem 3, we can design the image £ of D in the Nyquist plane.
This image £ is made up of ellipses at each frequency around the frequency
response of G(z) and is represented in Figure 1. According to Theorem 3, the
expression of the ellipse U{w) at the frequency w is given by:

Uw) = {g € R | (g — §(e™)T P(w) " Yg ~ 5(e™)) < 7.81}
with P(w) = T(e’*) PyT(e’)T and

s = ( FAGEN Y 1o = (FeGaeD.

All plants in D lie in £, and £ has the property (20). However, the map-
pings between D and £ and between D and U{w) are not bijective as shown
in Theorem 4 and Proposition 1, respectively. In order to illustrate the results
presented in these theorems, we will show two things:

1. thel:e exist plants G(z, 004 ) outside D whose frequency response vector
g(e?,8,y:) lies in some ellipses U(w) but not in all of them;
2. there exist plants G(z, 0y;5) outside D that lie in the whole region £.
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Fig. 1. Frequency domain representation of D in the Nyquist plane with ellipses
U(w) at some frequencies, frequency response of G(z) (dashdot), frequency response
of G(2,00u1) (dashed) and frequency response of G(z, 0s:s) (solid)

Since the size of § is 3, we know that the vectors € that are projected into
U(w) at the frequency w are those lying in the cylinder Cy(U(w)) whose axis
direction is given by the normed eigenvector ,,;(w) corresponding to the
null eigenvalue of the mapping T'(e’*) (see Theorem 2 and Proposition 1).
Using this property, we can find a plant G(z,8,4:) such that 6, & Up,
but such that its frequency response g{e?,0,y) at wpy lies in U(wy) for a
particular frequency wyp, say wp = 0.25. Indeed, let us choose as vector 8, a
vector in the same direction as ,,1(0.25) but outside the ellipsoid Up:

1.8084
Oour = { —3.5043
1.8084

This vector is well outside the ellipsoid U, since we have that:

0L Py Hour = 19525 > 7.81

out
but we also have that:
=0

70.25 ¥ — 5 70.25 T j0.259 . ={,30.25
9(e™ %, 0out) = §(7 %) + T(e?*)0ous = g(e?* %),
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and therefore g(e/%2%,6,,;) lies in U(0.25). However, this plant does not lie
in all ellipses as can be seen in Figure 1 where it circles around the origin at
high frequencies.

There also exist plants G(z, 05;5) whose parameter vectors fy;, & Up, but
that lie completely in £. According to Theorem 4 and Corollary 1, these are
the plants whose parameter vectors fpis lie in Up(L) = (e ) Co(UW)).
In order to find one of those particular vectors fy;5, we proceed like we did
to find 85, We choose a particular frequency wg and we choose a vector in
the direction @y (wo) of the axis of the cylinder Cy(U(wo)). But, here, we
choose this frequency wp in the middle of the frequency range: wo = 7/2 and
we choose the vector just outside the ellipsoid Uy:

0.0684
Opis = 0  OF Py 015 = 9.4501 > 7.81.
0.0684

In Figure 1, we see that the frequency response of the plant G(z,8:s) lies
in U(w) for each of the plotted ellipses. Since we only plot the ellipses at a
certain number of frequencies, Figure 1 alone does not prove that G(z, 6p:s)
isin £. In Figure 2, we have therefore plotted the value of the function

(9(e™, Bbis) — 3(e™))T P(w) ™ (g(e™, Oris) — §(e7))

at each frequency. We see that these values are, at each frequency, smaller
than 7.81, the size of the ellipses U{w). As a consequence, we can conclude
that G(z,0pi,) has its frequency response in £ even though G(z,8,) does
not lie in D.

9 Conclusions

In this chapter, we have considered linearly parametrized plants G(z, §) whose
parameters are normally distributed and we have presented results about
the image £ in the Nyquist plane of a confidence region D in the space of
parametrized transfer functions. We have shown that this image is made
of ellipses at each frequency. However, since the mapping between these two
spaces is not bijective, the image £ in the Nyquist plane contains more plants
G(z,0) than the initial confidence region D. The image in the Nyquist plane
is thus also a confidence region for the parametrized plants G(z,8) but with
a probability level larger than that of the initial confidence region D.
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